Use the drop-down menus to rank the boiling points of the following hydrocarbons. Use a "1" to indicate the compound with the lowest boiling point.

Answers

Answer 1

The boiling points of the hydrocarbons can be ranked as follows;

1. 4

2. 2

3. 3

4. 1

What controls the boiling points of the hydrocarbons?

The size of the molecules and the nature of the intermolecular interactions between the molecules essentially determine the boiling points of hydrocarbons.

Because they have more electrons and a larger surface area available for intermolecular interactions like Van der Waals forces, larger hydrocarbon molecules typically have higher boiling points.

Additionally, polar hydrocarbons and those that can form hydrogen bonds have higher boiling points than non-polar hydrocarbons because of stronger intermolecular forces.

Learn more about hydrocarbons:https://brainly.com/question/31643106

#SPJ1

Use The Drop-down Menus To Rank The Boiling Points Of The Following Hydrocarbons. Use A "1" To Indicate

Related Questions

I need to produce 500 g of lithium oxide (li2o) how many grams of lithium and how many liters of oxygen do i need. the balanced equation is: li + o2 --> lio2

Answers

To produce 500 g of lithium oxide (Li2O), you will need 232.12 g of lithium (Li) and 187.38 L of oxygen (O2)


To produce 500 g of lithium oxide (Li2O), you'll first need to determine the required amounts of lithium (Li) and oxygen (O2) based on the balanced equation: 4Li + O2 --> 2Li2O.

1. Calculate the moles of Li2O needed:
Molar mass of Li2O = (2 * 6.94) + 16 = 29.88 g/mol
500 g Li2O / 29.88 g/mol = 16.73 moles Li2O

2. Calculate the moles of Li needed (using stoichiometry):
4 moles Li / 2 moles Li2O = 16.73 moles Li2O * (4 moles Li / 2 moles Li2O) = 33.46 moles Li

3. Calculate the mass of Li needed:
Molar mass of Li = 6.94 g/mol
33.46 moles Li * 6.94 g/mol = 232.12 g Li

4. Calculate the moles of O2 needed:
1 mole O2 / 2 moles Li2O = 16.73 moles Li2O * (1 mole O2 / 2 moles Li2O) = 8.365 moles O2

5. Calculate the volume of O2 needed (assuming standard temperature and pressure):
Molar volume of an ideal gas at STP = 22.4 L/mol
8.365 moles O2 * 22.4 L/mol = 187.38 L O2

In summary, to produce 500 g of lithium oxide (Li2O), you will need 232.12 g of lithium (Li) and 187.38 L of oxygen (O2).

To know more about Mole Concept:

https://brainly.in/question/48859318

#SPJ11

How many moles of carbon dioxide are produced when 6. 00 moles of methane are used ? (CH4 +2O2 -> CO2 + 2H2O) NEED ASAP

a) 96. 0

b)24. 0

c)12. 0

d)6. 0

Answers

6.00 moles of carbon dioxide are produced when 6.00 moles of methane are used. The correct answer is (d) 6.0.

To determine how many moles of carbon dioxide are produced when 6.00 moles of methane are used, we need to look at the balanced chemical equation: CH4 + 2O2 -> CO2 + 2H2O.

First, we can observe that 1 mole of methane (CH4) reacts with 2 moles of oxygen (O2) to produce 1 mole of carbon dioxide (CO2) and 2 moles of water (H2O). This means that the mole ratio of methane to carbon dioxide is 1:1.

Since we have 6.00 moles of methane, we can use the mole ratio to find the number of moles of carbon dioxide produced.


1. Identify the mole ratio of methane to carbon dioxide from the balanced chemical equation (1:1).
2. Multiply the given moles of methane (6.00 moles) by the mole ratio to find the moles of carbon dioxide.

Calculation:
6.00 moles CH4 × (1 mole CO2 / 1 mole CH4) = 6.00 moles CO2

So, 6.00 moles of carbon dioxide are produced when 6.00 moles of methane are used. The correct answer is (d) 6.0.

To know more about carbon dioxide, visit:

https://brainly.com/question/3049557#

#SPJ11

12. How many grams of C3H6 are present in 652 mL of the gas at STP?


A. 1. 78 g


B. 6. 13 g


C. 2. 86 g


D. 1. 22 g

Answers

There are 1.142 grams of C₃H₆ in the 652 mL of sample of the gas at STP.

Using ideal gas equation,

PV = nRT,  pressure is P, volume is V, number of moles in n, gas constant is R, the temperature is T. At STP, the pressure is 1 atm, the temperature is 273 K, and the molar volume is 22.4 L.

We can use the following steps to calculate the number of moles of C₃H₆ present in 652 mL of the gas at STP:

Convert the volume to liters:

652 mL = 0.652 L

Calculate the number of moles using the ideal gas law:

PV = nRT

(1 atm) (0.652 L) = n (0.0821 L·atm/mol·K) (273 K)

n = 0.0272 mol

Calculate the mass of C₃H₆ using its molar mass:

m = n × M

M(C₃H₆) = 42.08 g/mol

m = 0.0272 mol × 42.08 g/mol

m = 1.142 g

It is nearest to option D, hence the mass is 1.22 grams.

To know more about ideal gas equation, visit,

https://brainly.com/question/27870704

#SPJ4

A scientist collected a sample of sedimentary rock from a high elevation in the Himalaya Mountains. Using what he knows about the rock cycle and how major landforms are created on Earth, what could the scientist infer about how the sedimentary rock became part of this mountain range?

Answers

The scientist could infer that the sedimentary rock in the Himalaya Mountains was formed through processes like weathering, erosion, deposition, and lithification. The rock cycle played a crucial role in creating this landform.

Tectonic plate movement and the collision between the Indian and Eurasian plates led to the uplift and folding of these sedimentary layers, ultimately forming the high elevation mountain range.

Based on the rock cycle and the formation of major landforms, the scientist could infer that the sedimentary rock was most likely formed from the accumulation of sediment in a low-lying area, such as a river delta or shallow sea. Over time, the sediment was buried and compacted, eventually forming sedimentary rock.

This rock was then subjected to tectonic forces, likely as a result of the collision of two tectonic plates, which caused it to be uplifted and exposed at a high elevation in the Himalaya Mountains.

Therefore, the scientist could infer that the sedimentary rock became part of the mountain range through a combination of geological processes, including sedimentation, compaction, tectonic activity, and uplift.

To know more about rock cycle:
https://brainly.com/question/29548493

#SPJ11

Bomb calorimetry is best for determining heat values. Because we cannot have a bomb calorimeter for every pair of students, we use what is readily avaliable. Why would two styrofoam cups be an economical way of determining these heat values and what is the of the major pitfalls of using this system? think about this being an open or closed system.

Answers

Using two styrofoam cups as a calorimeter is an economical way of determining heat values because styrofoam is a good insulator, which means that it prevents heat exchange between the system and the surroundings.

Therefore, it is a good choice for an adiabatic container. Additionally, styrofoam cups are readily available and disposable, making them a convenient and low-cost option for conducting experiments.

One of the major pitfalls of using this system is that it is not a completely closed system, which means that heat can still escape or enter from the surroundings, although at a slower rate than if the cups were made of a different material.

This can result in errors in the measurement of the heat change, as the actual heat change of the system may be different from the measured heat change. This is especially true for reactions that produce or consume gases, as these gases can escape from the cups and contribute to the heat exchange with the surroundings.

Therefore, it is important to minimize heat loss or gain to the surroundings as much as possible, such as by using a lid or insulating the cups further.

To know more about calorimeter refer to-

https://brainly.com/question/4802333

#SPJ11

You need to prepare an acetate buffer of pH 5. 17
from a 0. 660 M
acetic acid solution and a 2. 63 M KOH
solution. If you have 930 mL
of the acetic acid solution, how many milliliters of the KOH
solution do you need to add to make a buffer of pH 5. 17
? The pa
of acetic acid is 4. 76. Be sure to use appropriate significant figures

Answers

The volume that is needed is 173 mL of KOH solution is needed to prepare this buffer.

The reaction between acetic acid (CH₃COOH) and KOH can be written as follows.

CH₃COOH +  KOH ------------->  CH₃COOK +  H₂O

CH3COOH is a weak acid and CH₃COOK is its strong salt, therefore together they make a buffer system.

Let's say we add "x" moles of base KOH . Let's draw ICE table to find out moles at equilibrium

Initial moles of CH₃COOH are 0.654 mol/L * 625 mL * 1 L / 1000 mL = 0.40875 mol

 CH3COOH KOH CH3COOK H2O

I 0.40875 x 0 -

C -x -x +x -

E 0.40875 - x  0 x  

At equilibrium, we have 0.40875 - x moles of acid and x moles of its conjugate base.

Let's use Henderson Hasselbalch equation to solve for x.

pH = pKa +  log  ( base/ acid)

the required pH is 5.87 and pKa is given as 4.76

5.87 = 4.76 + log ( x / 0.40875 - x )

5.87 - 4.76 = log ( x / 0.40875 - x )

1.11 = log ( x / 0.40875 - x )

10¹°¹¹ =  ( x / 0.40875 - x )

12.88 = x / 0.40875 - x

12.88 ( 0.40875 - x ) =  x

5.266 - 12.88 x =  x

5.266 = 13.88 x

x = 5.266 / 13.88

x = 0.379

From ICE table, we know that x is moles of KOH

Molarity of KOH is given as 2.19M

Molarity = moles of KOH / liters

2.19 = 0.379 / Liters

Liters of KOH = 0.379 / 2.19

Liters of KOH = 0.173 L

173 mL of KOH solution is needed to prepare this buffer.

To learn more about molarity check the link below-

https://brainly.com/question/30404105

#SPJ4

What is the strongest type of intermolecular forces present between the hydrocarbon chains of neighboring stearic acid molecules?.

Answers

The strongest type of intermolecular force present between the hydrocarbon chains of neighboring stearic acid molecules is the van der Waals dispersion force, also known as London dispersion force.

This force arises due to temporary dipoles that are created by the random motion of electrons in the molecule. These temporary dipoles induce similar dipoles in the neighboring molecules, leading to an attractive force between them.

In stearic acid, the hydrocarbon chain is nonpolar, which means that there are no permanent dipoles in the molecule. However, the electrons in the molecule are not always distributed symmetrically, leading to temporary dipoles that can induce similar dipoles in other stearic acid molecules.

The strength of the van der Waals force depends on the size of the molecule and the number of electrons in it. Stearic acid has a relatively long hydrocarbon chain, which means that it has a large surface area and a large number of electrons, making the van der Waals force between its molecules relatively strong.

To know more about London dispersion force refer to-

https://brainly.com/question/20514601

#SPJ11

In this last step, return to Step 10 in your Lab Guide to calculate the error between your calculated specific heat of


each metal and the known values in Table C. Follow the directions given in your Lab Guide, using this formula:


(calculated metal - known (metal)


Error = 100


known Cmetal


PLEASE HELP iâm so confused on what to do!!

Answers

In this case, the error is 0%, indicating that your experimental value is identical to the known value.

To calculate the error between your calculated specific heat of each metal and the known values in Table C, you can use the following formula:

Error = [(Calculated specific heat of metal - Known specific heat of metal) / Known specific heat of metal] x 100

Here are the steps to follow:

Look up the known specific heat of each metal in Table C.

Calculate the specific heat of each metal using your experimental data.

Substitute the known and calculated specific heats of each metal into the formula above.

Calculate the error for each metal by performing the subtraction and division operations.

Multiply the result by 100 to express the error as a percentage.

For example, let's say you conducted an experiment to measure the specific heat of copper and obtained a value of 0.39 J/g°C. The known specific heat of copper from Table C is 0.39 J/g°C.

To calculate the error:

Error = [(0.39 J/g°C - 0.39 J/g°C) / 0.39 J/g°C] x 100

Error = 0 / 0.39 J/g°C x 100

Error = 0%

To know more about experimental value refer to-

https://brainly.com/question/10416781

#SPJ11

The concentration of NO3- ions in 0. 25 M Ti(NO3)4(aq) is???

Answers

The compound Ti(NO3)4 dissociates in water as:

Ti(NO3)4 → Ti^4+ + 4 NO3^-

This means that each formula unit of Ti(NO3)4 produces 4 nitrate ions (NO3^-) in solution.

Therefore, the concentration of NO3^- ions in a 0.25 M solution of Ti(NO3)4 is:

0.25 M Ti(NO3)4 × 4 NO3^- ions / 1 Ti(NO3)4 formula unit = 1.00 M NO3^- ions

So, the concentration of NO3^- ions in a 0.25 M solution of Ti(NO3)4 is 1.00 M.

To know more about dissociates refer here

https://brainly.com/question/30983331#

#SPJ11

where is ΔH the equation

2 NaCl --> 2 Na + Cl2

ΔH = -411 kJ/mol. Write the balanced equation for the reaction, being sure to include energy as a reactant or product.

Answers

The complete reaction would be; 2 NaCl --> 2 Na + Cl2 + H

What is the position of the energy in the reaction?

Energy is released when an exothermic process continues in the form of heat, light, or sound. In this way, the reactants' chemical bonds initially hold the energy, which is later released as the bonds are broken and new ones are formed.

Heat or other forms of energy are released as a result of the energy differential between the reactants and the reaction's products. In an exothermic process, energy is assumed to be on the side of the products.

Learn more about energy:https://brainly.com/question/26219779

#SPJ1

In terms of chemical bonding, explain the difference in the rate of sugar & acid reaction to the reaction between KI(aq) and Pb(NO₃)₂(aq)

Answers

The difference in the rate of sugar and acid reaction compared to the reaction between KI(aq) and Pb(NO₃)₂(aq) is due to the type of chemical bonding involved.

The reaction between sugar and acid involves covalent bonding, which is a strong bond that requires significant energy input to break. This type of bonding is responsible for the slow rate of the sugar and acid reaction.

In contrast, the reaction between KI(aq) and Pb(NO₃)₂(aq) involves ionic bonding, which is a much weaker bond than covalent bonding. As a result, the ions in the reactants are more easily separated, leading to a faster reaction rate.

Ionic bonding involves the transfer of electrons from one atom to another, whereas covalent bonding involves the sharing of electrons between atoms. This difference in electron sharing or transfer contributes to the different reaction rates observed between covalent and ionic bond containing compounds.

To know more about chemical bonding, refer here:

https://brainly.com/question/15444131#

#SPJ11

Limiting and Excess Reactants POGIL (Extension Questions)

Answers

Limiting reactants are the reagents that are used up first in a chemical reaction, and determine the amount of product that can be formed.

Excess reactants are reagents that, once the limiting reactant has been used up, are still present in the reaction mixture.

The limiting reactant is important because it is the reagent that limits the amount of product that can be produced. When excess reactants are present, they do not contribute to the amount of product that can be produced and are thus considered to be "excess" material.

This excess material can cause problems in a reaction, such as unwanted byproducts or the formation of side reactions. Therefore, it is important to carefully control the amounts of reactants that are used in a reaction to ensure that the desired product is formed in the maximum possible yield.

Know more about Chemical reaction here

https://brainly.com/question/29039149#

#SPJ11

What is the mass of a cube of titanium, in micrograms, that measures 3. 67 X 104 micrometers for each edge. The density of Titanium is 4. 5 g/cm3. Answer to be in scientific notation

Answers

The mass of the cube of titanium is 2.02 x 10^6 micrograms.

To find the mass of the cube of titanium in micrograms, we first need to find its volume:

Volume = (edge length)^3 = (3.67 x 10^4 micrometers)^3

            = 4.49 x 10^14 cubic micrometers

Next, we need to convert the density of titanium from grams per cubic centimeter to micrograms per cubic micrometer:

4.5 g/cm^3 = 4.5 x 10^9 micrograms/ (10^4 micrometers)^3

                   = 4.5 x 10^9 micrograms/ (10^12 cubic micrometers)

Now we can calculate the mass of the cube:

Mass = Volume x Density

         = 4.49 x 10^14 cubic micrometers x 4.5 x 10^9 micrograms/ (10^12 cubic micrometers)

         = 2.02 x 10^6 micrograms

Learn more about mass at https://brainly.com/question/86444

#SPJ11

the solubility of magnesium fluoride, mgf2, in water is 1.5x10^-2 g/l. what is the solubility (in grams per liter) of magnesium fluoride in 0.13 m of sodium fluoride, naf?

Answers

The solubility of the magnesium fluoride, MgF₂, in the water is 1.5 × 10⁻² g/l. The solubility  of magnesium fluoride in 0.13 M of the sodium fluoride, NaF is 0.88 M.

The solubility, Ksp = 1.5 × 10⁻² g/L

The concentration , NaF = 0.13 M

The solubility of the magnesium fluoride that is MgF₂ is expressed as :

The solubility of the magnesium fluoride = Ksp / NaF²

The solubility of the magnesium fluoride = 1.5 × 10⁻² / (0.13 )²

The solubility of the magnesium fluoride = 0.88 M

Therefore, the solubility of the magnesium fluoride  in 0.13 M of the sodium fluoride is 0.88 M.

To learn more about solubility here

https://brainly.com/question/14524193

#SPJ4

the DOE’s goal is to reclaim the water before it reaches the river. "" Why do you think the DOE picked that as its goal

Answers

The DOE (Department of Energy) likely picked reclaiming the water before it reaches the river as its goal to address environmental concerns and potential health hazards associated with contaminated water.

Water pollution can have significant negative impacts on aquatic life, human health, and the environment as a whole. Reclaiming the water before it reaches the river would prevent the contaminated water from spreading and potentially causing harm to people, animals, and the surrounding ecosystem.

Additionally, the DOE may have a legal responsibility to prevent the release of contaminated water into public waterways under environmental protection laws.

By reclaiming the water, the DOE can fulfill its obligation to protect the environment and public health while also promoting sustainable water use and management practices.

To know more about environmental concerns refer to-

https://brainly.com/question/30008376

#SPJ11

What is the coefficient in front of Cl₂, when this equation is balanced?
Zn +_Cl₂ → ZnCl₂

Answers

The coefficient in front of Cl₂ is 1, wen the equation is balanced

How to find the coefficient

The balanced chemical equation for the reaction between Zinc and Chlorine gas is:

Zn + Cl₂ → ZnCl₂

To balance this equation, we need to make sure that the number of atoms of each element is equal on both the reactant and product side of the equation.

In this case, there is one Zinc atom and two Chlorine atoms on the reactant side, and one Zinc atom and two Chlorine atoms on the product side. So, the equation is already balanced.

Learn more about balanced equation at:

https://brainly.com/question/11904811

#SPJ1

Can anyone give me the answers of the image???

Answers

Ans 1  = 2 fe +3 cl2 = 2 fecl3

blank 1 = 2

blank 2 = 3

blank 3 = 2

Ans.2 = 4fe +3 o2 = 2fe2o3

blank 1 = 4

blank 2 = 3

blank 3 = 2

Ans.3 = c6h6o3 +H2o = 2c2h3

blank 1 = 1

blank 2 = 1

blank 3 = 2

24. 51 mL of acetic acid, HC2H3O2, of unknown concentration was titrated with the 12. 6 mL of 0. 497 M Ba(OH)2 to reach the equivalence point. Determine the concentration of the acetic acid. 2HC2H3O2 + Ba(OH)2 â Ba(C2H3O2)2 + 2H2O



A. 0. 223 M


B. 0. 836 M


C. 0. 359 M


D. 0. 511 M


E. 0. 979 M

Answers

The concentration of acetic acid is 0.246 M, option A is correct.

The balanced chemical equation for the reaction is:

2HC₂H₃O₂ + Ba(OH)₂ → Ba(C₂H₃O₂)₂ + 2H₂O

According to the equation, one mole of barium hydroxide and two moles of acetic acid react.

The number of moles of Ba(OH)₂ used in the reaction is:

0.497 mol/L × 0.0126 L = 0.00628 mol

Since the reaction is a 1:2 ratio, the number of moles of acetic acid is:

0.00628 mol × 2 = 0.01256 mol

The volume of acetic acid used in the reaction is 51 mL or 0.051 L.

The concentration of acetic acid can be calculated as follows:

concentration = number of moles ÷ volume

concentration = 0.01256 mol ÷ 0.051 L

concentration = 0.246 M

Hence, option A is correct.

To learn more about concentration follow the link:

brainly.com/question/10725862

#SPJ4

The complete question is:

24. 51 mL of acetic acid, HC₂H₃O₂, of unknown concentration was titrated with the 12. 6 mL of 0. 497 M Ba(OH)₂ to reach the equivalence point. Determine the concentration of the acetic acid. 2HC₂H₃O₂ + Ba(OH)₂ → Ba(C₂H₃O₂)₂ + 2H₂O

A. 0.246 M

B. 0.836 M

C. 0.359 M

D. 0.511 M

E. 0.979 M

Who am I? Periodic table 20 questions answers

Answers

the answers to the questions based on the element sodium:

Is it metal? - Yes

Is it a non-metal? - No

Is it gas at room temperature? - No

Is it a solid at room temperature? - Yes

Is it a liquid at room temperature? - No

Is it in the first row (period) of the periodic table? - No

Is it in the second row (period) of the periodic table? - Yes

Is it in the third row (period) of the periodic table? - No

Is it in the fourth row (period) of the periodic table? - No

Is it in the fifth row (period) of the periodic table? - No

Is it in the sixth row (period) of the periodic table? - No

Is it in the seventh row (period) of the periodic table? - No

Is it in the eighth row (period) of the periodic table? - No

Is it a noble gas? - No

Is it a halogen? - No

Is it an alkali metal? - Yes

Is it an alkaline earth metal? - No

Is it a transition metal? - No

Does its symbol start with the letter "C"? - No

Does it have an atomic number greater than 50? - No (Sodium has an atomic number of 11)

Periodic Table 20 Questions" is a game where one player thinks of an element from the periodic table, and the other player asks up to 20 yes or no questions to guess the element.

The questions are usually related to the element's properties, such as its atomic number, symbol, group, or period, as well as its physical and chemical characteristics.

learn more about the Periodic table here

https://brainly.com/question/15987580

#SPJ1

the question is incomplete. complete question is

The element is sodium(Na)

Is it metal? - Yes or No

Is it a non-metal? - Yes or No

Is it gas at room temperature? - Yes or No

Is it a solid at room temperature? - Yes or No

Is it a liquid at room temperature? - Yes or No

Is it in the first row (period) of the periodic table? - Yes or No

Is it in the second row (period) of the periodic table? - Yes or No

Is it in the third row (period) of the periodic table? - Yes or No

Is it in the fourth row (period) of the periodic table? - Yes or No

Is it in the fifth row (period) of the periodic table? - Yes or No

Is it in the sixth row (period) of the periodic table? - Yes or No

Is it in the seventh row (period) of the periodic table? - Yes or No

Is it in the eighth row (period) of the periodic table? - Yes or No

Is it a noble gas? - Yes or No

Is it a halogen? - Yes or No

Is it an alkali metal? - Yes or No

Is it an alkaline earth metal? - Yes or No

Is it a transition metal? - Yes or No

Does its symbol start with the letter "C"? - Yes or No

Does it have an atomic number greater than 50? - Yes or No

Environmental scientists can use a similar lab kit to test collected water samples from


bodies of water. In lakes and streams, calcium carbonate (CaCO3) causes alkalinity,


which allows it to function as a buffer, neutralizing any acid rain that may enter the


water supply. A buffer is a substance that serves to resist small changes in acidity or


alkalinity in a solution.


Environmental scientists monitoring pollution levels are measuring buffer levels in


two specific lakes. They found that Lake B had a greater ppm of calcium carbonate


than Lake A.


Which of the two lakes would be able to neutralize a greater amount of acid rain?


Explain your answer.

Answers

Lake B with a greater ppm of calcium carbonate would be able to neutralize a greater amount of acid rain.

Calcium carbonate (CaCO₃) acts as a buffer in lakes and streams by neutralizing any acid rain that may enter the water supply. A buffer is a substance that serves to resist small changes in acidity or alkalinity in a solution. Environmental scientists monitoring pollution levels are measuring buffer levels in two specific lakes. They found that Lake B had a greater ppm of calcium carbonate than Lake A.

Since calcium carbonate causes alkalinity, which allows it to function as a buffer, neutralizing any acid rain that may enter the water supply, Lake B would be able to neutralize a greater amount of acid rain than Lake A because it has a greater ppm of calcium carbonate.

To know more about buffer, refer:

https://brainly.com/question/16941547

#SPJ4

If 28. 25mL of 1. 84M HCl(aq) was required to reach the equivalence point, calculate the


concentration of the CH3NH2(aq) solution of unknown concentration.


PLEASE HELP AND PROVIDE EQUATIONS AND WORK

Answers

The concentration of the [tex]CH3NH2[/tex] solution is 1.84 M.

The balanced equation for the reaction between [tex]HCl[/tex]and [tex]CH3NH2[/tex] is:

[tex]CH3NH2 + HCl → CH3NH3+Cl-[/tex]

From the equation, we can see that the acid and base react in a 1:1 molar ratio. Therefore, we can use the following equation to calculate the concentration of the [tex]CH3NH2[/tex]solution:

[tex]M(CH3NH2) x V(CH3NH2) = M(HCl) x V(HCl)[/tex]

where:

[tex]M(CH3NH2)[/tex]= concentration of [tex]CH3NH2[/tex] solution (unknown)

[tex]V(CH3NH2)[/tex] = volume of [tex]CH3NH2[/tex] solution used (unknown)

[tex]M(HCl)[/tex] = concentration of[tex]HCl[/tex]solution (1.84 M)

[tex]V(HCl)[/tex] = volume of [tex]HCl[/tex] solution used (28.25 mL or 0.02825 L)

Solving for [tex]M(CH3NH2)[/tex], we get:

[tex]M(CH3NH2) = (M(HCl) x V(HCl)) / V(CH3NH2)[/tex]

[tex]M(CH3NH2)[/tex] = (1.84 M x 0.02825 L) / 0.02825 L

[tex]M(CH3NH2)[/tex] = 1.84 M

To know more about concentration refer to-

https://brainly.com/question/10725862

#SPJ11

Look at the diagram below, which shows an atom of an element. How man valence electrons does it have? Based on this, would the atom be reactive or unreactive? Explain your reasoning.

Answers

A broad rule of thumb states that an atom with one, two, three, five, six, or seven valence electrons is reactive, however an atom with four valence electrons may be reactive or unreactive depending on the particular reaction conditions.

What is the name of a diagram that just displays an atom's valence electrons?

Since valence electrons are crucial, atoms are frequently depicted by straightforward diagrams that just display their valence electrons. Three of these electron dot diagrams are displayed below.

How do valence electrons determine an element's reactivity?

Valence electrons play a major role in determining an atom's chemical reactivity. Atoms with a fully filled valence electron shell have a propensity to be chemically inert. Very reactive atoms have one or two valence electrons.

To know more about electrons visit:-

https://brainly.com/question/28977387

#SPJ1

Can someone please answer?

Answers

The molarity of the sodium hydroxide, NaOH, needed to react with 15.7 mL of 0.700 M H₃PO₄, is 0.753 M

How do I determine the molarity of the NaOH needed?

The molarity of the sodium hydroxide, NaOH, needed can be obtained as shown below:

3NaOH + H₃PO₄ —> Na₃PO₄ + 3H₂O

The mole ratio of NaOH (nB) = 3The mole ratio of H₃PO₄ (nA) = 1Volume of NaOH (Vb) = 43.8 mLVolume of H₃PO₄ (Va) = 15.7 mLMolarity of H₃PO₄ (Ma) = 0.700Molarity of NaOH (Mb) = ?

MaVa / MbVb = nA / nB

(0.7 × 15.7) / (Mb × 43.8) = 1 / 3

Cross multiply

Mb × 43.8 = 0.7 × 15.7 × 3

Divide both side by 43.8

Mb = (0.7 × 15.7 × 3) / 43.8

Mb = 0.753 M

Thus, we can conclude that the molarity of the NaOH needed is 0.753 M

Learn more about molarity:

https://brainly.com/question/13386686

#SPJ1

The nitric acid solution used in a lab had a hydronium ion concentration of 0.53 M.
a. Calculate the pH of the solution
b. Calculate the pOH of the solution.
c. Calculate the hydroxide ion concentration.

Answers

(a) The pH of the nitric acid solution is approximately 0.28.

(b) The pOH of the nitric acid solution is approximately 13.72

(c) The hydroxide ion concentration of the nitric acid solution is approximately 1.89 x 10^-14 M.

What is the pH of the solution?

a. To calculate the pH of the solution, we can use the formula:

pH = -log[H3O+]

where;

[H3O+] is the hydronium ion concentration.

Substituting the given value:

pH = -log(0.53) ≈ 0.28

b. The pOH of the solution can be calculated using the formula:

pOH = -log[OH-]

where;

[OH-] is the hydroxide ion concentration.

To find the pOH, we need to first calculate the [OH-]. We know that:

Kw = [H3O+][OH-] = 1.0 x 10^-14

where;

Kw is the ion product constant for water.

Rearranging the equation, we can solve for [OH-]:

[OH-] = Kw / [H3O+]

[OH-] = 1.0 x 10^-14 / 0.53

[OH-] ≈ 1.89 x 10^-14

Now, we can calculate the pOH:

pOH = -log(1.89 x 10^-14) ≈ 13.72

c. We can use the [OH-] concentration calculated in part (b) to find the hydroxide ion concentration:

[OH-] = 1.89 x 10^-14

Learn more about pH here: https://brainly.com/question/26424076

#SPJ1

Nitrogen oxide (NO) has been found to be a key component in many biological processes. It also can react with oxygen to give the brown gas NO2. When one mole of NO reacts with oxygen, 57. 0 kJ of heat are evolved. What is ΔH when 8. 00 g of nitrogen oxide react?



NO(g) + ½O2(g) → NO2(g) ΔH = –57. 0 kJ

Answers

The enthalpy change when 8.00 g of nitrogen oxide react is -15.162 kJ for the given chemical reaction.

The molar mass of NO =  30.01 g/mol

8.00 g of NO  = 8.00 g / 30.01 g/mol

8.00 g of NO = 0.266 mol of NO

Heat rejection = 57. 0 kJ

Here, 1 mole of NO reacts with 1/2 mole of Oxygen to produce 1 mole of [tex]NO_{2}[/tex]

The amount of Oxygen required for 0.266 mol of NO is calculated as:

The amount of Oxygen = 0.266 mol NO x (1/2) mol [tex]O_{2}[/tex]    / 1 mol NO

The amount of Oxygen required = 0.133 mol [tex]O_{2}[/tex]

The heat reaction will be:

-57.0 kJ/mol x 0.266 mol NO = -15.162 kJ

Therefore, we can conclude that the enthalpy change is -15.162 kJ.

To learn more about Nitrogen dioxide

https://brainly.com/question/21173133

#SPJ4

1) what type of solution (saturated or unsaturated ) is present for Pb(NO3)2 if at approximately 25 degrees c


,65 grams of the substance are present in the 100 grams of H2O



2)40 grams of KCl are dissolve in 100 grams of H2O at 10 degrees c how many grams will not dissolve



3)how many grams of H2O are needed to dissolve 50 grams of KClO3 at 70 degrees C



4)how many grams of K2Cr2O7 will dissolve in 75 grams of H2O at 90 degrees C



5) 59 grams of CaCl2 are dissolve in 100 grams of water at approximately 25 degrees c how many more grams of CaCl2 must be added to saturate the solution

Answers

1) The solution is saturated. 2) 40 grams of KCl has dissolved in 100 grams.  3) 50 grams of KClO₃ will dissolve. 4) 75 grams of H₂O can dissolve 24.6 grams. 5) To saturate 28.4 grams of CaCl₂ must be added.

What is saturated?

Saturated is a term used to describe a state of being filled to capacity, or containing the maximum amount possible. It is most commonly used in reference to liquids, where it indicates that no more of a given substance can be dissolved into the liquid. In chemistry, saturation refers to the point at which a solution has reached its maximum solubility.

1) The solution is saturated because 65 grams of Pb(NO₃)₂ has dissolved in 100 grams of H₂O at 25°C.

2) 40 grams of KCl has dissolved in 100 grams of H₂O at 10°C, so no more will dissolve.

3) 50 grams of KClO₃ will dissolve in 92.5 grams of H₂O at 70°C.

4) 75 grams of H₂O can dissolve 24.6 grams of K₂Cr₂O7 at 90°C.

5) At 25°C, 59 grams of CaCl₂ has dissolved in 100 grams of H₂O. To saturate the solution, an additional 28.4 grams of CaCl₂ must be added.

To learn more about saturated

https://brainly.com/question/2078413

#SPJ4

Identify each bond between the component atoms as sigma bonds (single bonds), one sigma bond and one pi bond (double bonds), or one sigma bond and two pi bonds (triple bonds)

Answers

In general, there are three types of bonds: sigma bonds (single bonds), one sigma bond and one pi bond (double bonds), and one sigma bond and two pi bonds (triple bonds).

Sigma bonds are the simplest type of covalent bond, formed by the direct overlap of atomic orbitals between two component atoms. These bonds result in a strong, stable connection and are typically found in single bonds.

In double bonds, there is one sigma bond and one pi bond between the component atoms. The sigma bond is formed as mentioned earlier, while the pi bond results from the sideways overlap of p orbitals, creating a bond above and below the sigma bond plane.

This combination of bonds leads to a shorter and stronger connection between the atoms compared to a single bond.

Lastly, in triple bonds, there is one sigma bond and two pi bonds between the component atoms.

The sigma bond is formed in the same manner as single and double bonds, while the two pi bonds occur when two sets of p orbitals overlap perpendicularly to each other, with one set above and below, and the other set in front and behind the sigma bond plane.

This configuration leads to an even shorter and stronger bond compared to double bonds.

To identify the bond types between component atoms, you will need to examine the molecular structure and electron sharing between the atoms involved. Count the number of shared electron pairs to determine if it's a single (sigma), double (sigma and pi), or triple bond (sigma and two pi bonds).

To know more about bonds, visit:

https://brainly.com/question/17405470#

#SPJ11

How many moles are in 98. 3 grams of nickel(III) phosphate

Answers

There are 0.596 moles of nickel(III) phosphate in 98.3 grams of the compound.

To calculate the number of moles in 98.3 grams of nickel(III) phosphate, we need to use the formula:

moles = mass (in grams) / molar mass

First, we need to find the molar mass of nickel(III) phosphate. To do this, we need to know the chemical formula of the compound. Nickel(III) phosphate has the chemical formula NiPO4. The molar mass of nickel(III) phosphate can be calculated by adding the atomic masses of nickel, phosphorus, and four oxygen atoms:

Molar mass of NiPO4 = (1 x atomic mass of Ni) + (1 x atomic mass of P) + (4 x atomic mass of O)

Molar mass of NiPO4 = (1 x 58.69) + (1 x 30.97) + (4 x 15.99)

Molar mass of NiPO4 = 164.67 g/mol

Now we can use the formula above to calculate the number of moles:

moles = 98.3 g / 164.67 g/mol

moles = 0.596 moles

Therefore, there are 0.596 moles of nickel(III) phosphate in 98.3 grams of the compound.

To know more about compound, visit:

https://brainly.com/question/13516179#

#SPJ11

How much more acidic is acid rain water with a ph of 2 than unpolluted rainwater with a ph of 6? use your knowledge of ph (not the information provided in this article) and show your work

Answers

Acid rain water with a pH of 2 is 10,000 times more acidic than unpolluted rainwater with a pH of 6.

The pH scale is logarithmic, meaning that each change in pH by one unit represents a tenfold change in acidity. Therefore, the difference in pH between acid rain (pH 2) and unpolluted rainwater (pH 6) is four units. To calculate the difference in acidity, we take the antilogarithm of four, which is 10,000. This means that acid rain is 10,000 times more acidic than unpolluted rainwater.

Mathematically, this can be shown as:

[H⁺] in acid rain = 10⁻² mol/L[H⁺] in unpolluted rainwater = 10⁻⁶ mol/L

[H⁺] in acid rain / [H⁺] in unpolluted rainwater

= 10⁻² / 10⁻⁶ = 10⁴

Therefore, acid rain is 10,000 times more acidic than unpolluted rainwater.

To learn more about Acid rain water, here

https://brainly.com/question/22143130
#SPJ4

You have a solution of copper sulfate with a volume of 2 dm3. The concentration of the solution is 12 g/dm3. What is the mass of the copper sulfate?

Answers

The mass of copper sulfate in the given solution is 24 grams.

Copper sulfate, also known as cupric sulfate or copper (II) sulfate, is a chemical compound that consists of copper ions and sulfate ions. It has the molecular formula CuSO4 and is commonly used in agriculture, mining, and chemical industries.

In the given scenario, we have a solution of copper sulfate with a volume of 2 dm3 and a concentration of 12 g/dm3. This means that for every 1 dm3 of the solution, there are 12 grams of copper sulfate present. To find the mass of copper sulfate in the entire 2 dm3 solution, we can use the following formula:

Mass = Concentration x Volume

Substituting the given values, we get:

Mass = 12 g/dm3 x 2 dm3
Mass = 24 g

Therefore, the mass of copper sulfate in the given solution is 24 grams.

To know more about copper sulfate, visit:

https://brainly.com/question/22560035#

#SPJ11

Other Questions
Camille brought $39.50 to the art supply store. She bought a brush, a sketchbook, and a paint set. The brush was 13 as much as the sketchbook, and the sketchbook cost 12 the cost of the paint set. Camille had $4.50 left over after buying these items.What was the cost of each item?Solve on paper. Then check your work on Zearn. Let f(x) = 4x^3 3x^2 18x +5. (a) Find the critical numbers of f. (b) Find the open interval(s) on which f is increasing and the open interval(s) on which f is decreasing. (c) Find the local minimum value(s) and focal maximum value(s) of f, if any.(d) Find the open interval(s) where f is concave upward and the open interval(s) where f is concave downward e) Find the inflection points of the graph of f, if any Write a story begins with this sentence : "they had never seen anything more amazing in their whole lives" Predict which substances would have the highest volatility. explain why. ch3ch2oh c6h6 ch3och3h2opredict which substances would have the highest surface tension. explain why. h2och4ch3och3ch3oh ABC COMPANY decided the Standard output in 10 hrs = 200 units and the rate per hour is RO 5. What will be the earning of Mr. Said, if his output is 200 units in 20 hours Calculate based on Emerson Plana. RO.480b. RO.100c. RO.400d. R0.200 identify the subject and predicate of the sentence you cannot drink water inside the class the function of the caecum is to _/_ _ wastes Solve the following equation by completing square 15x^2-2ax=a^2 A gas occupies 900 mL at a temperature of 27. 0C. What is theTemperature of the gas if the volume of the container increases to 1074mL? an individual can collect multiple payments for the same illness or accident unless his or her health insurance policy includes a: group of answer choices pre-existing condition clause. guaranteed renewability provision. coordination of benefits provision. co-insurance clause. stop-loss provision. Who was Felix Longoria?a veteran of World War IIa Chicano poeta farm worker and civil rights activistthe organizer of the Chicano Blowouts Which property is size-independent?conductivity width volume mass The point R(1, 2) is translated 2 units down. What are the coordinates of the resulting point, R'? HELP ME PLEASE!Whoever answers right gets brainliest! HELP PLEASEA 6.50-g sample of copper metal at 25.0 C is heated by the addition of 145 J of energy. The final temperature of the copper is ________ C. The specific heat capacity of copper is 0.38 J/g-K.58.733.783.725.033.5 Compare revolving credit and closed-end credit. Car lease credit cards mortgage loan home-equity line of credit which of the following would most likely increase the monthly premium a policyholder pays for automobile insurance? (2 points) choosing a higher deductible choosing a car with a high safety rating reducing use of the car by taking public transportation to and from work moving from a rural area to an urban area 47 students are picking two activities to do over the weekend.7 picked painting and sport.6 did not pick painting or sport.Twice as many students picked sport than painting as one of their activities.Find the amount that picked sport and not painting. 4. Construct Explanations The Australian and Pacific plates areamong the fastest-moving plates. What conclusions can you drawabout the subduction zone where the Australian Plate meets thePacific Plate? Use evidence from the text and the map to supportyour explanation. Ricky has 23 hours each week to dedicate to his classes. homework takes 6.5 hours and each class (c) is 1.5 hours long. how many classes does ricky take? which equation models the question? explain your thinking.a) 23=6.5-1.5c b) 23=6.5+1.5cc) 23=1.5+6.5c d) 23=1.5-6.5c