Which value of y makes the equation y/9=12 true

Answers

Answer 1

Answer:

108

Step-by-step explanation:

9 times 12 is 108


Related Questions

The differential equation below models the temperature of a 91°C cup of coffee in a 17°C room, where it is known that the coffee cools at a rate of 1°C per minute when its temperature is 70°C. Solve the differential equation to find an expression for the temperature of the coffee at time t. dy dt = − 1 53 (y − 17)\

Answers

Answer:

[tex]t \approx 17.690\,min[/tex]

Step-by-step explanation:

This differential equation is a first order linear differential equation with separable variables, whose solution is found as follows:

[tex]\frac{dy}{dt} = - \frac{1}{53} \cdot (y - 17)[/tex]

[tex]\frac{dy}{y-17} = -\frac{1}{53} \, dt[/tex]

[tex]\int\limits^{y}_{y_{o}} {\frac{dy}{y-17} } = -\frac{1}{53} \int\limits^{t}_{0}\, dx[/tex]

[tex]\ln \left |\frac{y-17}{y_{o}-17} \right | = -\frac{1}{53} \cdot t[/tex]

[tex]\frac{y-17}{y_{o}-17} = e^{-\frac{1}{53}\cdot t }[/tex]

[tex]y = 17 + (y_{o} - 17) \cdot e^{-\frac{1}{53}\cdot t }[/tex]

The solution of the differential equation is:

[tex]y = 17 + 74\cdot e^{-\frac{1}{53}\cdot t }[/tex]

Where:

[tex]y[/tex] - Temperature, measured in °C.

[tex]t[/tex] - Time, measured in minutes.

The time when the cup of coffee has the temperature of 70 °C is:

[tex]70 = 17 + 74 \cdot e^{-\frac{1}{53}\cdot t }[/tex]

[tex]53 = 74 \cdot e^{-\frac{1}{53}\cdot t }[/tex]

[tex]\frac{53}{74} = e^{-\frac{1}{53}\cdot t }[/tex]

[tex]\ln \frac{53}{74} = -\frac{1}{53}\cdot t[/tex]

[tex]t = - 53\cdot \ln \frac{53}{74}[/tex]

[tex]t \approx 17.690\,min[/tex]

A small college has 1460 students. What is the approximate probability that more than six students were born on Christmas day? Assume that birthrates are constant throughout the year and that each year has 365 days.

Answers

Answer:

The approximate probability that more than six students were born on Christmas day is P=0.105.

Step-by-step explanation:

This can be modeled as a binomial variable, with n=1460 and p=1/365.

The sample size n is the total amount of students and the probability of success p is the probability of each individual of being born on Christmas day.

As the sample size is too large to compute it as a binomial random variable, we approximate it to the normal distribution with the following parameters:

[tex]\mu=n\cdot p=1460\cdot (1/365)=4\\\\\sigma=\sqrt{n\cdot p(1-p)}=\sqrt{1460\cdot(1/365)\cdot(364/365)}=\sqrt{3.989}=1.997[/tex]

We want to calculate the probability that more than 6 students were born on Christmas day. Ww apply the continuity factor and we write the probability as:

[tex]P(X>6.5)[/tex]

We calculate the z-score for X=6.5 and then calculate the probability:

[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{6.5-4}{1.997}=\dfrac{2.5}{1.997}=1.252\\\\\\P(X>6.5)=P(z>1.252)=0.105[/tex]

What’s the correct answer for this question?

Answers

Answer: Choice C

Step-by-step explanation:

Events A and B are independent if the equation P(A∩B) = P(A) · P(B) holds true.

3/10≠3/5*1/4

so event A and B are not independent.

Use the formula v = u + at to find the velocity when the initial velocity is 3 m/s the acceleration is 1.5 m/s the time is 7 s

Answers

[tex]answer \\ 13.5 \: m/s \\ given \\ initial \: velocity(u) = \: 3 \: m/s \\ acceleration(a) = 1.5 \: m/s ^2\\ time(t) = 7 \: second \\ now \\ v = u + at \\ or \: v = 3 + 1.5 \times 7 \\ \: or \: v = 3 + 10.5 \\ v = 13.5 \: m/s \\ hope \: it \: helps[/tex]

Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t > 0. ty" + (2t - 1 )y' - 2y = 6t^2 e^-2t​; y1 = 22t −​1, y2 = e^-2t

Answers

Answer:

[tex]y_g(t) = c_1*( 2t - 1 ) + c_2*e^(^-^2^t^) - e^(^-^2^t^)* [ t^3 + \frac{3}{4}t^2 + \frac{3}{4}t ][/tex]

Step-by-step explanation:

Solution:-

- Given is the 2nd order linear ODE as follows:

                      [tex]ty'' + ( 2t - 1 )*y' - 2y = 6t^2 . e^(^-^2^t^)[/tex]

- The complementary two independent solution to the homogeneous 2nd order linear ODE are given as follows:

                     [tex]y_1(t) = 2t - 1\\\\y_2 (t ) = e^-^2^t[/tex]

- The particular solution ( yp ) to the non-homogeneous 2nd order linear ODE is expressed as:

                    [tex]y_p(t) = u_1(t)*y_1(t) + u_2(t)*y_2(t)[/tex]

Where,

              [tex]u_1(t) , u_2(t)[/tex] are linearly independent functions of parameter ( t )

- To determine [  [tex]u_1(t) , u_2(t)[/tex] ], we will employ the use of wronskian ( W ).

- The functions [[tex]u_1(t) , u_2(t)[/tex] ] are defined as:

                       [tex]u_1(t) = - \int {\frac{F(t). y_2(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\\\u_2(t) = \int {\frac{F(t). y_1(t)}{W [ y_1(t) , y_2(t) ]} } \, dt \\[/tex]

Where,

      F(t): Non-homogeneous part of the ODE

      W [ y1(t) , y2(t) ]: the wronskian of independent complementary solutions

- To compute the wronskian W [ y1(t) , y2(t) ] we will follow the procedure to find the determinant of the matrix below:

                      [tex]W [ y_1 ( t ) , y_2(t) ] = | \left[\begin{array}{cc}y_1(t)&y_2(t)\\y'_1(t)&y'_2(t)\end{array}\right] |[/tex]

                      [tex]W [ (2t-1) , (e^-^2^t) ] = | \left[\begin{array}{cc}2t - 1&e^-^2^t\\2&-2e^-^2^t\end{array}\right] |\\\\W [ (2t-1) , (e^-^2^t) ]= [ (2t - 1 ) * (-2e^-^2^t) - ( e^-^2^t ) * (2 ) ]\\\\W [ (2t-1) , (e^-^2^t) ] = [ -4t*e^-^2^t ]\\[/tex]

- Now we will evaluate function. Using the relation given for u1(t) we have:

                     [tex]u_1 (t ) = - \int {\frac{6t^2*e^(^-^2^t^) . ( e^-^2^t)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_1 (t ) = \frac{3}{2} \int [ t*e^(^-^2^t^) ] \, dt\\\\u_1 (t ) = \frac{3}{2}* [ ( -\frac{1}{2} t*e^(^-^2^t^) - \int {( -\frac{1}{2}*e^(^-^2^t^) )} \, dt] \\\\u_1 (t ) = -e^(^-^2^t^)* [ ( \frac{3}{4} t + \frac{3}{8} )] \\\\[/tex]

- Similarly for the function u2(t):

                     [tex]u_2 (t ) = \int {\frac{6t^2*e^(^-^2^t^) . ( 2t-1)}{-4t*e^(^-^2^t^)} } \, dt\\\\u_2 (t ) = -\frac{3}{2} \int [2t^2 -t ] \, dt\\\\u_2 (t ) = -\frac{3}{2}* [\frac{2}{3}t^3 - \frac{1}{2}t^2 ] \\\\u_2 (t ) = t^2 [\frac{3}{4} - t ][/tex]

- We can now express the particular solution ( yp ) in the form expressed initially:

                    [tex]y_p(t) = -e^(^-^2^t^)* [\frac{3}{2}t^2 + \frac{3}{4}t - \frac{3}{8} ] + e^(^-^2^t^)*[\frac{3}{4}t^2 - t^3 ]\\\\y_p(t) = -e^(^-^2^t^)* [t^3 + \frac{3}{4}t^2 + \frac{3}{4}t - \frac{3}{8} ] \\[/tex]

Where the term: 3/8 e^(-2t) is common to both complementary and particular solution; hence, dependent term is excluded from general solution.

- The general solution is the superposition of complementary and particular solution as follows:

                    [tex]y_g(t) = y_c(t) + y_p(t)\\\\y_g(t) = c_1*( 2t - 1 ) + c_2*e^(^-^2^t^) - e^(^-^2^t^)* [ t^3 + \frac{3}{4}t^2 + \frac{3}{4}t ][/tex]

                   

A rectangular piece of paper has a width that is 3 inches less than its length. It is cut in half along a diagonal to create two congruent right triangles with areas of 44 square inches. Which statements are true? Check all that apply.

The area of the rectangle is 88 square inches.
The equation x(x – 3) = 44 can be used to solve for the dimensions of the triangle.
The equation x2 – 3x – 88 = 0 can be used to solve for the length of the rectangle.
The triangle has a base of 11 inches and a height of 8 inches.
The rectangle has a width of 4 inches.

Answers

Answer:

⬇⬇⬇⬇⬇⬇

⬇⬇⬇⬇⬇⬇

Step-by-step explanation:

1, 3, 4

proof below

(1) The area of the rectangle is 88 square inches

(3) The equation x² – 3x – 88 = 0 can be used to solve for the length of the rectangle.

(4) The triangle has a base of 11 inches and a height of 8 inches.

Area of the rectangle

Area of a rectangle is the sum of the area of two equal right triangle.

Area of rectangle = 2(area of right triangle)

Area of rectangle = 2(44 sq inches) = 88 sq inches

Total area of the triangle with respect to length and width of the rectangle

Let the length = x

then the width becomes, x - 3

Area = x(x - 3) = 88

x² - 3x = 88

x² - 3x - 88 = 0

x = 11

width = 11 - 3 = 8

Thus, the statements that are true include;

The area of the rectangle is 88 square inchesThe equation x² – 3x – 88 = 0 can be used to solve for the length of the rectangle.The triangle has a base of 11 inches and a height of 8 inches.

Learn more about area of rectangle here: https://brainly.com/question/25292087

#SPJ9

What is X:Compute
|x|=−4

Answers

Answer:

The answer is No Solution

Answer:

No solution

Step-by-step explanation:

There is no solution to this question.

Since the x is an absolute number, the answer cannot be -4. It would have to equal 4

So if that x was a -4 it would equal 4 since it is in absolute value brackets

What role did youth play in the Civil Rights Movement?

Answers

Answer:

they played the pivotal role

Which triangle congruence postulate can be used to prove that FEH=HGF?


SAS
HL
ASA
SSS

Answers

Answer:

Option (2).

Step-by-step explanation:

From the figure attached,

EFGH is a quadrilateral and FH is line which divides the quadrilateral into two right triangles, ΔFEH and ΔHGF.

In ΔFEH and ΔHGF,

Sides EH ≅ FG [Given]

FH ≅ FH [reflexive property]

ΔFEH ≅ ΔHGF [HL (Hypotenuse - length) postulate of congruence]

Option (2) will be the answer.

John works 21 hours a week and earns $157.50. How much does john earn per hour?

Answers

Answer:

D. $7.50

Step-by-step explanation:

$157.50 / 21 hours = $7.50 per hour

Billy's age is twice Joe's age and the sum of their ages is 45. How old is Billy?

Answers

Answer:

30 years old

Step-by-step explanation:

Joe's age can be set to x. Since Billy is twice as old as Joe, his age can be set to 2x. They add up to 45. You can set up an equation, 2x+x=45.

Simplify the equation.

3x=45, x=15

Joe is 15. Billy is 2(15)=30.

What is the value of n in the equation: 8n+9= -n+5?

Answers

Answer:

n = -1

Step-by-step explanation:

So first subtract 9 to both sides

8n = -n - 9

Now you want the n on one side and the constant on the other

so add the single n to the n side

9n = -9

Divide 9 to both sides to solve for n

n = -1

These tables of values represent continuous functions. For which function will the y-values be the greatest for very large values of x?

Answers

Answer:

  C

Step-by-step explanation:

The function of table A can be written as ...

  y = 100x -92

__

The function of table B can be written as ...

  y = 10x +446

__

The function of table C can be written as ...

  y = (5/3)·3^x

__

The function of table D can be written as ...

  y = 2x +413

__

The exponential function of Table C will have the largest y-values for any value of x greater than 6.

_____

Comment on the functions

When trying to determine the nature of the function, it is often useful to look at the differences of the y-values for consecutive x-values. Here, the first-differences are constant for all tables except C. That means functions A, B, D are linear functions.

If the first differences are not constant, one can look at second differences and at ratios. For table C, we notice that each y-value is 3 times the previous one. That constant ratio means the function is exponential, hence will grow faster than any linear function.

Answer:

yes, what the other user  is correct i just took the quiz

Step-by-step explanation:

i need help asap!!!!!

Answers

Answer:

31 degrees

Step-by-step explanation:

Since RPS and QPR make up QPS, the sum of their angle measures must be 47. Therefore:

3x-38+7x-95=47

10x-133=47

10x=180

x=18

QPR=7(18)-95=126-95=31

Hope this helps!

I will mark brainly-ist to who ever helps me

Find the value of the logarithm.
log 110
Round your answer to the nearest thousandth.

Answers

3.45 I have to answer in order to get my answer so...

Answer:

4.700

Step-by-step explanation:

Find the number in the thousandth place  0  and look one place to the right for the rounding digit 4. Round up if this number is greater than or equal to 5 and round down if it is less than 5.

brainliesssss plssssssssssssss

Use the area to find the radius. If you could include steps that’ll be very helpful :)

Answers

Answer:

Radius = 13 m

Step-by-step explanation:

Formula for area of circle is given as:

[tex]A = \pi {r}^{2} \\ \\ \therefore \: 169\pi \: = \pi {r}^{2} \\ \\ \therefore \: {r}^{2} = \frac{169\pi }{\pi} \\ \\ \therefore \: {r}^{2} = 169 \\ \\ \therefore \: {r} = \pm \sqrt{169} \\ \\\therefore \: r = \pm \: 13 \: m \\ \\ \because \: radius \: of \: a \: circle \: can \: not \: be \: a \: negative \: \\quantity \\ \\ \huge \red{ \boxed{\therefore \: r = 13 \: m }}[/tex]

Find the function value. tan495°

Answers

Answer: -1

Step-by-step explanation:

You want to find an angle that is coterminal to 495. So, subtract 360 degrees until youre in the range of 0-360. I got 495 - 360 = 135°

Tangent is equal to [tex]\frac{sin(theta)}{cos(theta)}[/tex], we already solved theta which was 135°

This next part is hard to explain to someone who doesnt know their trig circle, idk if you do. The angle 135 is apart of the pi/4 gang. So we know this is going to be some variant of √2/2. Sine of quadrant 1 and 2 is gonna be positive:

[tex]sin135=\frac{\sqrt{2} }{2}[/tex]

Now lets do cosine of 135°, which again is apart of the pi/4 gang because its divisible by 45°. Its in quadrant 2 so the cosine will be negative.

[tex]cos135=-\frac{\sqrt{2} }{2}[/tex]

The final step is to divide them. They are both fractions so you should multiply by the reciprocal.

[tex]\frac{\sqrt{2} }{2} *-\frac{2}{\sqrt{2} } =-\frac{2\sqrt{2} }{2\sqrt{2} } =-1[/tex]

-1
The answer is -1

The lifespan (in days) of the common housefly is best modeled using a normal curve having mean 22 days and standard deviation 5. Suppose a sample of 25 common houseflies are selected at random. Would it be unusual for this sample mean to be less than 19 days?

Answers

Answer:

Yes, it would be unusual.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

If [tex]Z \leq -2[/tex] or [tex]Z \geq 2[/tex], the outcome X is considered unusual.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 22, \sigma = 5, n = 25, s = \frac{5}{\sqrt{25}} = 1[/tex]

Would it be unusual for this sample mean to be less than 19 days?

We have to find Z when X = 19. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{19 - 22}{1}[/tex]

[tex]Z = -3[/tex]

[tex]Z = -3 \leq -2[/tex], so yes, the sample mean being less than 19 days would be considered an unusual outcome.

What’s the correct answer for this?

Answers

Answer:

D

Step-by-step explanation:

Length × Width = Area

So we'll substitute the Area of the circle having formula, πr²

You get tired of the sand and head up to the amusement park. You can purchase 20 ride tickets for $14 or you can purchase 30 ride tickets for $22.50. Which is a better deal?

Answers

Answer:

The one with the better deal would be 30 ride tickets for $22.50 this is because you pay less money for more rides.

Step-by-step explanation:

First you divide 20 by 14. Doing this will give you the cost of a ride per ticket.

20/14 = 1.42

Then you do the same thing to 30 and 22.50.

30/22.50 = 1.30

Last you compare which deal has less money per ride.

1.42 > 1.30

The combined SAT scores for the students at a local high school are normally distributed with a mean of 1527 and a standard deviation of 291. The local college includes a minimum score of 1207 in its admission requirements. What percentage of students from this school earn scores that satisfy the admission requirement? P(X > 1207) =

Answers

Answer:

Step-by-step explanation:

Let x be the random variable representing the SAT scores for the students at a local high school. Since it is normally distributed and the population mean and population standard deviation are known, we would apply the formula,

z = (x - µ)/σ

Where

x = sample mean

µ = population mean

σ = standard deviation

From the information given,

µ = 1527

σ = 291

the probability to be determined is expressed as P(x > 1207)

P(x > 1207) = 1 - P(x ≤ 1207)

For x < 1208

z = (1207 - 1527)/291 = - 1.1

Looking at the normal distribution table, the probability corresponding to the z score is 0.16

P(x > 1207) = 1 - 0.16 = 0.84

Therefore, the percentage of students from this school earn scores that satisfy the admission requirement is

0.84 × 100 = 84%

Please help. I’ll mark you as brainliest if correct!

These are 2 math problems .

Answers

Answer:

-4 503/12 ≈ 41.91667

Step-by-step explanation:

To find the average rate of change, find the change in function value, and divide that by the length of the interval.

1. ((g(1) -g(-1))/(1 -(-1)) = ((-4·1³ +4) -(-4(-1)³ +4)/(2) = (-8)/2 = -4

The average rate of change of g(x) on [-1, 1] is -4.

__

2. ((g(3) -g(-2))/(3 -(-2)) = ((6·3³ +3/3²) -(6·(-2)³ +3/(-2)²))/5

  = (6·27 +1/3 -6·(-8) -3/4)/5 = (2515/12)/5

  = 503/12 = 41 11/12

The average rate of change of g(x) on [-2, 3] is 41 11/12.

What is the equation of the line perpendicular to y = 2/3 x +1 that passes through the point (12, – 6)?

Answers

Answer:

y= -3/2x+12

Step-by-step explanation:

the slope of perpendicular lines multiplied together would be -1, so the slope of the perpendicular line is -3/2. y=-3/2x+b, so -6=-18+b, so b= 12. the equation of the line is y=-3/2x+12.

A company manager for a tire manufacturer is in charge of making sure there is the least amount of defective tires. If the tire manufacturing process is working properly, the average weight of a tire for a 4-door sedan is normally distributed with a mean of 22 pounds and a standard deviation of 0.76 pounds. The manager decides to reject a tire as underweight if it falls more than 1.5 interquartile ranges below the lower quartile of the specified shipment of tires. What proportion of tires will be rejected by this process?

Answers

Answer:

0.347% of the total tires will be rejected as underweight.

Step-by-step explanation:

For a standard normal distribution, (with mean 0 and standard deviation 1), the lower and upper quartiles are located at -0.67448 and +0.67448 respectively. Thus the interquartile range (IQR) is 1.34896.

And the manager decides to reject a tire as underweight if it falls more than 1.5 interquartile ranges below the lower quartile of the specified shipment of tires.

1.5 of the Interquartile range = 1.5 × 1.34896 = 2.02344

1.5 of the interquartile range below the lower quartile = (lower quartile) - (1.5 of Interquartile range) = -0.67448 - 2.02344 = -2.69792

The proportion of tires that will fall 1.5 of the interquartile range below the lower quartile = P(x < -2.69792) ≈ P(x < -2.70)

Using data from the normal distribution table

P(x < -2.70) = 0.00347 = 0.347% of the total tires will be rejected as underweight

Hope this Helps!!!

The proportion of the tires that would be denied for being underweight through the given process would be:

[tex]0.347[/tex]% of the total tires will be rejected as underweight.

Given that,

Interquartile Range [tex]= 1.5[/tex]

Standard Deviation [tex]= 0.76[/tex]

Considering Mean = 0

and Standard Deviation = 1

Since lower quartile = -0.67448

Upper quartile  = +0.67448

IQ range =  1.34896

To find,

The proportion of tires would be rejected due to being underweight through the process would be:  

1.5 of Interquartile Range = 1.5 × [tex]1.34896 = 2.02344[/tex]

Now,

1.5 of the IQ range below the lower quartile [tex]= (lower quartile) - (1.5 of Interquartile range)[/tex]

[tex]= -0.67448 - 2.02344[/tex]

[tex]= -2.69792[/tex]

The proportion of tires that would be under 1.5 of the interquartile range below the lower quartile:

[tex]= P(x < -2.69792)[/tex] ≈ [tex]P(x < -2.70)[/tex]

Using data through the Normal Distribution Table,

[tex]P(x < -2.70)[/tex] [tex]= 0.00347[/tex]

[tex]= 0.347[/tex]%

Thus, 0.347% of the total tires would be rejected as underweight.

Learn more about "Proportion" here:

brainly.com/question/2548537

theo started to solve the quadratic equation (x+2)2 - 9 = -5

Answers

Answer:2x−5=−5

Add 5

to both sides of the equation.

2x=−5+5

Add −5

and 5

.

2x=0

Divide each term by 2

and simplify.

Divide each term in 2x=0

by 2

.

2x2=02

Cancel the common factor of 2

.

Cancel the common factor.

2

x2=02

Step-by-step explanation:

Apply the distributive property.

x⋅2+2⋅2−9=−5

Move 2

to the left of x

.

2⋅x+2⋅2−9=−5

Multiply 2

by 2

.

2x+4−9=−5

Subtract 9

from 4

.

I am divisible by 3.
I am an even number.
I am the missing number
in 48/x=8.
Who am I?

Answers

Answer:

You are 6

Step-by-step explanation:

8×6=48 and 6/3=2

6 is even and fits in all of these areas.

Hope this helps.

Mark brainliest if correct.

What is the circumference of the circle? Use 3.14 for Pi. A circle with diameter 33 centimeters.

Answers

Answer:

207.24cm

Step-by-step explanation:

Circumference=2pi*r

=2 (3.14)(33)

=207.24cm

The circumference of the circle is 103.62 cm².

Given that, a circle with diameter of 33 cm.

Radius=d/2=16.5 cm.

What is the formula to find the circumference of the circle?

The formula to find the circumference of the circle is 2πr.

Now, 2×3.14×16.5=103.62 cm².

Therefore, the circumference of the circle is 103.62 cm².

To learn more about the circumference of the circle visit:

https://brainly.com/question/27177006.

#SPJ2

Please answer this correctly

Answers

Answer:

2

Step-by-step explanation:

Set the height of the bar to 2 since there are 2 numbers between 21-40.

Answer:

2 people.

Step-by-step explanation:

34 minutes and 40 minutes were recorded.

Therefore, 2 people.

What are the solutions to the quadratic equation 2x^2 + 10x - 48 = 0?
A. x= -4 and x = 6
B. X= -8 and x = 2
c. x= -6 and x = 8
D. X = -8 and x = 3

Answers

The answer would be the third so c
the answer is D. Download photomath

2y + 5x – z = 4y + 6x solve for y

(show work)

Answers

Answer:

y = -z/2 - x/2

Step-by-step explanation:

2y + 5x – z = 4y + 6x

-5x. -5x

2y - z = 4y + x

+z. +z

2y = 4y + z + x

-4y -4y

-2y = z + x

÷-2. ÷-2

y = -z/2 - x/2

Other Questions
Also assume that a U.S. exporter denominates its Swiss exports in Swiss francs and expects to receive SF250,000 in 1 year. Using the information above, what will be the approximate value of these exports in 1 year in U.S. dollars given that the firm executes a forward hedge Is there a link between number of bulbs and current drawn from the power pack? 3.BADEHow many rays intersect at point o? Type the integer that makes the following addition sentence true: + 83 = 19 the square root of 7/16 A man hiking the mountain with friends and get lose. In scene 1, Creon suspectsmotivated the person who buried Polyneices.consciengemoneyloyaltylove Can someone help me please?? Cuba's success in medical research and practices is comparable to the general standards of a third-world country.TrueFalse Ms. Ironperson and Mr. Thoro are makingAvenger posters to give children when theyvisit Avenger Academy. Ms. Ironperson hascompleted 12 posters and will complete 6more per day. Mr. Thoro has not started yetbut can make 12 per day. At some point Mr.Thoro will catch up and both will have finishedthe same number of posters. When this doeshappen, how many posters will each Avengerhave completed?If x denotes the number of days and y denotesthe number of posters, what are the equationsneeded to solve this problem? (7 points) Arsha predicted that she would sell 225 magnets. She actually sold 240 magnets. What are the values of a and b in the table below? Percent Error Item Approximate value Exact value Error Absolute error Ratio Percent error Magnets 225 240 a b a = Negative StartFraction 15 over 225 EndFraction; b = negative 6.7 percent a = Negative StartFraction 15 over 240 EndFraction; b = negative 6.25 percent a = StartFraction 15 over 240 EndFraction; b = 6.25 percent a = StartFraction 15 over 225 EndFraction; b = 6.7 percent Which of the following statements best explains how the failure of severalrailroad companies in the 1890s caused a major economic depression thataffected the entire U.S. economy?A. Railroad workers had unionized earlier than workers in most otherindustries. When railroad companies failed, it convinced businessowners to aggressively fight against unions.B. Railroad companies were the country's largest employers in thelate 19th century. When several of these companies failed, a hugenumber of workers were forced to rely on government welfareprograms.C. Loose regulations on business had allowed only a few railroadcompanies to dominate the entire industry. When thosecompanies failed, the transportation grid in the United States wasparalyzed.D. Investors, worried about the prospect of losing their money,withdrew it in huge amounts from banks. This panic led to bankfailures, which made the problem even worse. Vlad tried to solve an equation step by step.-8p 14 = 42-8p = 28 step 1p= -3.5 step 2Find Vlad's mistake.Choose 1 answer:A)Step 1B)Step 2 C)Vlad did not make a mistake Write an integer that represents this scenario: 18-point gain In a group discussion, an agreed upon set of beliefs that help the groupavoidconfusion is called:A. ground rules.B. major ideas.C. common ground.D. the topic of discussion. Alice was flying a kite when a gust of wind caught the kite in a tree. Alice is standing 10 feet from the base of thetree, looking up at her kite at an angle of 25. If Alice is 5 feet tall, approximately how high is the kite off of theground?A4.66B 9.66C 21.45D 9.23 A rocket is launched at t=0 seconds. Its height, in meters above sea-level, as a function of time is given by h(t)=4.9t2+100t+325. What is the independent variable and its units? ______ (meters, seconds, meters per second, or seconds per meters) - select the correct units What is the dependent variable and its units? _______ (seconds or meters) - select the correct units I will give you brainliest!!!!! Which equation models the total profit y, based on the number of T-shirts sold x? Let f(x) = 4x2 + x + 1 and g(x) = x2 2. Find g(f(x)). Show each step of your work. Pls do 4,5 for 7 points.