Answer:
30
Step-by-step explanation:
Since this is a right triangle, we can use a trig function
cos theta = adjacent/ hypotenuse
cos ? = 52/ 60
Take the inverse cos of each side
cos ^ -1 cos ? = cos ^ -1 ( 52/60)
? =29.92643487
To the nearest degree
? = 30
[tex]answer \\ 30 \\ please \: see \: the \: attached \: picture \: for \: full \: solution \\ hope \: it \: helps[/tex]
the sum of two rational numbers is 8 if one of the numbers is -5/6 find the other
Answer:53/6
Step-by-step explanation:
Let X be the other rational number
-5/6+X=8
Add 5/6 to both sides
-5/6+5/6+X=8+5/6
0+X= 53/6 (inverse property)
X=53/6. (Identity property)
At a computer store, a customer is considering 7 different computers, 9 different monitors, 8 different printers and 2 different scanners. Assuming that each of the components is compatible with one another and that one of each is to be selected, determine the number of different computer systems possible.
Answer:
1008
Step-by-step explanation:
to find the number of combinations, just multiply everything. you will get 1008 :)
What's 2|–9| – |–2|?
Answer:
Step-by-step explanation: AS YOU KHOW THW ABSOLUTE VALUE OF A QUESTION IS NUMBER ITSELF IF THERE IS MINUS SIGH THEN THE SIGH OF A NUMBER WILL BECOME PLUS OR IF THERE IS A PLUS SIGH THEN THERE IT WILL REMAIN AS IT IS. IF THERE IS NO NUMBER WITH THE MINUS SIGH THEN THE MINUS SIGH WILL REAMIN AS IT IS.
+2 +9 - +2
The answer has same sigh, then Plus answer will you get is
+11 - 2 then you will minus the answer will be
+9
HOPE IT HELP YOU
5.2 times a number is 46.8
Answer:
9
Step-by-step explanation:
"5.2 times a number is 46.8" as an equation is:
[tex]5.2*n=46.8[/tex]
Solve for 'n':
[tex]5.2*n=46.8\\5.2/5.2*n=46.8/5.2 \leftarrow \text {Division Property of Equality} \\\boxed {n=9}[/tex]
What’s the correct answer for this?
Answer:
C.
Step-by-step explanation:
Base area = 9 × 13
= 117 square feet
Now
Volume of pyramid = (1/3)(A)(H)
= (1/3)(117)(30)
= 117 × 10
= 1170 cubic feet
Find the x-intercept(s) and the coordinates of the vertex for the parabola.
Answer:
see explanation
Step-by-step explanation:
Given
y = x² - 2x - 8
To find the x- intercepts let y = 0 , that is
x² - 2x - 8 = 0 ← in standard form
(x - 4)(x + 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 4 = 0 ⇒ x = 4
x + 2 = 0 ⇒ x = - 2
x- intercepts : x = - 2, x = 4
The x- coordinate of the vertex is mid way between the x- intercepts, that is
[tex]x_{vertex}[/tex] = [tex]\frac{-2+4}{2}[/tex] = [tex]\frac{2}{2}[/tex] = 1
Substitute x = 1 into the equation for corresponding y- coordinate
y = 1² - 2(1) - 8 = 1 - 2 - 8 = - 9
vertex = (1, - 9 )
Which of the following is the solution to |x-1|=8
Answer:
-7,9
Step-by-step explanation:
x-1=-8
x=-7
x-1=8
x=9
In a class of 20 students 11 people have a brother 9 people have a sister 6 people have neither fill in the Venn diagram
Answer:
Draw a Venn diagram with the left circle labeled brother, and the right labeled sister. Label the middle both and fhe outisde neither. Put 5 in brother, 3 in sister, 6 in both and 6 in neithrr.
Step-by-step explanation:
11+9 = 20
20-6 = 14
20-14=6
There are 6 that have both
One number is 3 more than 2 times the other, and their sum is 27. Find the numbers.
If x represents the smaller number, then the larger number is
3x + 2
2x + 3
21x + 3)
Answer:
Option 2 is correct
Step-by-step explanation:
One number is 2 times another number plus 3. Their sum is 21.
"One number is 2 times another number plus 3" translated to
x = smaller number = another number
It is also given that: Their sum is 21.
Combine like terms:
3x+3 = 21
Answer:
I do questions like these everyday so I have too much experience. Let me explain step by step for you.
Brainliest?
First lets set 2 variables x and y
Lets make 2 equations.
x=3+2*y
Thats because it says 'x' is 3 more (+) than 2 times(*) 'y'
Now lets set second, we know both of them add up to 27.
x+y = 27
Since we know what x is equal to (look above equation)
We can replace it.
x is replaced with 3+2*y
3+2y+y = 27
3+4y = 27
Simplify 27-3 = 24
24/4 = 6
Now lets plug in for x
3+2*6 = 15
15 - x
6 - y
:))
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = x2yi + xy2j + 3xyzk, S is the surface of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and x + 2y + z = 2.
Answer:
-14 / 3
Step-by-step explanation:
- Divergence theorem, expresses an explicit way to determine the flux of a force field ( F ) through a surface ( S ) with the help of "del" operator ( D ) which is the sum of spatial partial derivatives of the force field ( F ).
- The given force field as such:
[tex]F = (x^2y) i + (xy^2) j + (3xyz) k[/tex]
Where,
i, j, k are unit vectors along the x, y and z coordinate axes, respectively.
- The surface ( S ) is described as a tetrahedron bounded by the planes:
[tex]x = 0 \\y = 0\\x + 2y + z = 2[/tex]
[tex]z = 0\\[/tex]
- The divergence theorem gives us the following formulation:
[tex]_S\int\int {F} \,. dS = _V\int\int\int {D [F]} \,. dV[/tex]
- We will first apply the del operator on the force field as follows:
[tex]D [ F ] = 2xy + 2xy + 3xy = 7xy[/tex]
- Now, we will define the boundaries of the solid surface ( Tetrahedron ).
- The surface ( S ) is bounded in the z - direction by plane z = 0 and the plane [ z = 2 - x - 2y ]. The limits of integration for " dz " are as follows:
dz: [ z = 0 - > 2 - x - 2y ]
- Now we will project the surface ( S ) onto the ( x-y ) plane. The projection is a triangle bounded by the axes x = y = 0 and the line: x = 2 - 2y. We will set up our limits in the x- direction bounded by x = 0 and x = 2 - 2y. The limits of integration for " dx " are as follows:
dx: [ x = 0 - > 2 - 2y ]
- The limits of "dy" are constants defined by the axis y = 0 and y = -2 / -2 = 1. Hence,
dy: [ y = 0 - > 1 ]
- Next we will evaluate the triple integral as follows:
[tex]\int\int\int ({D [ F ] }) \, dz.dx.dy = \int\int\int (7xy) \, dz.dx.dy\\\\\int\int (7xyz) \, | \limits_0^2^-^x^-^2^ydx.dy\\\\\int\int (7xy[ 2 - x - 2y ] ) dx.dy = \int\int (14xy -7x^2y -14 xy^2 ) dx.dy\\\\\int (7x^2y -\frac{7}{3} x^3y -7 x^2y^2 )| \limits_0^2^-^2^y.dy \\\\\int (7(2-2y)^2y -\frac{7}{3} (2-2y)^3y -7 (2-2y)^2y^2 ).dy \\\\[/tex]
[tex]7 (-\frac{(2-2y)^3}{6} + (2-2y)^2 ) -\frac{7}{3} ( -\frac{(2-2y)^4}{8} + (2-2y)^3) -7 ( -\frac{(2-2y)^3}{6}y^2 + 2y.(2-2y)^2 )| \limits^1_0\\\\ 0 - [ 7 (-\frac{8}{6} + 4 ) -\frac{7}{3} ( -\frac{16}{8} + 8 ) -7 ( 0 ) ] \\\\- [ \frac{56}{3} - 14 ] \\\\\int\int {F} \, dS = -\frac{14}{3}[/tex]
Find all zeros of f(x)=x^3−17x^2+49x−833
Answer:
x = 17 or x = ±7i
Step-by-step explanation:
x³ − 17x² + 49x − 833 = 0
x² (x − 17) + 49 (x − 17) = 0
(x² + 49) (x − 17) = 0
x = 17 or ±7i
Using the data in the table, use the exponential smoothing method with alpha=0.5 and a February forecast of 500 to forecast
sales for May
Month Demand
January 480
February 520
March 535
April 550
May 590
June 630
Answer:
Step-by-step explanation:
The formula to calculate the forecast could be determine by using the exponential smoothing method :
[tex]Ft = F(t-1) + \alpha [A(t-1) - F(t-1)][/tex]
Where ,Ft is the Forecast for period t
F(t-1) is the Forecast for the period previous to t
A(t-1) is the Actual demand for the period previous to t
[tex]\alpha[/tex] = Smoothing constant
To get the forecast for may and june the above formula with [tex]\alpha =0.5[/tex] and april forecast of 500 will be used
For march
[tex]=500+0.5(520-500)\\\\=500+0.5\times20\\\\=500+10\\\\=510[/tex]
For April
[tex]=510+0.5(535-510)\\\\=510+0.5\times25\\\\=510+12.5\\\\=522.5[/tex]
For May
[tex]=522.5+0.5(550-5225)\\\\=522.5+0.5\times27.5\\\\=522.5+13.75\\\\=536.25[/tex]
So forecast for May = 536.25
a condition for two vectors to be equal is that?
Answer:
Vector is equal to vector b. For two vectors to be equal, they must have both the magnitude and the directions equal.
Step-by-step explanation:
Among 21- to 25-year-olds, 29% say they have driven while under the influence of alcohol. Suppose that three 21- to 25-year-olds are selected at random. a)What is the probability that all three have driven while under the influence of alcohol
Answer:
P(3) = 0.0244
P(3) = 2.44%
the probability that all three selected have driven while under the influence of alcohol is 2.44% or 0.0244
Step-by-step explanation:
Given;
The probability that they have driven while under the influence of alcohol is;
P = 29% = 0.29
the probability that all three selected have driven while under the influence of alcohol is;
P(3) = P × P × P
P(3) = 0.29 × 0.29 × 0.29
P(3) = 0.024389
P(3) = 0.0244
P(3) = 2.44%
the probability that all three selected have driven while under the influence of alcohol is 2.44% or 0.0244
To inspect manufacturing processes, companies typically examine samples of parts for deficiencies. One company that manufactures ballpoint pens selected samples of pens on each of days. The company recorded, for each sample of , the number of defective pens in the sample. Here are their data:
1, 1, 2, 2, 2, 2, 3, 5, 5, 6, 6, 6, 9, 11, 14, 15, 18
Required:
a. Which measures of central tendency do not exist for this data set?
b. Which measures of central tendency would be affected by the change?
c. Which of the following best describes the distribution of the original data?
d. Suppose that, starting with the original data set, the largest measurement were removed. Which measures of central tendency would be changed from those of the original data set?
Answer:
a. All measures exist
b. The Mean and the mode
c. Positively skewed
d. The mean and the median
Step-by-step explanation:
a. The frequencies of the data are;
1 2
2 4
3 1
5 2
6 3
9 1
11 1
14 1
15 1
18 1
The formula for mode is given as follows;
The mean = 108/17 = 6.35
The median of 1 1 2 2 2 2 3 5 5 6 6 6 9 11 14 15 18 = (n + 1)/2th term = 9th term
∴ The median = 5
The mode = 3×Median - 2 × Mean = 15 - 2 × 6.35 = 2.29
Hence all exist
The answer is none theses measures
b. Whereby 18 is replaced by 39 the mean will be then be
(108 + 39 - 18)/17 = 7.59
The median, which is the 9th term remain the same;
Hence only the mean and mode will be affected
c. Since more values are concentrated on the left side of the data distribution, the distribution is positively skewed
d. The largest measurement = 18 the 17th term
Removal will give
Mean = (108 - 18)/16 = 5.625 Mean changes
Median = (16 + 1)/2 th term = 8.5th term = 5 The median remains the same
The mode = 3(Mean - Median) changes
Therefore, the mean and the median will be changed.
You need to haul a load of patio bricks to a job site. Each brick weighs 4 pounds 14 ounces. Truck can carry a 3/4 - ton load. How many bricks can the truck carry in a full load?
Answer:
339 bricks.
Step-by-step explanation:
We have the weight of each brick and what the truck can support. Therefore what we must do is pass all to the same unit of measurement to calculate the quantity of bricks.
In this case we will pass everything to pounds.
We have that a 1 pound is 16 ounces, therefore 14 would be:
14 ounces * 1 pound / 16 ounces = 0.875 pounds
In addition we have that 1 ton is 2204.62 pounds, therefore 3/4 would be:
3/4 ton * 2204.62 pounds / 1 ton = 1653.467 pounds
Therefore, in total the brick weighs 4,875 pounds (4 + 0.875) and the truck can support 1653,467 pounds, the number of bricks would be:
1653.467 / 4.875 = 339.17
In other words, it can support about 339 bricks.
please help me... I'm confused
Answer:
a=5
b=15
Step-by-step explanation:
By following the pattern on the table we can see that the x is increasing by 1 and the y is increasing by 3 each time. Therefore, the next set of numbers would be (5,15).
A sociologist recently conducted a survey of citizens over 60 years of age who have net worths too high to qualify for Medicaid but have no private health insurance. The ages of the 25 uninsured senior citizens were as follows:
68 73 66 76 86 74 61 89 65 90 69 92 76
62 81 63 68 81 70 73 60 87 75 64 82
Find the upper quartile of the data.
a) 65.5
b) 92
c) 81.5
d) 073
Answer:
c) 81.5
Step-by-step explanation:
Listing the 25 ages in crescent order:
60 61 62 63 64 65 66 68 68 69 70 73 73 74 75 76 76 81 81 82 86 87 89 90 92
The upper or third quartile's position is given by:
[tex]Q_3=N_{\frac{3}{4}(n+1)}\\Q_3}=N_{\frac{3}{4}(25+1)}=N_{19.5}[/tex]
This means that the third quartile is the average between the 19th and 20th numbers:
[tex]Q_3=\frac{81+82}{2} \\Q_3 = 81.5[/tex]
The upper quartile is 81.5.
Pablo created the bar model and equation after paying a $9.79 lunch bill with a $20 bill.
Answer:
It is c he revived 10.21
Step-by-step explanation:
what is the value of x?
Answer:
x = 5
Step-by-step explanation:
52 = y since they are the base angles of an isosceles triangle and the base angles are equal
The sum of the angles of a triangle are 180
52+y+14x+6 =180
Substitute for y
52+52+14x+6 = 180
Combine like terms
110 + 14x = 180
Subtract 110 from each side
110+14x-110 = 180-110
14x =70
Divide by 14
14x/14 = 70/14
x =5
An option to buy a stock is priced at $150. If the stock closes above 30 next Thursday, the option will be worth $1000. If it closes below 20, the option will be worth nothing, and if it closes between 20 and 30, the option will be worth $200. A trader thinks there is a 50% chance that the stock will close in the 20-30 range, a 20% chance that it will close above 30, and a 30% chance that it will fall below 20.
Required:
a. Create a valid probability table.
b. How much should the trader expect to gain or lose?
c. Should the trader buy the stock? Explain.
Answer:
Step-by-step explanation:
An option to buy a stock is priced at $150. If the stock closes above 30 next Thursday, the option will be worth $1000. If it closes below 20, the option will be worth nothing, and if it closes between 20 and 30, the option will be worth $200. A trader thinks there is a 50% chance that the stock will close in the 20-30 range, a 20% chance that it will close above 30, and a 30% chance that it will fall below 20.
a) Let X represent the price of the option
x P(X=x)
$1000 20/100 = 0.2
$200 50/100 = 0.5
$0 30/100 = 0.3
b) Expected option price
[tex]= \sum x.P(X=x)\\\\ = 1000 * 0.2 + 200 * 0.5 + 0 = \$ 300[/tex]
Therefore expected gain = $300 - $150 = $150
c) The trader should buy the stock. Since there is an positive expected gain($150) in trading that stock option.
Let $A_1 A_2 A_3 A_4$ be a regular tetrahedron. Let $P_1$ be the center of face $A_2 A_3 A_4,$ and define vertices $P_2,$ $P_3,$ and $P_4$ the same way. Find the ratio of the volume of tetrahedron $A_1 A_2 A_3 A_4$ to the volume of tetrahedron $P_1 P_2 P_3 P_4.$
Answer:
27 : 1
Step-by-step explanation:
The faces of a regular tetrahedron are equilateral triangles. The incenter, circumcenter, and centroid are all the same point, located 1/3 of the distance from the edge to the opposite vertex of the face. The vertical height of the point that is 1/3 the slant height from the base is 1/3 of the height of the tetrahedron.
Then the "inscribed" tetrahedron has 1/3 the height of the original. The ratio of volumes is the cube of the ratio of linear dimensions, so the ratio of the larger volume to the smaller is ...
3³ : 1³ = 27 : 1
At Central High School, 55% of students play a school sport. Also, 24% of the student population is in ninth grade. To ninth graders are allowed to play school sports. If two students are selected at random to receive a gift card, what is the probability that one will go to a student athlete and one will go to a freshman? Write the answer as a percent rounded to the nearest tenth of a percent.
Answer:
Probability that one of the giftcards will go to a student athlete and one will go to a freshman = 26.4%
Step-by-step explanation:
At Central High School, 55% of students play a school sport. Also, 24% of the student population is in ninth grade. No ninth graders are allowed to play school sports. If two students are selected at random to receive a gift card, what is the probability that one will go to a student athlete and one will go to a freshman? Write the answer as a percent rounded to the nearest tenth of a percent.
Solution
Probability that a student plays a school sport, that is, probability that a student is a student athlete = P(S) = 55% = 0.55
Probability that a student is in the ninth grade, that is, probability that a student is a freshman = P(F) = 24% = 0.24
It was given that no freshman is allowed to play sports, hence, it translates that the event that a student is a student athlete and the event that a student is a freshman are mutually exclusive.
P(S n F) = 0
If two students are then picked at random to receive a gift card, we require the probability that one will go to a student athlete and one will go to a freshman.
Probability that the first one goes to a student athlete = P(S) = 0.55
Probability that the second one goes to a freshman ≈ 0.24
Probability that the first one goes to a freshman = P(F) = 0.24
Probability that the second one goes to a student athlete ≈ 0.55
Probability that one will go to a student athlete and one will go to a freshman
= (0.55 × 24) + (0.24 × 0.55)
= 0.132 + 0.132
= 0.264
= 26.4% in percent to the nearest tenth.
Hope this Helps!!
A = (5,2), B = (2,4), C = (6,7) and D = (9,5) What is the length of the shorter diagonal of parallelogram ABCD?
Answer:
[tex] AC = \sqrt(26) \approx 5.1 [/tex]
Step-by-step explanation:
The diagonals are AC and BD.
Now we find the lengths of the diagonals using the distance formula.
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
AC:
[tex] AC = \sqrt{(6 - 5)^2 + (7 - 2)^2} [/tex]
[tex] AC = \sqrt{(1)^2 + (5)^2} [/tex]
[tex] AC = \sqrt{1 + 25} [/tex]
[tex] AC = \sqrt{26} [/tex]
BD:
[tex] BD = \sqrt{(9 - 2)^2 + (5 - 4)^2} [/tex]
[tex] BD = \sqrt{(7)^2 + (1)^2} [/tex]
[tex] BD = \sqrt{49 + 1} [/tex]
[tex] BD = \sqrt{50} [/tex]
Since sqrt(26) < sqrt(50), then the shorter diagonal is AC.
Answer: AC = sqrt(26) or approximately 5.1
Answer:
A = (5.2)
Step-by-step explanation:
c2= (6-5)^2 + (7-2)^2
To find AC we calculate within parenthesis (6-5) : 1
c2= 1 + (7-2)^2
calculate within parenthesis (7-2) : 5
c2 = 1^2 + 5^2
then calculate exponents 1^2:1
c^2 = 1+5^2
add and subtract left to right
c^2 = 1+25
c^2 =26
Sr of 26 = 5.09901951359
Which means the closest answer is A = 5.2
To find BD we calculate within parenthesis (9-2):7
c2= (9-2)^2 + (5 - 4)^2
calculate within parenthesis (5-4) : 1
c2 = (7)^2 + (1)^2
calculate exponents 1 ^2 : 1
c2 = 49 +1
add and subtract left to right
c2 = 50
Sr of 50 = 7.07106781187
The number of pieces of popcorn in a large movie theatre popcorn bucket is normally distributed, with a mean of 1610 and a standard deviation of 10. Approximately what percentage of buckets contain between 1600 and 1620 pieces of popcorn?
Answer:
A
Step-by-step explanation:
We know that in normal distribution, approximately 34% of bags will fall with in one standard deviation on one side. On both sides within the range of 1 standard deviation, 34 + 34 = 68 % of bags will fall.
Our range is:
1600 to 1620
1610 - 10 to 1610 + 10
So the answer is 1
That means, that 68% is the answer.
Answer:
The answer is A.
Step-by-step explanation:
Approximately 68%
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer: f(x)=2-x^2
Step-by-step explanation:
The quadratic equation is
y=ax^2+bx+c
and c is equal to the y-intercept.
in the twi graphs shown both have the same shape but different y-intervepts.
c(the y-intercept) in the first graph is 5 and in the second graph(F) is 2.
On the graphing calculator it says that f(x)=2-x^2 is the correct answer therefore it is correct.
If 4/3 * 3/4 = 5k, then k =
Answer:
1/5
Step-by-step explanation:
switch sides, delete both common factors and your stuck with 5k=1. then you put both in a fraction and it gets you 1/5
Solve 2x - 11 = k for x.
1. O perímetro de um quadrado é 20 cm. Determine sua diagonal. 1 ponto a) 2 √5 cm b) 20√2 cm c) 5√2 cm d) 2√10 cm
Answer:
c) 5√2 cm
Step-by-step explanation:
A square with side length l has a perimeter given by the following equation:
P = 4l.
In this question:
P = 20
So the side length is:
4l = 20
l = 20/4
l = 5
Diagonal
The diagonal forms a right triangle with two sides, in which the diagonal is the hypothenuse. Applying the pytagoras theorem.
[tex]d^{2} = l^{2} + l^{2}[/tex]
[tex]d^{2} = 5^{2} + 5^{2}[/tex]
[tex]d^{2} = 50[/tex]
[tex]d = \pm \sqrt{50}[/tex]
Lenght is a positive meausre, so
[tex]d = \sqrt{50}[/tex]
[tex]d = \sqrt{2 \times 25}[/tex]
[tex]d = \sqrt{2} \times \sqrt{25}[/tex]
[tex]d = 5\sqrt{2}[/tex]
So the correct answer is:
c) 5√2 cm
Seven students were surveyed on the number of hours of TV they watch each week. The results are shown below.
8, 12, 13, 15, 16, 17, 17
What is the mode of the data set?
7
14
15
17