Use Hooke's Law to determine the work done by the variable force in the spring problem. Nine joules of work is required to stretch a spring 0.5 meter from its natural length. Find the work required to stretch the spring an additional 0.40 meter.

Answers

Answer 1

Answer:

29.16 J

Explanation:

From Hook's law,

W = 1/2(ke²)..................... Equation 1

Where W = work done, k = Spring constant, e = extension.

Given: W = 9 J, e = 0.5 m.

Substitute into equation 1

9 = 1/2(k×0.5²)

Solve for k

k = 18/0.5²

k = 72 N/m.

The work done required to stretch the spring by additional 0.4 m is

W = 1/2(72)(0.4+0.5)²

W = 36(0.9²)

W = 29.16 J.


Related Questions

Two identical objects are pressed against two different springs so that each spring stores 55.0J of potential energy. The objects are then released from rest. One spring is quite stiff (hard to compress), while the other one is quite flexible (easy to compress).Which of the following statements is or are true? (More than one statement may be true.)A. Both objects will have the same maximum speed after being released.B. The object pressed against the stiff spring will gain more kinetic energy than the other object.C. Both springs are initially compressed by the same amount.D. The stiff spring has a larger spring constant than the flexible spring.E. The flexible spring must have been compressed more than the stiff spring.

Answers

Answer:

A , D , E

Explanation:

Solution:-

- Consider the two identical objects with mass ( m ).

- The stiffness of the springs are ( k1 and k2 ).

- Both the spring store 55.0 J of potential energy.

- We will apply the principle of energy conservation on both the systems. In both cases the spring stores 55.0 Joules of energy. Once released, the objects gain kinetic energy with a consequent loss of potential energy in either spring.

- The maximum speed ( v ) is attained when all the potential energy is converted to kinetic energy.

- Apply Energy conservation for spring with stiffness ( k1 ).

                         ΔU = ΔEk

                         55.0 = 0.5*m*v^2

                         v = √ ( 110 / m )

- Apply Energy conservation for spring with stiffness ( k2 ).

                         ΔU = ΔEk

                         55.0 = 0.5*m*v^2

                         v = √ ( 110 / m )

Answer: Both objects will have the same maximum speed ( A )

- We are told that one spring is more stiff as compared to the other one. The measure of stiffness is proportionally quantified by the spring constant. To mathematically express we can write it as:

                         k1 > k2

Where,

                 k1: The stiff spring

                 k2: The flexible spring

Answer: The stiff spring has a larger spring constant than the flexible spring. ( D )

- We will assume that the spring with constant ( k1 ) undergoes a displacement ( x1 ) and the spring with constant ( k2 ) undergoes a displacement ( x2 ). The potential energy stored in both spring is the same. Hence,

                      U1 = U2

                      0.5*( k1 ) * ( x1 )^2 = 0.5*( k2 ) * ( x2 )^2

                      [ k1 / k2 ] = [ x2 / x1 ]^2

Since,

                     k1 > k2 , then [ k1 / k2 ] > 1    

Then,

                     [ x2 / x1 ]^2 > 1

                     [ x2 / x1 ] > 1

                     x2 > x1                  

Answer: The flexible spring ( x2 ) was compressed more than the stiff spring ( x1 ). ( E )

A ball thrown horizontally from the top of a building hits the ground in 0.600 s. If it had been thrown with twice the speed in the same direction, it would have hit the ground in:________.
a. 4.0 s.
b. 1.0 s.
c. 0.50 s.
d. 0.25 s.
e. 0.125 s.

Answers

Answer:

none of the answers is correct, the time  is the same  t₁ = t₂ = 0.600 s

Explanation:

This is a kinematics exercise, analyze the situation a bit. The vertical speed in both cases is the same is zero, the horizontal speed in the second case is double (vₓ₂ = 2 vₓ₁)

let's find the time to hit the ground

     y = y₀ + I go t - ½ g t²

     0 = y₀ - ½ g t²

     t = √ 2y₀ / g

with the data from the first launch

     y₀i = ½ g t²

     y₀ = ½  9.8  0.6²

     y₀ = 1,764 m

with this is the same height the time to descend in the second case is the same

    t₂ = 0.600 s

this is because the horizontal velocity change changes the offset on the x axis, but does not affect the offset on the y axis

Therefore, none of the answers is correct, the time  is the same

t₁ = t₂ = 0.600 s

An automobile being tested on a straight road is 400 feet from its starting point when the stopwatch reads 8.0 seconds and is 550 feet from the starting point when the stopwatch reads 10.0 seconds.
A. What was the average velocity of the automobile during the interval from t = 10.0 seconds to t = 8.0 seconds
B. What was the average velocity of the automobile during the interval from t - Ostot - 10.0 s? (Assume that the stopwatch read t = 0 and started at the same time as the auto.)
C. If the automobile averages 100 ft/s from t - 10.0 stot - 20.0 s, what distance does it travel during this interval?
D. The automobile has a special speedometer calibrated in feet/s instead of in miles/hour. Att 85 the speedometer reads 65 ft/s; and at t = 10 s it reads 80 ft/s. What is the average acceleration during this interval?

Answers

Answer:

a)   v = 75 ft / s , b)  v = 55 ft / s , c)   Δx = 1000 ft

Explanation:

We can solve this exercise with the expressions of kinematics

a) average speed is defined as the distance traveled in a given time interval

        v = (x₂-x₁) / (t₂-t₁)

         v = (550 - 400) / (10 -8)

         v = 75 ft / s

b) we repeat the calculations for this interval

   v = (550 - 0) / (10 -0)

   v = 55 ft / s

c)  we clear the distance from the average velocity equation

     Δx = v (t₂ -t₁)

     Δx = 100 (20-10)

     Δx = 1000 ft

A subatomic particle X spontaneously decays into two particles, A and B, each of rest energy 1.40 × 10^2 MeV. The particles fly off in opposite directions, each with speed 0.827c relative to an inertial reference frame S. What is the total energy of particle A?

Answers

Answer:

E = 389 MeV

Explanation:

The total energy of particle A, will be equal to the sum of rest mass energy and relative energy of particle A. Therefore,

Total Energy of A = E = Rest Mass Energy + Relative Energy

Using Einstein's Equation: E = mc²

E = m₀c² + mc²

From Einstein's Special Theory of Relativity, we know that:

m = m₀/[√(1-v²/c²)]

Therefore,

E = m₀c² + m₀c²/[√(1-v²/c²)]

E = m₀c²[1 + 1/√(1-v²/c²)]

where,

m₀c² = rest mass energy = 140 MeV

v = relative speed = 0.827 c

Therefore,

E = (140 MeV)[1 + 1/√(1 - (0.827c)²/c²)]

E = (140 MeV)(2.78)

E = 389 MeV

An object is known to have a coefficient of kinetic friction (µk) of 0.167 and a coefficient of static friction (µk) of 0.42. If the normal force is 200 N, how much frictional force will it encounter while it is moving?

Answers

Answer:

Ff = 33.4N

Explanation:

To find the frictional force while the object is moving, you take into account that the friction force depends of the coefficient of kinetic friction.

The frictional force is given by:

[tex]F_f=\mu_kN[/tex]         (1)

Ff: frictional force = ?

µk: coefficient of kinetic friction = 0.167

N: normal force of the object = 200N

You replace the values of the parameters in the equation (1):

[tex]F_f=(0.167)(200N)=33.4N[/tex]

The frictional force, while the objects is moving, is 33.4N

When you ride a bicycle, in what direction is the angular velocity of the wheels? When you ride a bicycle, in what direction is the angular velocity of the wheels? to your right forwards up to your left backwards g

Answers

When you ride a bicycle, the direction of the angular velocity of the wheels is; Option A; to your left

Complete question is;

When you ride a bicycle, in what direction is the angular velocity of the wheels? A) to your left B) to your right C) forwards D) backwards

While an object rotates, each particle will have a different velocity:

the 'Speed' component will vary with radius while the 'Direction' component will vary with angle.

Now, all of the velocity vectors are aligned in the same plane and as such we can be solve this by choosing a single vector normal to ALL of the possible velocity vectors of the rotating object in that plane.

The convention that will be used to answer this question is known as "Right-hand rule". The angular velocity vector points along the wheel's axle.

For instance, if you Imagine wrapping your right hand around the axle so that your fingers point in the direction of rotation, with your thumb sticking out. You will notice that your thumb points to the left.

Thus;

In conclusion, by right-hand rule, a wheel rotating on a forward - moving bicycle has an angular velocity vector pointing to the rider's left.

Read more at; https://brainly.com/question/25155073

Friction is a force that acts in an ___________ direction of movement.
a) similar
b) opposite
c) parallel
d) west

Answers

Answer:

the answer is opposite.

plz mark brainliest

Explanation:

A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If her downward motion is stopped 2.10 s after her feet first touch the water, what average upward force did the water exert on her

Answers

Answer:

The average upward force exerted by the water is 988.2 N

Explanation:

Given;

mass of the diver, m = 60 kg

height of the board above the water, h = 10 m

time when her feet touched the water, t = 2.10 s

The final velocity of the diver, when she is under the influence of acceleration of free  fall.

V² = U² + 2gh

where;

V is the final velocity

U is the initial velocity = 0

g is acceleration due gravity

h is the height of fall

V² = U² + 2gh

V² = 0 + 2 x 9.8 x 10

V² = 196

V = √196

V = 14 m/s

Acceleration of the diver during 2.10 s before her feet touched the water.

14 m/s is her initial velocity at this sage,

her final velocity at this stage is zero (0)

V = U + at

0 = 14 + 2.1(a)

2.1a = -14

a = -14 / 2.1

a = -6.67 m/s²

The average upward force exerted by the water;

[tex]F_{on\ diver} = mg - F_{ \ water}\\\\ma = mg - F_{ \ water}\\\\F_{ \ water} = mg - ma\\\\F_{ \ water} = m(g-a)\\\\F_{ \ water} = 60[9.8-(-6.67)]\\\\F_{ \ water} = 60 (9.8+6.67)\\\\F_{ \ water} = 60(16.47)\\\\F_{ \ water} = 988.2 \ N[/tex]

Therefore, the average upward force exerted by the water is 988.2 N

You have just landed on Planet X. You take out a ball of mass 100 gg , release it from rest from a height of 16.0 mm and measure that it takes a time of 2.90 ss to reach the ground. You can ignore any force on the ball from the atmosphere of the planet. How much does the 100-g ball weigh on the surface of Planet X?

Answers

Answer:

0.173 N.

Explanation:

We will calculate the mass and then use the following calculations on the surface of planet X that is :

                           [tex]W=mg[/tex]

We would use the following equation to get the value of g for planet X that is :

                   [tex]y_f-y_i=v_{yi}t+\frac{1}{2}gt^2[/tex]

Then, put the values in the above equation.

                          [tex]16=0+\frac{1}{2}\times g\times(2.90)^2[/tex]

                           [tex]\bf\mathit{g=3.80\;m/s^2}[/tex]

Now, we will measure the ball weight on planet X's surface:

                          [tex]m=\frac{100}{1000} \;\;\;\;\;\;\;\;\;\;[1kg=1000g][/tex]

Then, we have to put the value in the above equation.

                        [tex]W=0.1\times 1.73=0.173\:N[/tex]

Calculate the potential difference across a 25-Ohm. resistor if a 0.3-A current is flowing through it.


V

Answers

Answer:7.5V

Explanation:

Ohm's law, V=IR

so, V=0.3×25

V=7.5V

Answer:

7.5 V

Explanation:

Which of these charges is experiencing the electric field with the largest magnitude? A 2C charge acted on by a 4 N electric force. A 3C charge acted on by a 5N electric force. A 4C charge acted on by a 6N electric force. A 2C charge acted on by a 6N electric force. A 3C charge acted on by a 3N electric force. A 4C charge acted on by a 2N electric force. All of the above are experiencing electric fields with the same magnitude

Answers

Answer:

The highest electric field is experienced by a 2 C charge acted on by a 6 N electric force. Its magnitude is 3 N.

Explanation:

The formula for electric field is given as:

E = F/q

where,

E = Electric field

F = Electric Force

q = Charge Experiencing Force

Now, we apply this formula to all the cases given in question.

A) A 2C charge acted on by a 4 N electric force

F = 4 N

q = 2 C

Therefore,

E = 4 N/2 C = 2 N/C

B) A 3 C charge acted on by a 5 N electric force

F = 5 N

q = 3 C

Therefore,

E = 5 N/3 C = 1.67 N/C

C) A 4 C charge acted on by a 6 N electric force

F = 6 N

q = 4 C

Therefore,

E = 6 N/4 C = 1.5 N/C

D) A 2 C charge acted on by a 6 N electric force

F = 6 N

q = 2 C

Therefore,

E = 6 N/2 C = 3 N/C

E) A 3 C charge acted on by a 3 N electric force

F = 3 N

q = 3 C

Therefore,

E = 3 N/3 C = 1 N/C

F) A 4 C charge acted on by a 2 N electric force

F = 2 N

q = 4 C

Therefore,

E = 2 N/4 C = 0.5 N/C

The highest field is 3 N, which is found in part D.

A 2 C charge acted on by a 6 N electric force

How many ohms of resistance are in a 120–volt hair dryer that draws 7.6 amps of current?

Answers

From Ohm's law . . . Resistance = (voltage) / (current)

Resistance = (120 volts) / (7.6 Amperes)

Resistance = 15.8 Ω

To practice Problem-Solving Strategy 11.1 Equilibrium of a Rigid Body. A horizontal uniform bar of mass 2.7 kg and length 3.0 m is hung horizontally on two vertical strings. String 1 is attached to the end of the bar, and string 2 is attached a distance 0.6 m from the other end. A monkey of mass 1.35 kg walks from one end of the bar to the other. Find the tension T1 in string 1 at the moment that the monkey is halfway between the ends of the bar.

Answers

Answer:

[tex]T_{1}[/tex] = 14.88 N

Explanation:

Let's begin by listing out the given variables:

M = 2.7 kg, L = 3 m, m = 1.35 kg, d = 0.6 m,

g = 9.8 m/s²

At equilibrium, the sum of all external torque acting on an object equals zero

τ(net) = 0

Taking moment about [tex]T_{1}[/tex] we have:

(M + m) g * 0.5L - [tex]T_{2}[/tex](L - d) = 0

⇒ [tex]T_{2}[/tex] = [(M + m) g * 0.5L] ÷ (L - d)

[tex]T_{2}[/tex] = [(2.7 + 1.35) * 9.8 * 0.5(3)] ÷ (3 - 0.6)

[tex]T_{2}[/tex]= 59.535 ÷ 2.4

[tex]T_{2}[/tex] = 24.80625 N ≈ 24.81 N

Weight of bar(W) = M * g = 2.7 * 9.8 = 26.46 N

Weight of monkey(w) = m * g = 1.35 * 9.8 = 13.23 N

Using sum of equilibrium in the vertical direction, we have:

[tex]T_{1}[/tex] + [tex]T_{2}[/tex] = W + w   ------- Eqn 1

Substituting T2, W & w into the Eqn 1

[tex]T_{1}[/tex] + 24.81 = 26.46 + 13.23

[tex]T_{1}[/tex] = 14.88 N

Water is traveling through a horizontal pipe with a speed of 1.7 m/s and at a pressure of 205 kPa. This pipe is reduced to a new pipe which has a diameter half that of the first section of pipe. Determine the speed and pressure of the water in the new, reduced in size pipe.

Answers

Answer:

The velocity is  [tex]v_2 = 6.8 \ m/s[/tex]

The pressure is  [tex]P_2 = 204978 Pa[/tex]

Explanation:

From the question we are told that

 The speed at which water is travelling through is  [tex]v = 1.7 \ m/s[/tex]

  The pressure is  [tex]P_1 = 205 k Pa = 205 *10^{3} \ Pa[/tex]

   The diameter of the new pipe is [tex]d = \frac{D}{2}[/tex]

Where D is the diameter of first pipe

   

According to the principal of continuity we have that

       [tex]A_1 v_1 = A_2 v_2[/tex]    

Now  [tex]A_1[/tex] is the area of the first pipe which is mathematically represented as

       [tex]A_1 = \pi \frac{D^2}{4}[/tex]

and  [tex]A_2[/tex] is the area of the second pipe which is mathematically represented as  

       [tex]A_2 = \pi \frac{d^2}{4}[/tex]

Recall   [tex]d = \frac{D}{2}[/tex]

        [tex]A_2 = \pi \frac{[ D^2]}{4 *4}[/tex]

        [tex]A_2 = \frac{A_1}{4}[/tex]

So    [tex]A_1 v_1 = \frac{A_1}{4} v_2[/tex]

substituting value

        [tex]1.7 = \frac{1}{4} * v_2[/tex]    

        [tex]v_2 = 4 * 1.7[/tex]    

       [tex]v_2 = 6.8 \ m/s[/tex]

   

According to Bernoulli's equation  we have that

     [tex]P_1 + \rho \frac{v_1 ^2}{2} = P_2 + \rho \frac{v_2 ^2}{2}[/tex]

substituting values

     [tex]205 *10^{3 }+ \frac{1.7 ^2}{2} = P_2 + \frac{6.8 ^2}{2}[/tex]

     [tex]P_2 = 204978 Pa[/tex]

The self-referencing effect refers to ________.

Answers

The self-reference effect is the tendency an individual to have better memory for information that relates to oneself than information that is not personally relevant.

Of one of the planets becomes a black hole , what would the escape speed be?

Answers

Answer:

If, instead, that rocket was on a planet with the same mass as Earth but half the diameter, the escape velocity would be 15.8 km/s Any object that is smaller than its Schwarzschild radius is a black hole – in other words, anything with an escape velocity greater than the speed of light is a black hole.

Explanation:

brainlies plssssssssssssssssss!

Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed uniformly over their inner surfaces. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest.
A. 1, 2, 3, 4, 5
B. 2, then 1, 3, and 4 tied, then 5
C. 1, 4, and 5 tie, then 2 and 3 tie
D. 2 and 3 tie, then 1 and 4 tie, then 5
E. 2 and 3 tie, then 1, 4, and 5 tie

Answers

Answer:

The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie

Explanation:

Solution

The electric field due to sheets E₁ positive =б/2E₀

E₂ is negative = б/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction

At the point 1, the net field = -E₁ + E₂ =0

At the point A, the net field = -E₁ - E₂ = 0

Now,

At nay point inside between them, the electric field is seen to be at the same direction.

At the 2, 3 points the field is seen at the right

Thus,

E net = E₁ + E₂

= б/2E₀ + σ/2E₀

=б/E₀

Note: Kindly find an attached copy of the complete question to the solution

The correct answer is option C

The rank of the points according to the magnitude of the electric field is 1, 4, and 5 tie, then 2 and 3 tie

The magnitude of the electric field:

Let sheet 1 has positive surface charge density and sheet 2 has a negative surface charge density

The electric field (without direction) due to sheets will be

E₁ =σ/2E₀

E₂= σ/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets is given by:

E = E₁ - E₂

E = σ/2E₀ - σ/2E₀

since the positive charge plate will have electric field lines away from the sheet and the negative charge plate will have electric field lines towards the sheet

E = 0

Now,

At points 2, 3 which are between the plates,

The net electric field is:

E = E₁ + E₂

since the electric field due to both the plates will be from positive to negative ( towards the negatively charged plate)

E = σ/2E₀ + σ/2E₀

E = σ/E₀

Learn more about surface charge density:

https://brainly.com/question/8966223?referrer=searchResults

Archimedes and Heron are playing on a seesaw. Archimedes weighs 75 kg and Heron weighs 150 kg. If Heron is sitting 2 meters from the fulcrum, how many meters does Archimedes need to sit from the fulcrum?

Answers

Answer:

4metres

Explanation:

Using the principle of moment to solve the problem. The principle states that the sum of clockwise moments is equal to the sum of anticlockwise moment.

Moment = force *perpendicular distance

Moment of Archimedes about the fulcrum = 75 * x  ... 1

x is the distance of Archimedes from the fulcrum

Moment of Heron about the fulcrum = 150 * 2 = 300kgm... 2

Equation 1 and 2 according to principle of moment to get x we have;

75x = 300

x = 300/75

x = 4metres

Archimedes need to sit 4m from the fulcrum

You are moving a desk that has a mass of 36 kg; its acceleration is 0.5 m / s 2. What is the force being applied

Answers

Answer:

18 N

Explanation:

Force can be found using the following formula.

f= m*a

where m is the mass and a is the acceleration.

We know the desk has a mass of 36 kilograms. We also know that its acceleration is 0.5 m/s^2.

m= 36 kg

a= 0.5 m/s^2

Substitute these values into the formula.

f= 36 kg * 0.5 m/s^2

Multiply 36 and 0.5

f=18 kg m/s^2

1 kg m/s^2 is equivalent to 1 Newton, or N.

f= 18 Newtons

The force being applied is 18 kg m/s^2, Newtons, or N

A 2500 kg truck moving at 10.00 m/s strikes a car waiting at the light. Assume there is no friction on the road. The hook bumpers continue to move at 7.00 m/s. What is the mass of the struck car

Answers

M2=(M1Vi/Vf)-M1=[2500*(10/7)]-2500
M2=(3/7)*2500=1070kg

A beam of light is incident upon a flat piece of glass (n = 1.50) at an angle of incidence of 30.00. Part of the beam is transmitted and part is reflected. Determine the angle between the reflected and transmitted rays

Answers

Answer:

130.528779365 degrees

Explanation:

The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.

n1/n2 = sin(theta2)/sin(theta1)

let theta1 be 30 degrees, and n1 be the refractive index of air = 1

1/1.5 = sin(theta2)/sin(30deg)

solve:

sin(theta2) = 2/3 sin(30deg) = 1/3

theta2 = arcsin (1/3) = 19.4712206345 degrees

The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.

Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.

Angle between = 180-30-19.4712206345 = 130.528779365 degrees

The angle between the reflected and transmitted rays 130.5287 degrees

What is the refraction of light?

The angle of incidence is 30 degrees. From this, we can use Snell's Law to calculate the angle of refraction.

[tex]\dfrac{n_1}{n_2} = \dfrac{sin(\theta_2)}{sin(\theta_1)}[/tex]

let [tex]\theta_1[/tex] be 30 degrees, and n1 be the refractive index of air = 1

[tex]\dfrac{1}{1.5} = \dfrac{sin(\theta_2)}{sin(30)}[/tex]

solve:

[tex]sin(\theta_2) = \dfrac{2}{3} sin(30) = \dfrac{1}{3}[/tex]

[tex]\theta_2 = sin ^{-1}\dfrac{1}{3} = 19.4712 \ degrees[/tex]

The angle of reflection will always be equal to the angle of incidence, in this case, 30 degrees.

Because these angles are measured relative to the normal, the angle formed between the two rays is the difference between the normal line (180 degrees) and the sum of the two angle measures.

Angle between = 180-30-19.4712206345 = 130.528779365 degrees

Hence the angle between the reflected and transmitted rays 130.5287 degrees

To know more about the Refraction of light follow

https://brainly.com/question/10729741

How much displacement will a spring with a constant of 120N / m achieve if it is stretched by a force of 60N?

Answers

Answer:

Explanation:

There's a formula for this:

[tex]F = k*displacement[/tex]

F being force, k being the spring constant, and displacement being the change in x

We are given the force and the spring constant, so this is essentially isolating the Δx term. Do 60N/120N per meter. The newtons cancel out and you get a final answer of Δx = 0.5 meters

A cylindrical shell of radius 7.00 cm and length 2.44 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 21.9 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C.(a) Use approximate relationships to find thenet charge on the shell.
(b) Use approximate relationships to find theelectric field at a point 4.00 cm from theaxis, measured radiallyoutward from the midpoint of the shell.

Answers

Answer:

(b) Use approximate relationships to find theelectric field at a point 4.00 cm from the axis, measured radiallyoutward from the midpoint of the shell.

A 9.0-V battery (with nonzero resistance) and switch are connected in series across the primary coil of a transformer. The secondary coil is connected to a light bulb that operates on 120 V. Determine the ratio of the secondary to primary turns needed for the bells transformer. Determine the ratio of the secondary to primary turns needed for the bells transformer. Ns/Np=?

Answers

Answer:

N₂ / N₁ = 13.3

Explanation:

A transformer is a system that induces a voltage in the secondary due to the variation of voltage in the primary, the ratio of voltages is determined by the expression

           ΔV₂ = N₂ /N₁  ΔV₁

where ΔV₂ and ΔV₁ are the voltage in the secondary and primary respectively and N is the number of windings on each side.

In this case, they indicate that the primary voltage is 9.0 V and the secondary voltage is 120 V

therefore we calculate the winding ratio

         ΔV₂ /ΔV₁ = N₂ / N₁

         N₂ / N₁ = 120/9

         N₂ / N₁ = 13.3

s good clarify that in transformers the voltage must be alternating (AC)

A rocket rises vertically, from rest, with an acceleration of 3.99 m/s2 until it runs out of fuel at an altitude of 775 m. After this point, its acceleration is due to gravity downwards. What is the speed of the rocket, in m/s, when it runs out of fuel?

Answers

Answer:

Vf = 78.64 m/s

Explanation:

The rocket is travelling upward at a constant acceleration of 3.99 m/s² until it runs out of fuel. So, in order to calculate its velocity at the point, where it runs out of fuel, we can simply use 3rd equation of motion:

2as = Vf² - Vi²

where,

a = acceleration = 3.99 m/s²

s = distance or height covered by rocket till fuel runs out = 775 m

Vf = Final Velocity = ?

Vi = Initial velocity = 0 m/s   (Since, rocket starts from rest)

Therefore,

2(3.99 m/s²)(775 m) = Vf² - (0 m/s)²

Vf = √(6184.5 m²/s²)

Vf = 78.64 m/s

A 2 kg object is subjected to three forces that give it an acceleration −→a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj. If two of the three forces, are −→F1 = (30.0N)ˆi + (16.0N)ˆj and −→F2 = −(12.0N)ˆi + (8.00N)ˆj, find the third force.

Answers

Answer:

[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]

Explanation:

You have three forces F1, F2 an F3 that produce the following  acceleration:

a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj

you know that force F1 and F2 are:

F1 = (30.0N)ˆi + (16.0N)ˆj

F2 = −(12.0N)ˆi + (8.00N)ˆj

and the force F3 is unknown:

F3 = F3x ˆi + F3y ˆj

The second Newton law is given by the following equation:

[tex]\vec{F}=m\vec{a}[/tex]

F: the total force = F1 +F2 + F3

m: mass of the object = 2 kg

By the properties of vectors you have:

[tex]\vec{F_1}+\vec{F_2}+\vec{F_3}=m\vec{a}\\\\(30.0-12.0+F_{3x})N\hat{i}+(16.0+8.00+F_{3y})N\hat{j}=(2.0kg)[(-8.00m/s^2)\hat{i}+(6.00m/s^2)\hat{j}]\\\\(18.0+F_{3x})N\hat{i}+(24.0+F_{3y})\hat{j}=(-16.00N)\hat{i}+(12.0N)\hat{j}[/tex]

Both x and y component must be equal in the previous equality, then you have:

[tex]18.0N+F_{3x}=-16.00N\\\\F_{3x}=-34.00N\\\\24.0N+F_{3y}=12.0N\\\\F_{3y}=-12.00N[/tex]

Hence, the vector F3 is:

[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]

a body with v=20m/s changes its speed to 28m/s in 2sec. its acceleration will be

Answers

Answer:

Explanation:

Givens

vi = 20 m/s

vf = 28 m/s

t = 2 seconds

Formula

a = (vf - vi) / t

Solution

a = (28 - 20)/2

a = 8/2

a = 4 m/s^2

assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery ​

Answers

Answer:

The amount of water that will power a battery with that rating = 7.35 m³

Explanation:

The power rating for the battery is missing from the question.

Complete Question

Assuming 100% efficient energy conversion how much water stored behind a 50 centimeter high hydroelectric dam would be required to charged the battery with power rating, 12 V, 50 Ampere-minutes

Solution

Potential energy possessed by water at that height = mgH

m = mass of the water = ρV

ρ = density of water = 1000 kg/m³

V = volume of water = ?

g = acceleration due to gravity = 9.8 m/s²

H = height of water = 50 cm = 0.5 m

Potential energy = ρVgH = 1000 × V × 9.8 × 0.5 = (4900V) J

Energy of the battery = qV

q = 50 A.h = 50 × 60 = 3,000 C

V = 12 V

qV = 3,000 × 12 = 36,000 J

Energy = 36,000 J

At a 100% conversion rate, the energy of the water totally powers the battery

(4900V) = (36,000)

4900V = 36,000

V = (36,000/4900)

V = 7.35 m³

Hope this Helps!!!

An underwater diver sees the sun at an apparent angle of 45.00 from the vertical. How far is the sun above the horizon? [n in water=1.333

Answers

Answer:

19.872 degrees

Explanation:

Mathematically;

Using Snell’s law

n1 sin A = n2 sinB

Where ;

n1 = refractive index in air = 1

n2 is refractive index in water = 1.33

A = ?

B = 45

Substituting the values in the equation;

1 sin A = 1.33 sin45

Sin A = 1.33 sin 45

A = arc sin (1.33 sin 45)

A = 70.12

Thus, the actual direction of the Sun with respect to the horizon = 90-A = 19.872 degrees

Suppose the demand for air travel decreases (as illustrated in the graph below). A decrease in demand _____ the equilibrium price for air travel and _____ the equilibrium quantity for air travel. decreases, decreases increases, increases decreases, increases

Answers

Answer:

decreases, decreases

Explanation:

A decrease in the demand will create a fall in equilibrium prices and the quantity supplied will also decrease. As the equilibrium prices in the market are the price in which the quantity demanded equals to quantity supplied.  If the demand for the air decreases then the quantity of the air travel will also decrease and thus when the supply and demand change so do the changes associated with the equilibrium prices.
Other Questions
Assume that women's heights are normally distributed with a mean of 63.6 inches and a standard deviation of 2.5 inches. If 90 women are randomly selected, find the probability that they have a mean height between 62.9 inches and 64.0 inches. A. 0.7248 B. 0.0424 C. 0.1739 D. 0.9318 Which is greater between |5| amd |2| Time Remaining 39 minutes 48 seconds00:39:48 eBookItem 1Item 1 Time Remaining 39 minutes 48 seconds00:39:48 A private, not-for-profit hospital received contributions of $50,000 from donors on June 15, 20X9. The donors stipulated that their contributions be used to purchase equipment for the hospital. As of June 30, 20X9, the end of the hospital's fiscal year, $12,000 of the contributions had been spent on equipment acquisitions. In the hospital's general fund, what account would be credited to recognize the release of the restrictions on the temporarily restricted contributions used to acquire equipment Nickolas Imports recorded a restructuring charge of $21.6 million during fiscal 2014 related entirely to the closing of its California based operations in San Diego and in Tijuana, Mexico. The company's financial statement footnotes indicated that expected employee separation payments amounted to $16.8 million and that fixed asset write-downs accounted for the remainder. Nickolas had never before incurred restructuring charges. At the end of the year, the company's balance sheet included a restructuring accrual liability of $3,600,000. Calculate the cash flow effect of Nickolass restructuring during fiscal 2014. 32.Which of the following uses alliteration AND tricolon (list of three)? 1.The ostrich was well-feathered and fine. 2.We will run! We will dance! We will sing! 3.Fierce, frumpy and frustrated, the hippopotamus charged out of the water. The following data shows the weekly amounts spent on food for a family of three in a random sample of 30 families:40 42 46 47 47 48 52 53 53 5354 56 57 57 57 57 58 58 58 6262 63 63 63 63 66 67 68 72 731. Determine the number of classes and the class interval.2. Group the data into a frequency distribution starting with the lowest value.3. Draw an absolute frequency histogram using class limits.4. Draw a relative frequency polygon for the data using midpoints.5. Draw a cumulative frequency polygon (ogive) for the data using class limits pls help, need to pass! Insert a digit to make numbers that are divisible by 24 if it is possible:38__36 Please I need help With this question thank you for your help me Iodine-131 has a half-life of 8 days. How long would it take for the number of unstable nuclei in the sample to be reduced from 1,000 to 125? ASAP Mario was given the following enlargement. Side A corresponds to a side with length 24 centimeters. A side with length 6 centimeters corresponds with a side with length 12 centimeters. Figures not drawn to scale. What is the length of side A, in centimeters? 12 15 24 33 What is the slope of the line shown below?A. - 1/2B. 1C. -1D. 1/2 Find the area of a circle with radius, r = 9cm.Give your answer in terms of . Paul drives 728 miles in 14 days. He drives the same number of miles each day. How many miles does he drive in 1 day? I WILL MARK YOU BRAINLIEST!!!!! Which answer shares a word part with the following word? GenerationAnticipate, genesis or hesitate Which statement describes a play that is a tragedy?Conflict that arises from misunderstandings and trickery are resolved by the end of the play.Things do not end well for the protagonist.26Earthquakes and floods destroy a town while the hero saves a child and escapes to safety.A group or specific person is mocked in a satirical way. The following inventory balances relate to Lequin Manufacturing Corporation at the beginning and end of the year: Beginning Ending Raw materials $14,000 $19,000 Work in process $31,000 $7,000 Finished goods $25,000 $23,000 Lequin's total manufacturing cost was $543,000. What was Lequin's cost of goods sold? 1Why did 200,000 Americans gather in Washington, D.C., on August 28, 1963?A to attend a political rally known as the March on Washington for Jobs andFreedomBto hear a speech by A. Philip Randolph, president of the Brotherhood ofSleeping Car Porters to listen to a debate between the National Association for the Advancementof Colored People and the Southern Christian Leadership Conferenceto hear a speech delivered by President Franklin D. Roosevelt PLZ HLP MEEEEEEEEEEEEEEE the table below shows what 300 boxer students ate for lunch on friday. what is the ratio of the number of students who ate soup to the number of students who did not eat soup?