Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed uniformly over their inner surfaces. Rank the points 1 through 5 according to the magnitude of the electric field at the points, least to greatest.
A. 1, 2, 3, 4, 5
B. 2, then 1, 3, and 4 tied, then 5
C. 1, 4, and 5 tie, then 2 and 3 tie
D. 2 and 3 tie, then 1 and 4 tie, then 5
E. 2 and 3 tie, then 1, 4, and 5 tie

Answers

Answer 1

Answer:

The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie

Explanation:

Solution

The electric field due to sheets E₁ positive =б/2E₀

E₂ is negative = б/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction

At the point 1, the net field = -E₁ + E₂ =0

At the point A, the net field = -E₁ - E₂ = 0

Now,

At nay point inside between them, the electric field is seen to be at the same direction.

At the 2, 3 points the field is seen at the right

Thus,

E net = E₁ + E₂

= б/2E₀ + σ/2E₀

=б/E₀

Note: Kindly find an attached copy of the complete question to the solution

Two Large Insulating Parallel Plates Carry Charge Of Equal Magnitude, One Positive And The Other Negative,
Answer 2

The correct answer is option C

The rank of the points according to the magnitude of the electric field is 1, 4, and 5 tie, then 2 and 3 tie

The magnitude of the electric field:

Let sheet 1 has positive surface charge density and sheet 2 has a negative surface charge density

The electric field (without direction) due to sheets will be

E₁ =σ/2E₀

E₂= σ/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets is given by:

E = E₁ - E₂

E = σ/2E₀ - σ/2E₀

since the positive charge plate will have electric field lines away from the sheet and the negative charge plate will have electric field lines towards the sheet

E = 0

Now,

At points 2, 3 which are between the plates,

The net electric field is:

E = E₁ + E₂

since the electric field due to both the plates will be from positive to negative ( towards the negatively charged plate)

E = σ/2E₀ + σ/2E₀

E = σ/E₀

Learn more about surface charge density:

https://brainly.com/question/8966223?referrer=searchResults


Related Questions

A 3 kg mass object is pushed 0.6 m into a spring with spring constant 210 N/m on a frictionless horizontal surface. Upon release, the object moves across the surface until it encounters a rough incline. The object moves UP the incline and stops a height of 1.5 m above the horizontal surface.
(a) How much work must be done to compress the spring initially?
(b) Compute the speed of the mass at the base of the incline.
(c) How much work was done by friction on the incline?

Answers

Answer with Explanation:

We are given that

Mass of spring,m=3 kg

Distance moved by object,d=0.6 m

Spring constant,k=210N/m

Height,h=1.5 m

a.Work done  to compress the spring initially=[tex]\frac{1}{2}kx^2=\frac{1}{2}(210)(0.6)^2=37.8J[/tex]

b.

By conservation law of energy

Initial energy of spring=Kinetic energy  of object

[tex]37.8=\frac{1}{2}(3)v^2[/tex]

[tex]v^2=\frac{37.8\times 2}{3}[/tex]

[tex]v=\sqrt{\frac{37.8\times 2}{3}}[/tex]

v=5.02 m/s

c.Work done by friction on the incline,[tex]w_{friction}=P.E-spring \;energy[/tex]

[tex]W_{friction}=3\times 9.8\times 1.5-37.8=6.3 J[/tex]

Davina accelerates a box across a smooth frictionless horizontal surface over a displacement of 18.0 m with a constant 25.0 N force angled at 23.0° below the horizontal. How much work does she do on the box? A. 176 J B. 414 J C. 450 J D. 511 J Group of answer choices

Answers

Answer:

W = 414 J, correct is B

Explanation:

Work is defined by

        W = ∫ F .dx

where F is the force, x is the displacement and the point represents the dot product

this expression can also be written with the explicit scalar product

        W = ∫ F dx cos θ

where is the angle between force and displacement

for this case as the force is constant

         W = F x cos θ

calculate

         W = 25.0 18.0 cos (-23)

         W = 414 J

the correct answer is B

Crystalline germanium (Z=32, rho=5.323 g/cm3) has a band gap of 0.66 eV. Assume the Fermi energy is half way between the valence and conduction bands. Estimate the ratio of electrons in the conduction band to those in the valence band at T = 300 K. (See eq. 10-11) Assume the width of the valence band is ΔΕV ~ 10 eV.

Answers

Answer:

= 8.2*10⁻¹²

Explanation:

Probability of finding an electron to occupy a state of energy, can be expressed by using Boltzmann distribution function

[tex]f(E) = exp(-\frac{E-E_f}{K_BT} )[/tex]

From the given data, fermi energy lies half way between valence and conduction bands, that is half of band gap energy

[tex]E_f = \frac{E_g}{2}[/tex]

Therefore,

[tex]f(E) = exp(-\frac{E-\frac{E_g}{2} }{K_BT} )[/tex]

Using boltzman distribution function to calculate the ratio of number of electrons in the conduction bands of those electrons in the valence bond is

[tex]\frac{n_{con}}{n_{val}} =\frac{exp(-\frac{[E_c-E_g/2]}{K_BT} )}{exp(-\frac{[E_v-E_fg/2}{K_BT} )}[/tex]

[tex]= exp(\frac{-(E_c-E_v}{K_BT} )\\\\=exp(\frac{-(0.66eV)}{(8.617\times10^-^5eV/K)(300K)} )\\\\=8.166\times10^-^1^2\approx8.2\times10^{-12}[/tex]

A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to: A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to:__________.
a) 19 s
b) 17 s
c) 21 s
d) 23 s
e) 15 s

Answers

Starting from rest, the wheel attains an angular velocity of 25 rad/s in a matter of 10 s, which means the angular acceleration [tex]\alpha[/tex] is

[tex]25\dfrac{\rm rad}{\rm s}=\alpha(10\,\mathrm s)\implies\alpha=2.5\dfrac{\rm rad}{\mathrm s^2}[/tex]

For the next 37 s, the wheel maintains a constant angular velocity of 25 rad/s, meaning the angular acceleration is zero for the duration. After this time, the wheel undergoes an angular acceleration of -1.5 rad/s/s until it stops, which would take time [tex]t[/tex],

[tex]0\dfrac{\rm rad}{\rm s}=25\dfrac{\rm rad}{\rm s}+\left(-1.5\dfrac{\rm rad}{\mathrm s^2}\right)t\implies t=16.666\ldots\,\mathrm s[/tex]

which makes B, approximately 17 s, the correct answer.

The time interval of angular deceleration is 16.667 seconds, whose closest integer is 17 seconds. (B. 17 s.)

Let suppose that the grinding wheel has uniform Acceleration and Deceleration. In this question we need to need to calculate the time taken by the grinding wheel to stop, which is found by means of the following Kinematic formula:

[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex] (1)

Where:

[tex]\omega_{o}[/tex] - Initial angular velocity, in radians per second.

[tex]\omega[/tex] - Final angular velocity, in radians per second.

[tex]\alpha[/tex] - Angular acceleration, in radians per square second.

[tex]t[/tex] - Time, in seconds.

If we know that [tex]\omega = 0\,\frac{rad}{s}[/tex], [tex]\omega_{o} = 25\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.5\,\frac{rad}{s^{2}}[/tex], then the time taken by the grinding wheel to stop:

[tex]t = \frac{0\,\frac{rad}{s}-25\,\frac{rad}{s}}{-1.5\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 16.667\,s[/tex]

The time interval of angular deceleration is 16.667 seconds. (Answer: B)

Please this related question: https://brainly.com/question/10708862

When you "crack" a knuckle, you suddenly widen the knuckle cavity, allowing more volume for the synovial fluid inside it and causing a gas bubble suddenly to appear in the fluid. The sudden production of the bubble, called "cavitation", produces a sound pulse---the cracking sound. Assume that the sound is transmitted uniformly in all directions and that it fully passes from the knuckle interior to the outside, at a distance of 0.29 m from your ear. If the pulse has a sound level of 61 dB at your ear, what is the rate at which energy is produced by the cavitation

Answers

Answer:If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + Φ) travels along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = -2.0 mm?

Explanation:

PLEASE HELP !
Complete the following sentence. Choose the right answer from the given ones. The internal energy of the body can be changed A / B / C. A. only when the body is warmed or cooled B. when work is done on the body or heat flow C. only when the body does work

Answers

B

HOPE IT HELPS LET ME KNOW IF U NEED EXPLANATION

A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.

Answers

Answer:

4.93 m

Explanation:

According to the question, the computation of the height is shown below:

But before that first we need to find out the speed which is shown below:

As we know that

[tex]Speed = \frac{Distance}{Time}[/tex]

[tex]Speed = \frac{5}{0.504}[/tex]

= 9.92 m/s

Now

[tex]v^2 - u^2 = 2\times g\times h[/tex]

[tex]9.92^2 = 2\times 9.98 \times h[/tex]

98.4064 = 19.96 × height

So, the height is 4.93 m

We simply applied the above formulas so that the height i.e H could arrive

a steel ball is dropped from a diving platform use the approximate value of g as 10 m/s^2 to solve the following problem what is the velocity of the ball 0.9 seconds after its released

Answers

Answer:

The final speed of the ball is 9 m/s.

Explanation:

We have,

A steel ball is dropped from a diving platform. It is required to find the velocity of the ball 0.9 seconds after its released. It will move under the action of gravity. Using equation of motion to find it as :

[tex]v=u+at[/tex]

u = 0 (at rest), a = g

[tex]v=gt\\\\v=10\times 0.9\\\\v=9\ m/s[/tex]

So, the final speed of the ball is 9 m/s.

A 72.0 kg swimmer jumps into the old swimming hole from a tree limb that is 3.90 m above the water.
A. Use energy conservation to find his speed just as he hits the water if he just holds his nose and drops in.
b) Use energy conservation to find his speed just he hits the water if he bravely jumps straight up (but just beyond the board!) at 2.90 m/s .
c) Use energy conservation to find his speed just he hits the water if he manages to jump downward at 2.90 m/s .

Answers

You didn’t put a queston

Answer:

Explanation:

The Law of Energy Conservation states that K1 + U1 = K2 + U2

m= 72.0 kg

h= 3.90 m

a)

K1 + U1 = K2 + U2

0 + mgh = 1/2mvf^2 + 0

mass cancels out so gh=1/2vf^2

(9.8 m/s^2)(3.9 m)=(.5)(vf^2)

vf= 8.74 m/s

b)

1/2mv^2 + mgh = 1/2mv^2 + 0

mass cancels again

(.5)(2.9^2 m/s) + (9.8 m/s^2)(3.9 m) = (.5)(vf^2)

vf= 9.21 m/s

c)

This would be the same as the past problem as the velocity gets squared so direction along the axis doesn't matter. Thus, vf= 9.21 m/s

A rifle fires a 2.05 x 10-2-kg pellet straight upward, because the pellet rests on a compressed spring that is released when the trigger is pulled. The spring has a negligible mass and is compressed by 8.01 x 10-2 m from its unstrained length. The pellet rises to a maximum height of 4.46 m above its position on the compressed spring. Ignoring air resistance, determine the spring constant.

Answers

Answer:

Spring Constant = 279.58 N/m

Explanation:

We are given;

Mass; m = 2.05 x 10^(-2) kg = 0.0205 kg

Distance of compression; x = 8.01 × 10^(-2) m = 0.0801 m

Maximum height; h = 4.46 m

The formula for the energy in the spring is given by;

E = ½kx²

where:

k is the spring constant

x is the distance the spring is compressed.

Now, this energy of the spring will be equal to the energy of the pellet at its highest point. Energy of pallet = mgh So;

½kx² = mgh

Plugging in the relevant values, we have;

½ * k * 0.0801² = 0.0205 * 9.81 * 4.46

0.003208005k = 0.8969

k = 0.8969/0.003208005

k = 279.58 N/m

Use Hooke's Law to determine the work done by the variable force in the spring problem. Nine joules of work is required to stretch a spring 0.5 meter from its natural length. Find the work required to stretch the spring an additional 0.40 meter.

Answers

Answer:

29.16 J

Explanation:

From Hook's law,

W = 1/2(ke²)..................... Equation 1

Where W = work done, k = Spring constant, e = extension.

Given: W = 9 J, e = 0.5 m.

Substitute into equation 1

9 = 1/2(k×0.5²)

Solve for k

k = 18/0.5²

k = 72 N/m.

The work done required to stretch the spring by additional 0.4 m is

W = 1/2(72)(0.4+0.5)²

W = 36(0.9²)

W = 29.16 J.

Which of the following best describes the current age of the Sun?

A.) It is near the end of its lifespan.

B.) It is about halfway through its lifespan.

C.) It is early in its lifespan.

D.) We do not have a good understanding of the Sun's age.

Answers

Answer:  Its b, The only problem with this is is there supposed to be a picture?

Explanation: NASA has used there fancy gadgets to figure this out but if there was a picture, this answer could be different.

On April 13, 2029 (Friday the 13th!), the asteroid 99942 mi Apophis will pass within 18600 mi of the earth-about 1/13 the distance to the moon! It has a density of 2600 kg/m^3, can be modeled as a sphere 320 m in diameter, and will be traveling at 12.6 km/s.

1)If, due to a small disturbance in its orbit, the asteroid were to hit the earth, how much kinetic energy would it deliver?

2)The largest nuclear bomb ever tested by the United States was the "Castle/Bravo" bomb, having a yield of 15 megatons of TNT. (A megaton of TNT releases 4.184x10^15 J of energy.) How many Castle/Bravo bombs would be equivalent to the energy of Apophis?

Answers

Answer:

Explanation:

Volume of asteroid = 4/3 x π x 160³

= 17.15 x 10⁶

mass = volume x density

= 17.15 x 10⁶ x 2600

= 445.9 x 10⁸ kg

kinetic energy

= 1/2 x 445.9 x 10⁸  x( 12.6 )² x 10⁶

= 35.4 x 10¹⁷ J .

2 )

energy of 15 megaton

= 4.184 x 10¹⁵ x 15 J

= 62.76 x 10¹⁵ J

No of bombs required

= 35.4 x 10¹⁷ / 62.76 x 10¹⁵

= 56.4 Bombs .

Volume of an block is 5 cm3. If the density of the block is 250 g/cm3, what is the mass of the block ?​

Answers

Answer:

The mass of the block is 1250g.

Explanation:

Given that the formula for density is ρ = mass/volume. Then you have to substitute the values into the formula :

[tex]ρ = \frac{mass}{volume} [/tex]

Let density = 250,

Let volume = 5,

[tex]250 = \frac{m}{5} [/tex]

[tex]m = 250 \times 5[/tex]

[tex]m = 1250g[/tex]

510 g squirrel with a surface area of 935 cm2 falls from a 4.8-m tree to the ground. Estimate its terminal velocity. (Use the drag coefficient for a horizontal skydiver. Assume that the squirrel can be approximated as a rectanglar prism with cross-sectional area of width 11.6 cm and length 23.2 cm. Note, the squirrel may not reach terminal velocity by the time it hits the gr

Answers

Answer:

The terminal velocity is [tex]v_t =17.5 \ m/s[/tex]

Explanation:

From the question we are told that

       The mass of the squirrel is  [tex]m_s = 50\ g = \frac{50}{1000} = 0.05 \ kg[/tex]

      The surface area is   [tex]A_s = 935 cm^2 = \frac{935}{10000} = 0.0935 \ m^2[/tex]

       The height of fall is  h =4.8 m

        The length of the prism is [tex]l = 23.2 = 0.232 \ m[/tex]

          The width of the prism is [tex]w = 11.6 = 0.116 \ m[/tex]

 

The terminal velocity is mathematically represented as

       [tex]v_t = \sqrt{\frac{2 * m_s * g }{\dho_s * C * A } }[/tex]

Where [tex]\rho[/tex]  is the density of a rectangular prism with a constant values of [tex]\rho = 1.21 \ kg/m^3[/tex]

            [tex]C[/tex] is the drag coefficient for a horizontal skydiver with a value = 1

            A  is the area of the prism the squirrel is assumed to be which is mathematically represented as

      [tex]A = 0.116 * 0.232[/tex]

       [tex]A = 0.026912 \ m^2[/tex]

 substituting values

      [tex]v_t = \sqrt{\frac{2 * 0.510 * 9.8 }{1.21 * 1 * 0.026912 } }[/tex]

     [tex]v_t =17.5 \ m/s[/tex]

       

In which situation is chemical energy being converted to another form of energy?

Answers

Answer:

A burning candle. (chemical energy into energy of heat and light, i.e. thermal and wave)

Explanation:

The starships of the Solar Federation are marked with the symbol of the Federation, a circle, whereas starships of the Denebian Empire are marked with the Empire's symbol, an ellipse whose major axis is n times its minor axis (a=nb in the figure ).
How fast, relative to an observer, does an Empire ship have to travel for its markings to be confused with those of a Federation ship? Use c for the speed of light in a vacuum.
Express your answer in terms of n and c.

Answers

Complete question

The complete question is shown on the first uploaded image  

Answer:

The velocity is  [tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]

Explanation:

From the question we are told that

           a = nb

The length of the minor axis  of  the symbol of the Federation, a circle, seen by the observer at velocity v must be equal to the minor axis(b) of the  Empire's symbol, (an ellipse)

Now this length seen by the observer can be mathematically represented as

        [tex]h = t \sqrt{1 - \frac{v^2}{c^2} }[/tex]

Here t  is the actual length of the major axis of of the  Empire's symbol, (an ellipse)

So t = a = nb

and  b is the length of the minor axis of the symbol of the Federation, (a circle) when seen by an observer at velocity v which from the question must be the length of the minor axis of the of the  Empire's symbol, (an ellipse)

 i.e    h = b

So

    [tex]b = nb [\sqrt{1 - \frac{v^2}{c^2} } ][/tex]  

     [tex][\frac{1}{n} ]^2 = 1 - \frac{v^2}{c^2}[/tex]

      [tex]v^2 =c^2 [1- \frac{1}{n^2} ][/tex]

       [tex]v^2 =c^2 [\frac{n^2 -1}{n^2} ][/tex]

        [tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]

     

     

During last year’s diving competition, the divers always pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully extend their limbs to enter straight down as shown. Explain the effect of both actions on their angular velocities and kinetic energy (support your answer with working). Also explain the effect on their angular momentum.

Answers

Answer:

the angular speed of the person increases, being able to make more turns and faster.

 K₂ = K₁ I₁ / I₂

Explanation:

When the divers are turning the system is isolated, so all the forces are internal and therefore also the torque, therefore the angular momentum is conserved

initial, joint when starting to turn

         L₀ = I₁ w₁

final. When you shrink your arms and legs

         Lf = I₂ w₂

         L₀ = Lf

         I₁ w₁ = I₂ w₂

when you shrink your arms and legs the distance to the turning point decreases and since the moment of inertia depends on the distance squared, the moment of inertia also decreases

      I₂ <I₁

         w₂ = I₁ / I₂ w₁

therefore the angular speed of the person increases, being able to make more turns and faster.

When it goes into the water it straightens the arm and leg, so the moment of inertia increases

          I₁> I₂

           w₁ = I₂ / I₁ w₂

therefore we see that the angular velocity decreases, therefore the person trains the water like a stone and can go deeper faster.

In both cases the kinetic energy is

          K = ½ I w²

the initial kinetic energy is

          K₁ = ½ I₁ w₁²

the final kinetic energy is

          K₂ = ½ I₂ w₂²

we substitute

          K₂ = ½ I₂ (I₁ / I₂ w1² 2

          K₂ = ½ I₁² / I₂ w₁² = (½ I₁ w₁²)  I₁ / I₂  

          K₂ = K₁ I₁ / I₂

therefore we see that the kinetic energy increases by factor I₁/I₂

Q) A particle in simple harmonic motion starts its motion from its mean position. If T be the time period, calculate the ratio of kinetic energy and potential energy of the particle at the instant when t = T/12.

Answers

t\12 and the parties are spreading ever

Explanation:

my point is that you can get sick if

you sont wash your ha

nds or be

save

If you were to drop a rock from a tall building, assuming that it had not yet hit the ground, and neglecting air resistance. What is its vertical displacement (in m) after 4 s? (g = 10 m/s2)

Answers

Answer:

d = 80 m

its vertical displacement (in m) after 4 s is 80 m

Explanation:

From the equation of motion;

d = vt + 0.5at^2 ......1

Where;

d = displacement

v = initial velocity = 0 (dropped with no initial speed)

t = time of flight = 4s

a = g = acceleration due to gravity = 10 m/s^2

Substituting the given values into equation 1;

d = 0(4) + 0.5(10 × 4^2)

d = 0.5(10×16)

d = 80 m

its vertical displacement (in m) after 4 s is 80 m

You measure the power delivered by a battery to be 1.15 W when it is connected in series with two equal resistors. How much power will the same battery deliver if the resistors are now connected in parallel across it

Answers

Answer:

The power is  [tex]P_p = 4.6 \ W[/tex]

Explanation:

From the question we are told that

   The power delivered is  [tex]P_{s} = 1.15 \ W[/tex]

   Let it resistance be denoted as R

    The resistors are connected in series so the equivalent resistance is  

     [tex]R_{eqv} = R+ R = 2 R[/tex]

Considering when it is connected in series    

Generally power is mathematically represented as

     [tex]P_s = V * I[/tex]

Here I is the current which is mathematically represented as

       [tex]I = \frac{V}{2R}[/tex]

The power becomes

     [tex]P_s = V * \frac{V}{2R}[/tex]

     [tex]P_s = \frac{V^2}{2R}[/tex]

substituting value

    [tex]1.15 = \frac{V^2}{2R}[/tex]

Considering when resistance is connected in parallel

  The equivalent resistance becomes

    [tex]R_{eqv} = \frac{R}{2}[/tex]

So The current  becomes

       [tex]I = \frac{V}{\frac{R}{2} } = \frac{2V}{R}[/tex]

And the power becomes

     [tex]P_p = V * \frac{2V}{R} = \frac{2V^2}{R} = \frac{4 V^2}{2 R} = 4 * P_s[/tex]

 substituting values

     [tex]P_p = 4 * 1.15[/tex]

     [tex]P_p = 4.6 \ W[/tex]

     

During a football game, a receiver has just caught a pass and is standing still. Before he can move, a tackler, running at a velocity of 2.60 m/s, grabs and holds onto him so that they move off together with a velocity of 1.30 m/s. If the mass of the tackler is 122 kg, determine the mass of the receiver. Assume momentum is conserved.

Answers

Answer:

122kg

Explanation:

Using the law of conservation of momentum which states that 'the sum of momentum of bodies before collision is equal to their sum after collision. The bodies will move together with a common velocity after collision.

Momentum = Mass * Velocity

Before collision;

Momentum of receiver m1u1= 0 kgm/s (since the receiver is standing still)

Momentum of the tackler

m2u2 = 2.60*122 = 317.2 kgm/s

where m2 and u2 are the mass and velocity of the tacker respectively.

Sum of momentum before collision = 0+317.2 = 317.2 kgm/s

After collision

Momentum of the bodies = (m1+m2)v

v = their common velocity

m1 = mass of the receiver

Momentum of the bodies = (122+m1)(1.30)

Momentum of the bodies = 158.6+1.30m1

According to the law above;

317.2 = 158.6+1.30m1

317.2-158.6 = 1.30m1

158.6 = 1.30m1

m1 = 158.6/1.30

m1 = 122kg

The mas of the receiver is 122kg

A cheetah bites into its prey. One tooth exerts a force of 320 N. The area of the point of the tooth is 0.5 cm². The pressure of the tooth on the prey, in N/cm², is
a) 0.0013 N/cm²
b) 128 N/cm²
c) 320 N/cm²
d) 640 N/cm²

Answers

Answer:

640N/cm^2

Answer D is correct

Explanation:

[tex]pressure = \frac{force}{area} \\ = \frac{320}{0.5} \\ = 640[/tex]

hope this helps

brainliest appreciated

good luck! have a nice day!

Which is the best description of the scientific theory

Answers

Explanation:

a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .

Q.1- Find the distance travelled by a particle moving in a straight line with uniform acceleration, in the 10th unit of time.

Answers

Answer:

If the acceleration is constant, the movements equations are:

a(t) = A.

for the velocity we can integrate over time:

v(t) = A*t + v0

where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:

[tex]\int\limits^{10}_0 {A*t + v0} \, dt = ((A/2)10^2 + v0*10) = (A*50 + v0*10)[/tex]

Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.

I really need help with this question someone plz help !

Answers

Answer:

The answer is option 2.

Explanation:

Both sides are pulling the rope with equal force where the rope doesn't move. So they have a balanced forces.

We say that the displacement of a particle is a vector quantity. Our best justification for this assertion is: A. a displacement is obviously not a scalar. B. displacement can be specified by a magnitude and a direction. C. operating with displacements according to the rules for manipulating vectors leads to results in agreement with experiments. D. displacement can be specified by three numbers. E. displacement is associated by motion.

Answers

Answer:

Option B - displacement can be specified by a magnitude and a direction.

Explanation:

A Vector quantity is defined as a physical quantity characterized by the presence of both magnitude as well as direction. Examples include displacement, force, torque, momentum, acceleration, velocity e.t.c

Whereas a scalar quantity is defined as a physical quantity which is specified with the magnitude or size alone. Examples include length, speed, work, mass, density, etc.

Displacement is the difference between the initial position and the final position of a body. Displacement is a vector quantity and not a scalar quantity because it can be described by using both magnitude as well as direction.

Looking at the options, the only one that truly justifies this definition is option B.

A solid sphere has a temperature of 556 K. The sphere is melted down and recast into a cube that has the same emissivity and emits the same radiant power as the sphere. What is the cube's temperature in kelvins

Answers

Answer:

Cube temperature = 526.83 K

Explanation:

Volume of the cube and sphere will be the same.

Now, volume of cube = a³

And ,volume of sphere = (4/3)πr³

Thus;

a³ = (4/3)πr³

a³ = 4.1187r³

Taking cube root of both sides gives;

a = 1.6119r

Formula for surface area of sphere is;

As = 4πr²

Also,formula for surface area of cube is; Ac = 6a²

Thus, since a = 1.6119r,

Then, Ac = 6(1.6119r)²

Ac = 15.5893r²

The formula for radiant power is;

Q' = eσT⁴A

Where;

e is emissivity

σ is Stefan boltzman constant = 5.67 x 10^(-8) W/m²k

T is temperate in kelvin

A is Area

So, for the cube;

(Qc)' = eσ(Tc)⁴(Ac)

For the sphere;

(Qs)' = eσ(Ts)⁴(As)

We are told (Qc)' = (Qs)'

Thus;

eσ(Tc)⁴(Ac) = eσ(Ts)⁴(As)

eσ will cancel out to give;

(Tc)⁴(Ac) = (Ts)⁴(As)

Since we want to find the cube's temperature Tc,

(Tc)⁴ = [(Ts)⁴(As)]/Ac

Plugging in relevant figures, we have;

(Tc)⁴ = [556⁴ × 4πr²]/15.5893r²

r² will cancel out to give;

(Tc)⁴ = [556⁴ × 4π]/15.5893

Tc = ∜([556⁴ × 4π]/15.5893)

Tc = 526.83 K

Parallel light rays with a wavelength of 610nm fall on a single slit. On a screen 3.10m away, the distance between the first dark fringes on either side of the central maximum is 4.00mm.
What is the width of the slit?

Answers

Answer:

The width of the slit will be ".946 mm".

Explanation:

The given values are:

Wavelength = 610 × 10⁻⁹

Length, L = 3 m

As we know,

⇒  [tex]\frac{y}{L} = \frac{m(wavelength)}{a}[/tex]

On putting the estimated values, we get

⇒  [tex]\frac{2\times 10^{-3}}{3.1} = \frac{(1)(610 X 10^{-9})}{a}[/tex]

On applying cross-multiplication, we get

⇒  [tex]a=9.46\times 10^{-4}[/tex]

⇒  [tex]a = .946 mm[/tex]

Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal . Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer cannot be understood or graded.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The mass is    [tex]M =1.43 *10^{32} \ kg[/tex]

Explanation:

From the  question we are told that

       The mass of the stars are [tex]m_1 = m_2 =M[/tex]

        The orbital speed of each star is  [tex]v_s = 240 \ km/s =240000 \ m/s[/tex]

         The orbital period is [tex]T = 12.5 \ days = 12.5 * 2 4 * 60 *60 = 1080000\ s[/tex]

The centripetal force acting on these stars is mathematically represented as

      [tex]F_c = \frac{Mv^2}{r}[/tex]

The gravitational force acting on these stars is mathematically represented as

      [tex]F_g = \frac{GM^2 }{d^2}[/tex]

So  [tex]F_c = F_g[/tex]

=>        [tex]\frac{mv^2}{r} = \frac{Gm_1 * m_2 }{d^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{(2r)^2}[/tex]

=>      [tex]\frac{v^2}{r} = \frac{GM}{4r^2}[/tex]

=>    [tex]M = \frac{v^2*4r}{G}[/tex]

The distance traveled by each sun in one cycle is mathematically represented as

     [tex]D = v * T[/tex]

      [tex]D = 240000 * 1080000[/tex]

      [tex]D = 2.592*10^{11} \ m[/tex]

Now this can also be represented as

      [tex]D = 2 \pi r[/tex]

Therefore

                  [tex]2 \pi r= 2.592*10^{11} \ m[/tex]

=>   [tex]r= \frac{2.592*10^{11}}{2 \pi }[/tex]

=>    [tex]r= 4.124 *10^{10} \ m[/tex]

So  

       [tex]M = \frac{v^2*4r}{G}[/tex]

=>    [tex]M = \frac{(240000)^2*4*(4.124*10^{10})}{6.67*10^{-11}}[/tex]

=>    [tex]M =1.43 *10^{32} \ kg[/tex]

       

     

Other Questions
A line goes through the origin and the point (6, 14). The point (2, y) is also on the line. Calculate y and justify that your value is correct Find the area of the parallelogram. The figure shows five points. A point has been translated right and up.Based on the graph, which statements about the points could be true? Check all that apply.1. Point D could be the image of B.2. Point C could be the image of A.3. Point E could be the image of C.4. Point D could be the image of A.5. Point E could be the image of B.6. Point C could be the image of E. A horizontal line has points J, K, L. A line extends from point K up and to the right to point M. Angle J K M is (10 y + 6) degrees and angle M K L is (8 y minus 6) degreesWhat is the value of y?y = Find the following angle measures.mAngleJKM = mAngleMKL = The payback period provides information to managers that can be used to help a.control the risks associated with the uncertainty of future cash flows. b.minimize the impact of an investment on a firm's liquidity problems. c.control the effect of the investment on performance measures. d.control the risk of obsolescence. e.All of these choices are correct. Please help! Correct answers only!There is a raffle with 200 tickets. One ticket will win a $550 prize, one ticket will win a $510 prize, one ticket will win a $280 prize, and the rest will win nothing. If you have a ticket, what is the expected payoff? PLEASE HELP!A diary is a record of personal thoughts, feelings, and everyday experiences. Diaries are usually written in the first-person point of view, using the pronouns I, me, our, and so on to express personal feelings and experiences. The main purpose of a diary is to give you the freedom to describe your thoughts and to keep track of your daily events and activities.In this task, youll write three diary entries. As you write, please keep in mind the elements of diary writing. You will probably have to do some research into some of the diary entry topics in order to fully understand them.First, choose any three topics from the six listed below:Think about your biggest pet peeve and write an entry explaining what that pet peeve is and why it bothers you.Who do you believe is the most fascinating famous person? The individual you choose can be living or dead. Write an entry explaining who this person is and why you think they are fascinating.The author Mark Twain once said, "Humor is tragedy plus time." Keeping in mind what you know about the words humor and tragedy, write an entry explaining what this quote may mean. In your entry, use an example from your life to support your explanation.Has there ever been a time in your life when you felt invisible? Think of this time and write an entry explaining what happened to make you feel this way and how you dealt with the feeling.Many people believe that it is important to find ways to pay it forward in their daily lives. Think about what pay it forward means. Write an entry explaining what you believe this expression means and provide an example of this practice that you have witnessed.Think about a time in your life when you had to deal with adversity. Write an entry explaining the situation. In the entry, explain how the situation made you feel and how you overcame those feelings.Complete your diary entries and submit them in this document for your teachers assessment. Granger Company had January 1 inventory of $150,000 when it adopted dollar-value LIFO. During the year, purchases were $900,000 and sales were $1,500,000. December 31 inventory at year-end prices was $189,750, and the price index was 110. What is Granger Companys gross profit? Which procedure justifies whether Negative 3 x (5 minus 4) + 3 (x minus 6) is equivalent to Negative 12 x minus 6? The expressions are not equivalent because Negative 3 (2) (5 minus 4) + 3 (2 minus 6) = negative 18 and Negative 12 (2) minus 6 = negative 30. The expressions are not equivalent because Negative 3 (2) (5 minus 4) + 3 (2 minus 6) = negative 18 and Negative 12 (3) minus 6 = negative 42. The expressions are equivalent because Negative 3 (2) (5 minus 4) + 3 (2 minus 6) = negative 18 and Negative 12 (negative 2) minus 6 = 18. The expressions are equivalent because Negative 3 (2) (5 minus 4) + 3 (2 minus 6) = negative 18 and Negative 12 (1) minus 6 = negative 18. Among the best-known companies that use customer satisfaction surveys to evaluate service quality in various industries is:___________ a) J.D. Power and Associates b) McDonalds c) American Express d) Alaska Airlines e) None of the above" what chemical substances must be provided for aerobic respiration to take place inside the cell Briefly explain one specific aspect of Lyndon Johnsons great society program not mentioned in either source plz hurry and answer i will give brainliestwhat is 2*2+6/2*3 Whats the correct answer for this? what type of minerals compositions does andesitic have Timm Inc., a calendar year, accrual basis taxpayer, is being sued by a customer who was injured when she tripped over a loose carpet in Timm's retail store. Timm's auditors required the corporation to accrue a $500,000 contingent liability and current year expense. Which of the following statements is true?a. Timm can deduct the $500,000 accrued expense. b. Timm can never deduct the $500,000 expense. c. Timm can deduct the expense in the year in which the liability becomes fixed and determinable. d. Timm can deduct the expense in the year of payment. Solve the following system of equations using the elimination method. 5x 5y = 10 6x 4y = 4 Which statement is true of tetrameter?A. It is made up of four two-syllable feet.B. It is made up of five two-syllable feet.C. It is made up of four three-syllable feet.D. It is made up of five three-syllable feet. Factorise 20x+25thankful for the help Which of the following statements about cell differentiation is true?A. Cell differentiation occurs only in adult organismsB. Cell differentiation cannot be affected by the environment C. Cells differentiate because the dna in each cell of an organism is different D. Cells differentiate because different areas of the dna are activated in each cell type.