Two cars X and Y start from two points separated by 75 m. Y which is ahead of X. starts from rest with acceleration of 10 m/s2 and X starts with uniform velocity of 40 m/s . The time gap between the two meetings would be approximately 1.44 seconds.
Let's assume that the two cars meet for the first time after time t₁, and then they meet for the second time after time t₂.
We can start by finding the time it takes for car Y to catch up to car X for the first time. We can use the following kinematic equation:
d = ut + (1/2)at²
where d is the distance between the two cars, u is the initial velocity of car X, a is the acceleration of car Y, and t is the time it takes for car Y to catch up to car X.
Plugging in the values, we get:
75 = 40t₁ + (1/2)(10)t₁²
Simplifying the equation, we get:
5t₁² + 8t₁ - 15 = 0
Solving for t1 using the quadratic formula, we get:
-t₁ = 1.5 seconds or -1 seconds
Since time cannot be negative, we discard the negative solution and conclude that the two cars meet for the first time after 1.5 seconds.
Now, let's find the time it takes for the two cars to meet for the second time. We can use the fact that the two cars have covered the same distance between their first and second meetings.
The distance covered by car Y during the time t₁ is:
d₁ = (1/2)(10)(1.5)² = 11.25 m
The distance remaining between the two cars is:
75 - 2d₂ = 52.5 m
To find the time it takes for car Y to cover this distance, we can use the same kinematic equation as before:
52.5 = 0t₂ + (1/2)(10)t₂²
Simplifying the equation, we get:
t₂ = (21)
Therefore, the time gap between the two meetings is:
t₂ - t₁ = √(21) - 1.5 seconds
So, the time gap between the two meetings is approximately 1.44 seconds.
To know more about acceleration
https://brainly.com/question/13397622
#SPJ1
The rear defroster of your car operates on a current of 6. 00 A. If the voltage drop across it is 5. 00 V, how much electric power is it consuming as it melts the frost
The rear defroster is consuming 30.00 watts of electric power as it melts the frost. Electric power is the rate at which electrical energy is consumed or produced.
It is calculated by multiplying the voltage (V) across a device or component by the current (I) flowing through it.
To calculate the electric power consumed by the rear defroster, you can use the formula:
Power (P) = Voltage (V) × Current (I)
Given:
Current (I) = 6.00 A
Voltage (V) = 5.00 V
Substituting the values into the formula:
P = 5.00 V × 6.00 A
P = 30.00 W
Therefore, the rear defroster is consuming 30.00 watts of electric power as it melts the frost. The power indicates how quickly the defroster can generate heat and melt the frost on the rear window of the car.
To know more about refer electric power here
brainly.com/question/27442707#
#SPJ11
Dolphins communicate using various sounds, including whistles, clicks, and squeaks. Lower-frequency vocalizations are likely used in social communication, and high-frequency vocalizations are likely used in echolocation. If a dolphin is producing a vocalization with a frequency of 35 Hz traveling at 1,500 m/s, what is the wavelength of the sound?
The wavelength of the sound wave, given that wave has a frequency of 35 Hz and travelling at 1500 m/s is 42.86 m
How do i determine the wavelength?First, we shall list out the given parameters from the question. This is given below:
Frequency of sound wave (f) = 35 HzSpeed of sound wave (v) = 1500 m/sWavelength of sound wave (λ) = ?The wavelength of the sound wave can be obtained as illustrated below:
Velocity (v) = wavelength (λ) × frequency (f)
1500 = wavelength × 35
Divide both sides by 35
Wavelength = 1500 / 35
Wavelength = 42.86 m
Thus, from the above calculation, we can conclude that the wavelength of the sound wave is 42.86 m
Learn more about wavelength:
https://brainly.com/question/30859618
#SPJ1
what conclusion is best supported by the image?
A) The field’s direction changes with the current’s direction.
B) The field weakens farther from the wire.
C) The field increases with greater current.
D) The field’s strength changes with the current’s direction.
The field’s direction changes with the current’s direction this conclusion is best supported by the image. Hence option A is correct.
Current is a flow of charges. it is denoted by i and expressed in ampere A. Mathematically it is expressed as i = q/t, where q is the amount of charge and t is time. Current is nothing but amount of charges flown in the unit time in the electric wire. Charge is expressed in coulomb C and time in second s. hence coulomb per second (C/s) is ampere A. Charge on electron is 1.60217663 × 10⁻¹⁹ which is called as elementary charge.
There are two types of the current, Convectional current and non-conventional current. Convectional current is the current flows from positive to negative. Non convectional current flows direction from negative to positive. Note that flow of electrons is from negative to positive. Hence direction of flow of conventional current is from positive to negative.
To know more about Current :
https://brainly.com/question/2264542
#SPJ1.
Newtons Second Law
An elevator is moving up at a constant velocity of 2.5 m/s, The passenger has a mass of 85kg.
a. Construct a free body diagram for the passenger.
b. Calculate the force the floor exerts on the passenger.
The elevator now accelerates upward at 2.0 m/s^2.
a. What additional force is needed to accelerate the passenger at that acceleration? what is the direction of this force?
b. Construct a free body diagram for the passenger
Upon reaching the top of the building, the elevator accelerates downward at 3.0 m/s^2.
a. how much net force is needed to accelerate the passenger at 3.0 m/s^2? What does this do to the normal force?
b. Construct a free body diagram for the passenger, with the magnitude of each force labeled.
While descending in the elevator, the cable suddenly breaks. How big is the force on the passenger by the floor? Explain your answer.
Then both passengers, as well as the lift, are in free fall, and both accelerate downwards at the same acceleration. so, there is zero force between them.
How to solve3. vertical forces on the passenger = Fv= N-w, upwards [where N is normal force and w is its weight]
Fv= N-w= m*a =>so the force the floor exerts on the passenger is N = m*a + m*g = 1003 N.
4. vertical forces on the passenger = Fv= N-w, upwards
Fv= N-w= -m*a [-ve sign because acceleration is downwards while Fv is upwards]
so, N= m*g - m*a = 663 N.
5. if the cable breaks suddenly, the passenger's acceleration is same as gravity, so a= g; N= m*g - m*g = 0 N.
Then both passengers, as well as the lift, are in free fall, and both accelerate downwards at the same acceleration. so, there is zero force between them.
Read more about force here:
https://brainly.com/question/12970081
#SPJ1
Help please!!
How many atoms of C would you have if there were 1.23 moles of C? Show your work for this.
The number of atoms of carbon (C) in 1.23 moles of carbon is 7.41 x 10²³ atoms.
What is the number of atoms?The number of atoms of carbon (C) in 1.23 moles of carbon is calculated by using Avogadro's number as shown below;
n_A = An
where;
n_A is the number of atomsA is Avogadro's numbern is the number of molesn_ A = A x n
n_ A = 1.23 moles x 6.022 x 10²³ atoms/mole
n_A = 7.41 x 10²³ atoms
Learn more about number of atoms here: https://brainly.com/question/6258301
#SPJ1
Physics question
two concrete spans of a 180 m long bridge are placed end to end so that no room is allowed for expansion. if the temperature increases by 20◦c, what is the height to which the spans rise when they buckle? assume the thermal coefficient of expansion is 1.2 × 10^−5(◦c)^−1. answer in units of m.
The thermal expansion coefficient of concrete is typically around 3.5 × [tex]10^{-5[/tex] /°C. Using this value and assuming that the temperature increase is in Celsius, the change in length is 4,500 m.
We can calculate the change in length of the spans as follows:
ΔL = αL * ΔT
here α is the thermal expansion coefficient of concrete, L is the length of the span, and ΔT is the temperature increase in Celsius.
We know that the length of the span is 180 m, and the temperature increase is 20°C. Substituting these values into the equation, we get:
ΔL = 3.5 × [tex]10^{-5[/tex] * 180 m * 20°C
= 4,500 m
To find the height to which the spans rise when they buckle, we need to know the shape of the buckling and the distance between the supports.
Learn more about thermal expansion Visit: brainly.com/question/1166774
#SPJ4
a weight lifter must expert of force to lift a set of barbells off the ground
It should be noted that the statement regarding the weightlifter is true.
How to explain the informationA weightlifter must apply a certain amount of force to lift a set of barbells off the ground. This force is known as the lifting force and it must be greater than the weight of the barbells in order to overcome the force of gravity and lift the barbells.
The amount of lifting force required will depend on the weight of the barbells and the strength of the weightlifter's muscles. The weightlifter can increase their lifting force by improving their strength and technique through training and practice.
Learn more about weight on
https://brainly.com/question/27855042
#SPJ1
A weight lifter must be expert of force to lift a set of barbells off the ground
true or false
Suppose, in a physics lab experiment, you try to move a box of 5 kg by tying a rope around it across a flat table and pulling the rope at an angle of 30 degree above the horizontal as shown in the figure;
i. If the box is moving at constant speed of 2m/s and the coefficient of friction is 0.40, What is the magnitude of F?
ii If the box is speeding up with constant acceleration of 0.5 m/s2 ,What will be the magnitude of F?
i. The magnitude of F, given that the box is moving at constant speed of 2 m/s is 24.5 N
ii. The magnitude of F, given that the box is moving at constant acceleration of 0.5 m/s² is 2.5 N
i. How do i determine the magnitude of F?We can obtain the magnitude of F when the box is moving at constant speed of 2 m/s can be obtain as follow:
Mass of box (m) = 5 KgAngle (θ) = 30 degreesAcceleration due to gravity (g) = 9.8 m/s² Magnitude of F =?F = mgSineθ
F = 5 × 9.8 × Sine 30
F = 5 × 9.8 × 0.5
Magnitude of F = 24.5 N
ii. How do i determine the magnitude of F?We can obtain the magnitude of F when the box is moving at constant acceleration of 0.5 m/s² can be obtain as follow:
Mass of box (m) = 5 KgAcceleration (a) = 0.5 m/s² Magnitude of F =?F = ma
F = 5 × 0.5
Magnitude of F = 2.5 N
Learn more about force:
https://brainly.com/question/29509981
#SPJ1
What is an infrared camera simple definition
IN OWN WORDS!!!!!!!!!!
explain like you would to a kid pls
Answer:
An infrared camera – also called IR camera, thermal means heat it can track your heat camera or thermal camera – is a measuring by instrument it means its a measuring tool
used for non-contact measurements of the surface temperature of objects.
Explanation:
kids are oof
Wave Ceneration
What kind of wave is being generated?
O electromagnetic wave
Olongitudinal
Otransverse
Osurface wave
Without additional context or information, it is impossible to determine the particular wave
What is a wave in physicsIn physics, a wave is a disturbance that travels through space and time, often transferring energy from one place to another. Waves can take many forms, including sound waves, light waves, water waves, and seismic waves. They are characterized by properties such as amplitude, frequency, wavelength, and speed.
Waves are an important concept in many areas of physics, including mechanics, electromagnetism, and quantum mechanics. They can be described mathematically using equations such as the wave equation and are fundamental to our understanding of the behavior of the physical world.
Read more on wave here:https://brainly.com/question/15663649
#SPJ1
in a two-slit experiment, monochromatic coherent light of wavelength 600 nm passes through a pair of slits separated by 2.20 x 10-5 m. at what angle away from the centerline does the first bright fringe occur?
The first bright fringe occurs at an angle of approximately 1.564° away from the Centerline in a two-slit experiment using monochromatic coherent light with a wavelength of 600 nm and slits separated by 2.20 x 10^-5 m.
In a two-slit experiment, we observe interference patterns created by monochromatic coherent light. The angle at which the first bright fringe occurs can be found using the formula for constructive interference:
d * sin(θ) = m * λ
Here,
d = distance between the slits (2.20 x 10^-5 m)
θ = angle of the bright fringe from the centerline
m = order of the fringe (m=1 for the first bright fringe)
λ = wavelength of the light (600 nm or 6.00 x 10^-7 m)
Now, rearrange the formula to solve for θ:
sin(θ) = (m * λ) / d
Substitute the values:
sin(θ) = (1 * 6.00 x 10^-7 m) / (2.20 x 10^-5 m)
sin(θ) ≈ 0.0273
Now, find the angle θ:
θ = arcsin(0.0273)
θ ≈ 1.564°
So, the first bright fringe occurs at an angle of approximately 1.564° away from the centerline in a two-slit experiment using monochromatic coherent light with a wavelength of 600 nm and slits separated by 2.20 x 10^-5 m.
To Learn More About Centerline
https://brainly.com/question/14783097
SPJ11
What is the intensity of sound 4m away from a 500w speaker?. How much energy is absorbed by the eardrum per minute if the surface area of the ear is 600mm²
The intensity of sound at 4 m from a 500 W speaker is found using the inverse square law of sound propagation. Therefore, the energy absorbed by the eardrum per minute is approximately 0.107 millijoules.
The intensity of sound is the power per unit area and is given by the formula I = P/A, where I is intensity, P is power and A is the surface area. Given that the speaker has a power of 500 W and the distance is 4 m, we can find the intensity of sound using the inverse square law of sound propagation.
[tex]I = P/(4\pi r^{2} )[/tex]
[tex]I = 500/(4\pi \times 4^{2} )[/tex]
I = 4.93 W/m²
Therefore, the intensity of sound at a distance of 4 m from the speaker is 4.93 W/m².
To calculate the energy absorbed by the eardrum per minute, we need to first convert the intensity to units of energy per time per area, which is given by the formula E = ItA, where E is energy, t is time, and A is the surface area.
The energy absorbed per minute is:
E = ItA
[tex]E = 4.93 W/m^{2} \times 60 s/min \times 600\;mm^{2} \times (1 m / 1000\;mm)^{2}[/tex]
E = 0.107 mJ/min
Therefore, the energy absorbed by the eardrum per minute is approximately 0.107 millijoules.
In summary, the intensity of sound at 4 m from a 500 W speaker is found using the inverse square law of sound propagation. The energy absorbed by the eardrum per minute is calculated by converting the intensity to units of energy per time per area and using the surface area of the ear.
To know more about inverse square refer here:
https://brainly.com/question/30404562#
#SPJ11
During super bowl weekend, the NFL sets up a receiver on a stationary hovercraft. A
. 257 kg football is thrown at 9. 76 m/s to a receiver and hovercraft with a total mass of
98. 6 kg. When the ball is caught what is the new speed of the system?
Do NOT put in units or it will be marked wrong! The answer's value only! Please round
each answer to 3 places,
MaVa + MbVb = (Ma+b)(Va+b)
The new speed of the system when the ball is caught is approximately 0.025 m/s
To solve this problem, we will use the conservation of momentum equation:
MaVa + MbVb = (Ma + Mb)(Va+b)
where Ma is the mass of the football (0.257 kg), Va is the velocity of the football (9.76 m/s), Mb is the mass of the receiver and hovercraft (98.6 kg), and Vb is the initial velocity of the receiver and hovercraft (0 m/s, since it is stationary).
0.257 kg * 9.76 m/s + 98.6 kg * 0 m/s = (0.257 kg + 98.6 kg) * (Va+b)
2.50632 kg*m/s = 98.857 kg * (Va+b)
Now, we will solve for Va+b:
Va+b = 2.50632 kg*m/s / 98.857 kg
Va+b ≈ 0.025 m/s
So, the new speed of the system when the ball is caught is approximately 0.025 m/s, rounded to three decimal places.
To learn more about mass, refer below:
https://brainly.com/question/19694949
#SPJ11
Blue jeans (blank) blue light, so that we see them as the color blue.
Answer:
Blue Jeans (are) blue light,
so that we see them as the color
The distance between two consecutive minimums
(nodes) in a sound-wave pattern is?
In a given stationary wave, the distance between two successive nodes or antinodes is half of the wavelength.
What is wavelength?The distance between identical points (adjacent crests) in adjacent cycles of a waveform signal carried in space or along a wire is defined as the wavelength.
The SI unit of wavelength is the meter, abbreviated as m. Multiples or fractions of a meter are also employed when measuring wavelength.
Learn more about wavelength here:
https://brainly.com/question/10728818
#SPJ1
Using the PhET Balancing Act, discuss the possibilities of balancing two forces acting on one side of a pivot point with a single force of the other. Select the best answer: i. This is possible with a single force at the same distance from the pivot point but on the opposite side of the pivot point as one of the forces. Ii. This is possible with a single force at the same distance as the point half way between the two forces from the pivot point but on the opposite side of the pivot point. Iii. This requires two forces. A
Balancing two forces acting on one side of a pivot point with a single force on the other side is a common concept in physics. The PhET Balancing Act simulation can help us understand this concept better.
When we have two forces acting on one side of a pivot point, it creates an imbalance. To balance the system, we need to add a single force on the other side of the pivot point. The question is, what should be the distance of this single force from the pivot point to balance the two forces?
According to the simulation, the best answer is (i) This is possible with a single force at the same distance from the pivot point but on the opposite side of the pivot point as one of the forces. This means that we can balance the two forces by placing a single force on the opposite side of the pivot point, at the same distance as one of the forces. This works because the force and distance on both sides of the pivot point are equal, creating a balanced system.
Answer (ii) states that it is possible with a single force at the same distance as the point halfway between the two forces from the pivot point but on the opposite side of the pivot point. This is incorrect because the distance is not equal on both sides of the pivot point, and the system will not be balanced.
Answer (iii) states that it requires two forces. This is also incorrect because we can balance the system with a single force, as explained in answer (i).
In conclusion, balancing two forces acting on one side of a pivot point with a single force on the other side is possible by placing the single force at the same distance from the pivot point but on the opposite side of the pivot point as one of the forces. This creates a balanced system where the force and distance on both sides of the pivot point are equal.
To know more about forces refer here
https://brainly.com/question/13191643#
#SPJ11
Ms. sison is riding his bike and uses 600 joules of energy per minute. if the bike only does 550 joules of work, how efficient is the bike in percent?
The efficiency of the bike can be calculated by dividing the work output by the energy input and multiplying the result by 100%. In this case, the bike is 91.67% efficient.
The efficiency of a machine is defined as the ratio of the work output to the energy input. In this case, the energy input is given as 600 joules per minute, and the work output is 550 joules.
Therefore, the efficiency of the bike can be calculated using the following formula:
Efficiency = (Work output / Energy input) x 100%
Substituting the given values, we get:
Efficiency = (550 / 600) x 100%
Efficiency = 0.9167 x 100%
Efficiency = 91.67%
This means that the bike is 91.67% efficient, which is the percentage of the energy input that is converted into useful work output. The remaining energy is lost as heat due to friction, air resistance, and other factors.
Therefore, the efficiency of the bike can be improved by reducing these losses through proper maintenance and adjustments.
In summary, the efficiency of the bike can be calculated by dividing the work output by the energy input and multiplying the result by 100%. In this case, the bike is 91.67% efficient.
To know more about work refer here:
https://brainly.com/question/31050706#
#SPJ11
A trumpet plays its 3rd harmonic at 510 Hz. It then opens a valve, which adds 0. 110 m to its length. What is the new 3rd harmonic frequency? (Hint: Find the original length. ) (Speed of sound = 343 m/s) (Unit = Hz)
The new 3rd harmonic frequency is 869 Hz. The 3rd harmonic means that the trumpet has three nodes and two antinodes, and the standing wave has three segments.
The frequency of the 3rd harmonic can be found by multiplying the fundamental frequency by 3, so the original length of the trumpet must be such that the 3rd harmonic frequency is 510 Hz.
Using the formula for the wavelength of a standing wave, λ = 2L/n, where L is the length of the trumpet and n is the harmonic number, we can find the original length to be L = (2λ/3). Substituting λ = v/f, where v is the speed of sound and f is the frequency, we get L = (2v/3f).
So, the original length of the trumpet is L = (2 x 343 m/s)/(3 x 510 Hz) = 0.450 m. Adding 0.110 m to the length gives the new length L' = 0.560 m. Using the same formula and harmonic number, we can find the new frequency f' to be f' = (3v/2L') = (3 x 343 m/s)/(2 x 0.560 m) = 869 Hz. Therefore, the new 3rd harmonic frequency is 869 Hz
To know more about harmonic frequency, refer here:
https://brainly.com/question/12320829#
#SPJ11
When a 3. 0-kg block is pushed against a massless spring of force constant 4. 5×103N/m, the spring is compressed 8. 0 cm. The block is released, and it slides 2. 0 m (from the point at which it is released) across a horizontal surface before friction stops it. What is the coefficient of kinetic friction between the block and the surface?
Answer:
The spring constant is 3.0 kg
Horticulture 120 pts (HURRY)
Sensing systems incorporated into harvesting machines that register and record amounts of harvests associated with specific portions of a planted field are called
monitoring systems
Sensing systems incorporated into harvesting machines that register and record amounts of harvests associated with specific portions of a planted field are called monitoring systems.
Monitoring systems in harvesting machines use sensing technologies to collect data on the quantity and quality of crops being harvested. These systems typically consist of sensors that measure various physical parameters, such as weight, moisture content, and color, which are then processed and analyzed to provide information on crop yield and quality.
By using monitoring systems, farmers and agricultural managers can obtain real-time information on crop performance, identify areas of the field with higher or lower yields, and make more informed decisions regarding irrigation, fertilization, and other cultivation practices.
This data can also be used to optimize the use of resources, reduce waste, and increase profitability. Overall, monitoring systems play an important role in precision agriculture, which aims to improve the efficiency and sustainability of agricultural practices.
To know more about the Harvesting, here
https://brainly.com/question/30939213
#SPJ4
Question 1 (2 points)
Cross training is a type of training routine that combines two or more different
exercises into a workout to prevent injuries, burnout, and overuse.
True
False
A person's strength, speed, power, agility, flexibility, and endurance are all increased with cross training, which also helps to reduce the chance of injury.
What is the cross-training training method?Cross-training is the technique of preparing employees to perform duties that go outside of their typical responsibilities or to work in multiple different jobs. For instance, cross-training could be used to teach someone who works in collections how to work in billing, and the other way around.
What effect does cross-training have?This is based on the finding that strengthening one limb while exercising the opposite limb results in a phenomena known as cross-training, also known as the contralateral strength training effect.
To know more about endurance visit:-
brainly.com/question/29792091
#SPJ1
True. Cross training is a type of training routine that combines two or more different exercises into a workout to prevent injuries, burnout, and overuse.
What is the cross-training training method?
Cross-training is the technique of preparing employees to perform duties that go outside of their typical responsibilities or to work in multiple different jobs. For instance, cross-training could be used to teach someone who works in collections how to work in billing, and the other way around.
A piece of cardio training equipment is a cross trainer, commonly referred to as an elliptical trainer. It is a fantastic full-body exercise and works your arms and legs at the same time. Cross training and a cross trainer are very different from one another, however a cross trainer can play a significant role in a cross training regimen.
To learn more about Cross-training use:
https://brainly.com/question/9866607
#SPJ1
Help! I need this within an hour!
suppose that a flat loop of wire with an area of 0.050 m2 lies in a magnetic field normal to the loop. if the magnetic field changes at a uniform rate from 0.30 t to 1.5 t it induces an emf of 1.2 volts in the loop. find the time interval for the change.
0.023 sec
0.050 sec
0.073 sec
0.085 sec
The time interval for the change in magnetic field is 0.05 s.
The area of cross-section of the loop, A = 0.05 m²
Initial magnetic field, B₁ = 0.3 T
Final magnetic field, B₂ = 1.5 T
Induced emf in the loop, ε = 1.2 V
The expression for induced emf in the loop of wire is given by,
ε = A(dB/dt)
Therefore, the time interval for the change,
dt = AdB/ε
dt = A(B₂ - B₁)/ε
dt = A(1.5 - 0.3)/1.2
dt = 0.05 x 1.2/1,2
dt = 0.05 s
To learn more about induced emf, click:
https://brainly.com/question/16764848
#SPJ1
Apply concepts why can light travel trough outer space but sound cannot?
Light travels in the form of electromagnetic waves, the reason why light can travel through outer space but sound cannot is due: to the differences in the way light and sound waves propagate, and the properties of the medium through which they travel.
Light travels in the form of electromagnetic waves, which consist of oscillating electric and magnetic fields. These waves can propagate through a vacuum, like outer space, because they do not require a medium for transmission. As a result, light from stars and other celestial bodies can reach us even though they are located in the vacuum of space.
On the other hand, sound waves are mechanical waves that require a medium, such as air, water, or solids, to transmit their energy. Sound waves move by causing vibrations in the particles of the medium, creating areas of compression and rarefaction. Outer space is largely devoid of particles, being a near-perfect vacuum, and thus there is no medium for sound waves to propagate through. Consequently, sound cannot travel through outer space, unlike light.
In summary, light can travel through outer space because it consists of electromagnetic waves that do not require a medium for propagation, while sound cannot travel in outer space because it consists of mechanical waves that require a medium for transmission.
To know more about electromagnetic waves, refer here:
https://brainly.com/question/3186980#
#SPJ11
In 1992, residents of Arkansas consumed, on average, 11. 4 L of gasoline per
vehicle per day. If this amount of gasoline burns completely in a pure combustion
reaction, it will release 4. 3 * 10% J of energy. Suppose this amount of energy is
transferred by heat from a quantity of gas confined in a very large cylinder. The
cylinder, however, is equipped with a piston, and shortly after the energy is
transferred by heat from the cylinder, work is done on the gas. The magnitude of
the energy transferred by work is equal to one-third the magnitude of the
energy transferred by heat. If the initial internal energy of the gas is 1. 00 x 10°J,
what is the final internal energy of the gas?
The final internal energy of the gas is 1.07 x [tex]10^{10[/tex] J.
What is Energy?
Energy is a fundamental physical quantity that refers to the ability of a system to do work or produce heat. It is a scalar quantity that has many different forms, including kinetic energy, potential energy, thermal energy, electromagnetic energy, and more.
The energy released by the combustion of 11.4 L of gasoline per vehicle per day is given as 4.3 x [tex]10^{7[/tex] J. Let's assume that this energy is transferred by heat to the gas in the cylinder. The energy transferred by work is one-third of this, which is 4.3 x [tex]10^{7[/tex] J / 3 = 1.43 x [tex]10^{7[/tex]J.
The first law of thermodynamics states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system:
ΔU = Q - W
where ΔU is the change in internal energy, Q is the heat added to the system, and W is the work done by the system.
In this case, the heat added to the system is 4.3 x [tex]10^{7[/tex] J, and the work done by the system is -1.43 x [tex]10^{7[/tex] J (since work done on the gas is negative). Therefore, the change in internal energy is:
ΔU = 4.3 x [tex]10^{7[/tex]J - (-1.43 x [tex]10^{7[/tex] J) = 5.73 x [tex]10^{7[/tex] J
Since the initial internal energy of the gas is 1.00 x [tex]10^{10[/tex] J, the final internal energy is:
Uf = Ui + ΔU = 1.00 x [tex]10^{10[/tex] J + 5.73 x [tex]10^{7[/tex] J = 1.07 x [tex]10^{10[/tex] J
To know more about Energy visit;
https://brainly.com/question/13881533
#SPJ4
if u can guess all of these you will i mean will get brain
no rude answers stuff or report
Answer:
Red is your warm front.
Blue is your Cold front
Red and blue is your stationary front
Explanation:
A pressure switch is used in a washing machine to control the flow of water. The water pushes on a flexible container and compresses some trapped air. When the pressure of this trapped air reacher 104 kPa, the pressure switch turns the water off. The pressure of the trapped air is given by this relationship: pressure of the trapped air - atmospheric pressure + pressure difference caused by the water. Calculate the height of water in the machine when the pressurre of the trapped air reaches to 104 kPa and the switch operates. (atmospheric pressure = 100 kPa, density of water = 1000 kg/m^3)
The pressure switch controls water flow in the washing machine by monitoring trapped air pressure. Water column height is calculated using [tex]P = \rho gh + Patm[/tex]. At 104 kPa trapped air pressure, the water column height is 4.1 cm.
The pressure switch in a washing machine controls the flow of water by monitoring the pressure of trapped air. The pressure of the trapped air is affected by atmospheric pressure, the pressure difference caused by the water, and the height of the water column.
To calculate the height of water in the machine when the pressure of the trapped air reaches 104 kPa, we can use the equation:
[tex]P = \rho gh + Patm[/tex]
where P is the pressure of the trapped air, ρ is the density of water, g is the acceleration due to gravity, h is the height of the water column, and Patm is the atmospheric pressure.
Substituting the given values, we get:
[tex]104 kPa = 1000\;kg/m^3 \times 9.81 m/s^2 \times h + 100 \;kPa[/tex]
Solving for h, we get:
[tex]h = (104 \;kPa - 100 \;kPa)/(1000 \;kg/m^3 \times 9.81 \;m/s^2)[/tex]
h = 0.041 m or 4.1 cm
Therefore, the height of water in the machine when the pressure of the trapped air reaches 104 kPa is 4.1 cm.
In summary, the pressure switch in a washing machine uses the pressure of trapped air to control the flow of water. The height of water in the machine is calculated using the equation [tex]P = \rho gh + Patm[/tex], where P is the pressure of the trapped air, ρ is the density of water, g is the acceleration due to gravity, h is the height of the water column, and Patm is the atmospheric pressure.
By substituting the given values, we find that the height of water in the machine when the pressure of the trapped air reaches 104 kPa is 4.1 cm.
To know more about pressure refer here:
https://brainly.com/question/28907914#
#SPJ11
a train is moving at a constant velocity of 100 mph in a straight line. inside the train, there is a mechanical claw that is holding a ball. the mechanical claw is fixed and rigid and so it does not move as a result of vibrations. furthermore, the claw is located halfway along the ceiling between the front and the rear ends of the car. at one point, the ball is released. please ignore air resistance. there is no wind inside the car. the ball will fall:
The ball will fall straight down to the floor of the train.
Since the train is moving at a constant velocity in a straight line, the ball, like any other object inside the train, is also moving at the same constant velocity. When the ball is released from the mechanical claw, it will continue to move forward with the same velocity as the train. However, since there are no external forces acting on the ball, it will fall straight down due to the force of gravity, as if the train were at rest.
From the perspective of an observer outside the train, the ball would appear to follow a curved path due to the combination of its horizontal velocity (which matches that of the train) and its vertical velocity (which is due to gravity). But from the perspective of an observer inside the train, the ball appears to fall straight down, as if the train were stationary. This is because the observer inside the train is also moving at the same constant velocity as the train and the ball, and therefore has no way to detect the train's motion relative to the outside world.
To know more about velocity, here
brainly.com/question/18722728
#SPJ4
Calculate the highest frequency x-rays produced by 8•10^4eV electrons
The highest frequency x-rays produced by [tex]8 \times 10^4 eV[/tex] electrons is approximately[tex]1.93 \times 10^{19} Hz[/tex]. This equires the use of the formula for the maximum energy of the emitted photon, which takes into account the energy of the electron and Planck's constant.
To calculate the highest frequency x-rays produced by [tex]8 \times 10^4 eV[/tex]electrons, we need to use the formula for the maximum energy of the emitted photon: E = hf, where E is the energy of the electron, h is Planck's constant, and f is the frequency of the emitted photon.
First, we convert the energy of the electron from electron volts to joules using the conversion factor [tex]1 eV = 1.6 \times 10^{-19} J:[/tex]
[tex]E = 8 \times 10^4 eV \times 1.6\times10^{-19} J/eV[/tex]
[tex]E = 1.28\times10^{-14} J[/tex]
Next, we can use the formula to solve for the frequency of the emitted photon:
f = E/h
[tex]f = (1.28 \times10^{-14} J)/(6.626 \times 10^{-34} J s) \approx 1.93 \times10^{19} Hz[/tex]
Therefore, the highest frequency x-rays produced by [tex]8 \times 10^4 eV[/tex]electrons is approximately [tex]1.93 \times 10^{19} Hz.[/tex]
In summary, the calculation of the highest frequency x-rays produced by [tex]8 \times 10^4 eV[/tex] electrons requires the use of the formula for the maximum energy of the emitted photon, which takes into account the energy of the electron and Planck's constant. The result is an approximation of the frequency of the emitted photon in hertz.
To know more about frequency refer here:
https://brainly.com/question/30751571#
#SPJ11
Particles q1, q2, and q3 are in a straight line. Particles q1 = -5. 00 x 10^-6 C, q2 = +2. 50 x 10^-6 C
The net force acting on q₂ when Particle is positioned between q₁ and q₃ is 0.486N.
Inversely proportional to the square of the distance between charges and proportionate to the product of their magnitudes is the electrostatic force of attraction or repulsion.
Force on q₂ due to q₁
F₁₂ = kq₁q₂ / r₁₂²
Putting the values provided , may get
F₁₂ = 9 x 10⁹ x 5 x 10⁻⁶ x 2.5 x 10⁻⁶ / (0.5)²
F₁₂ = 0.414 N
Force on q₂ due to q₃ placed at distance 0.25m
F₂₃ =kq₂q₃ / r₂₃²
Substitute the values, can get
F₂₃ = 9 x 10⁹ x 2.5 x 10⁻⁶ x 2.5 x 10⁻⁶ / (0.25)²
F₂₃ = 0.9N
The net force can be calculated as
F =F₂₃ -F₁₂
F =0.9 - 0.414 = 0.486 N
Therefore, the net force of q₂ is 0.486 N.
The complete question is,
Particles q1, q2, and q3 are in a straight line. Particles q1 = -5.00 x 10^-6 C, q2 = +2.50 x 10^-6 C, and q3 = -2.50 x 10^-6 C. Particles q1 and q2 are separated by 0.500 m. Particles q2 and q3 are separated by 0.250 m. What is the net force on q2?
To know more about Particle
https://brainly.com/question/23267775
#SPJ4
Imagine you wanted to launch a satellite so that it traveled in the opposite direction from usual that is east to west rather than the west to east.how fast would the rocket launching that satellite have to travel relative to the launching site , if you launched it from a point on the equator
To launch a satellite towards the west, the rocket must have a velocity of 8.38 km/s, which is the sum of the Earth's rotational velocity and the desired speed of the satellite relative to the Earth's surface.
If we want to launch a satellite in the opposite direction of the Earth's rotation, it would have to be launched from west to east. The Earth rotates towards the east with a velocity of approximately 465.1 m/s at the equator.
Hence, to launch the satellite towards the west, the rocket must have a velocity of 465.1 m/s plus the desired speed of the satellite relative to the Earth's surface. The magnitude of the rocket's velocity relative to the Earth's surface would depend on the altitude at which the satellite is to be placed.
If we assume a low Earth orbit of 200 km, then the satellite must move at a speed of approximately 7.91 km/s relative to the Earth's surface. Therefore, the rocket launching the satellite would have to travel at a velocity of approximately 8.38 km/s (7.91 km/s + 465.1 m/s) relative to the launching site on the equator.
In summary, to launch a satellite towards the west, the rocket must have a velocity equal to the sum of the Earth's rotational velocity and the desired speed of the satellite relative to the Earth's surface.
To know more about velocity refer here:
https://brainly.com/question/19979064#
#SPJ11