The magnitude of vector v is 4 and the direction is 125 degrees.
Given that vector u has a magnitude of 2 and a direction of 55 degrees, we can determine the magnitude and direction of vector v.
To find the magnitude of vector v, we can use the equation:
|v| = |-2u|
Since u has a magnitude of 2, we can substitute it into the equation:
|v| = |-2 * 2|
|v| = |-4|
|v| = 4
The magnitude of vector v is 4.
To find the direction of vector v, we can note that multiplying a vector by -1 (in this case, multiplying u by -2) reverses its direction. So the direction of v is the exact opposite of the direction of u.
Since the direction of u is 55 degrees, the direction of v is 55 degrees in the opposite direction. In the interval of 0 degrees ≤ θ < 360 degrees, the direction of v can be expressed as:
θ = 180 - 55
θ = 125 degrees
To learn more about vector
https://brainly.com/question/28197250
#SPJ11
Find the area of a circle with a radius of 4 m two ways. First, find it using the formula for the area of a circle. Then, find it by breaking the circle into equal sectors and rearranging the sectors as a parallelogram. Show all calculations. Use π, instead of an approximation, in your answers. Round to the nearest tenth
Using the formula for the area of a circle:
A = πr^2
A = π(4m)^2
A = 16π
A ≈ 50.3 m^2
Breaking the circle into equal sectors and rearranging the sectors as a parallelogram:
We can break the circle into 8 equal sectors, like this:
[IMAGE: circle with 8 equal sectors]
Each sector is 1/8th of the circle, so its angle is 45°. We can rearrange the sectors to form a parallelogram, like this:
[IMAGE: parallelogram made up of 8 sectors of the circle]
The base of the parallelogram is the same as the circumference of the circle, which is 2πr:
base = 2πr
base = 2π(4m)
base = 8π
The height of the parallelogram is the radius of the circle, which is 4m.
Now we can find the area of the parallelogram:
A = base × height
A = 8π × 4m
A = 32π
A ≈ 100.5 m^2
Finally, we can divide the area of the parallelogram by 8 to get the area of the circle:
A = (area of parallelogram) ÷ 8
A = (32π) ÷ 8
A = 4π
A ≈ 12.6 m^2
Therefore, the area of the circle is approximately 50.3 m^2 (using the formula) or 12.6 m^2 (using the parallelogram method).
To know more about parallelogram refer here
https://brainly.com/question/29147156#
#SPJ11
Olivia and her friends went to a movie at 1:50 P.M. The movie ended at 4:10 P.M. How long was the movie?
Answer: The movie was 2 hours and 20 minutes long.
Step-by-step explanation:
basic adding + subtracting
The radius of a cylinder water tank is 6 Ft and it’s height is 11 ft what is the volume of the tank.
Answer:
1243 ft³
Step-by-step explanation:
Given the volume formula for a cylinder:
[tex]V=\pi r^{2} h[/tex]
and we know that the radius is 6 and the height is 11, we can substitute:
[tex]V=\pi 6^{2} 11[/tex]
square 6
V=π36(11)
use 3.14 for pi and multiply everything together
V=3.14(36)(11)
simplify
V=1243.44
1243.44 rounded to the nearest whole number is 1,243 ft³.
Hope this helps! :)
Center: (2, 8) radius: 3
What is the equation of a circle with the center and radius given?
Determine whether y=3x^2 - 12x + 1 has a minimum or a maximum value. Then find the value
Minimum
-11
Step-by-step explanation:Main concepts:
Concept 1: Identify the type of equation
Concept 2: Identify the concavity (opens up/down)
Concept 3: Finding a vertex of a parabola
Concept 1: Identify the type of equation
First, observe that the equation is a polynomial. This is a type of equation where there may be multiple terms containing an x, where each term with an x is raised to a whole number power, and may be multiplied by a real number. Additionally, there may be a constant term added (or subtracted).
For our equation, [tex]y=3x^2-12x+1[/tex], the first two terms contain an x, each raised to a whole number power, and are multiplied by a number. Additionally, there is a constant added to the end of the equation. Therefore, this is a polynomial.
The largest power of x in a polynomial is called the "degree" of the polynomial. Since the largest power of x is 2, this is called a second degree polynomial. Another common name for a second degree polynomial is a quadratic equation.
This quadratic equation is already in what is known as "Standard form" [tex]y=ax^2+bx+c[/tex]
Concept 2: Identify the concavity (opens up/down)
For quadratic equations, the graph of the equation will be a sort of "U" shape" called a parabola. The parabola either opens up or down depending on the "leading coefficient" in the quadratic equation.
The "leading coefficient" of any polynomial is the constant number that is multiplied to x in the term with the highest power. In this case, the leading coefficient is 3.
A parabola opens up or down in correspondence with the sign of the leading coefficient. If the leading coefficient is positive, the parabola opens upward. If the leading coefficient is negative, the parabola opens downward.
Since the leading coefficient is 3, the parabola for our example opens upward. The branches of the "U" will go upward forever, without a maximum. However, the bottom of the "U" will have a minimum value. We are assigned to find this minimum value (how low it goes).
Concept 3: Finding a vertex of a parabola
To find the vertex of a parabola, with an equation in standard form, there are a few methods, but the most straightforward is to use the vertex formula:
[tex]h=\dfrac{-b}{2a}[/tex]
Where "h" is the x-coordinate of the vertex, and "a" and "b" are the coefficients from the quadratic equation: [tex]y=ax^2+bx+c[/tex]
[tex]h=\dfrac{-(-12)}{2(3)}[/tex]
[tex]h=\dfrac{12}{6}[/tex]
[tex]h=2[/tex]
So, the parabola will have a vertex with an x-coordinate of "2", meaning that the lowest point will be at a position that is 2 units to the right of the origin... however, we still don't know how high that minimum is. Fortunately, the equation [tex]y=3x^2-12x+1[/tex] itself gives the relationship between any x-value and the y-value that is associated with it.
[tex]y=3x^2-12x+1[/tex]
[tex]y=3(2)^2-12(2)+1[/tex]
[tex]y=3*4+(-12)*2+1[/tex]
[tex]y=12+-24+1[/tex]
[tex]y=-11[/tex]
So, the vertex of the parabola is (2,-11).
The height of the vertex is -11, so the value of the minimum is -11.
Side note: "What is the value of the minimum" is a different question that "where is the minimum at". The minimum is at 2. The actual value of the minimum is -11.
find the volume of the solid obtained by rotating the region bounded by 2 =8 32? and 2 = -2y about the line x= 9. round to the nearest thousandth.
The volume of the solid obtained by rotating the region about the line x=9 is approximately 201.06 cubic units.
To find the volume of the solid obtained by rotating the region bounded by 2 =8 32? and 2 = -2y about the line x= 9, we can use the cylindrical shell method.
First, we need to sketch the region and the line of rotation:
| +---------+
8 | | |
| | |
| +---------+ x=9
|
0 +---------------+
0 4 8
The region is a rectangle with height 4 and width 8, centered at the origin. The line of rotation is x=9.
Now, we can express the volume of the solid as a sum of cylindrical shells:
V = ∫[0,4] 2πr h dx
where r is the distance between x=9 and the boundary of the region at height x, and h is the thickness of the shell.
Since the region is symmetric about the y-axis, we can consider only the right half of the region and multiply the result by 2 to get the total volume.
The equation of the boundary at height x is:
2 = -2y
y = -x/2
The distance between x=9 and this line is:
r = 9 - (-x/2) = 9 + x/2
The thickness of the shell is dx.
Substituting these values into the integral, we get:
V = 2 ∫[0,4] 2π(9 + x/2) dx
V = 2π ∫[0,4] (18 + x) dx
V = 2π [18x + (1/2)[tex]x^2[/tex]] from x=0 to x=4
V = 2π [(18*4 + (1/2)[tex]4^2[/tex]) - (180 + (1/2)*[tex]0^2[/tex])]
V = 64π ≈ 201.06
Therefore, the volume of the solid obtained by rotating the region about the line x=9 is approximately 201.06 cubic units.
Learn more about volume
https://brainly.com/question/1578538
#SPJ4
Amelie spins the following spinner, which has 10 equally sized spaces numbered 1 through 10. the numbers 1 and 7 are colored blue; the numbers 2, 4, and 6 are red; and the numbers 3, 5, 8, 9, and 10 are green.
what is the probability that amelie spins either an odd number or a red number?
The probability of Amelie spinning either an odd number or a red number is 0.6 or 60%.
The probability of Amelie spinning either an odd number or a red number can be found by adding the probability of spinning an odd number to the probability of spinning a red number and then subtracting the probability of spinning a number that is both even and not red.
First, let's find the probability of spinning an odd number. Out of the ten equally sized spaces on the spinner, five of them are odd (1, 3, 5, 7, and 9). Therefore, the probability of spinning an odd number is 5/10 or 1/2.
Next, let's find the probability of spinning a red number. Out of the ten equally sized spaces on the spinner, three of them are red (2, 4, and 6). Therefore, the probability of spinning a red number is 3/10.
Finally, we need to subtract the probability of spinning a number that is both even and not red. Out of the ten equally sized spaces on the spinner, two of them are even and not red (8 and 10). Therefore, the probability of spinning a number that is both even and not red is 2/10 or 1/5.
To find the probability of spinning either an odd number or a red number, we add the probability of spinning an odd number (1/2) to the probability of spinning a red number (3/10) and then subtract the probability of spinning a number that is both even and not red (1/5).
(1/2) + (3/10) - (1/5) = 0.6 or 60%
Therefore, the probability of Amelie spinning either an odd number or a red number is 0.6 or 60%.
To know more about probability, visit:
https://brainly.com/question/30034780#
#SPJ11
D(x) is the price, in dollar per unit, that the consumers are willing to pay for x units of an item, and S(x) is the price, in dollars per unit, that producers are willing to accept for x units. Find (a) the equilibrium point, (b) the consumer surplus at the equilibrium point, and (c) the producer surplus at the equilibrium point.
D(x)=(x-7)^2, S(x)=x^2+2x+33
Find:
A) The equilibrium point
B) The consumer surplus at the equilibrium point
C) The producer surplus at the equilibrium point
32/9
So the producer surplus at the equilibrium point is 32/9 dollars.
To find the equilibrium point, we need to set D(x) equal to S(x) and solve for x:
(x-7)^2 = x^2 + 2x + 33
Expanding and simplifying:
x^2 - 14x + 49 = x^2 + 2x + 33
12x = 16
x = 4/3
So the equilibrium point is x = 4/3.
To find the consumer surplus at the equilibrium point, we need to find the difference between the maximum price consumers are willing to pay (D(4/3)) and the equilibrium price (S(4/3)) and multiply by the quantity sold (4/3):
Consumer surplus = (D(4/3) - S(4/3)) * (4/3)
= [(4/3 - 7)^2 - (4/3)^2 - 2(4/3) - 33] * (4/3)
= [49/9 - 16/9 - 8/3 - 33] * (4/3)
= -224/27
So the consumer surplus at the equilibrium point is -224/27 dollars.
To find the producer surplus at the equilibrium point, we need to find the difference between the equilibrium price (S(4/3)) and the minimum price producers are willing to accept (S(0)) and multiply by the quantity sold (4/3):
Producer surplus = (S(4/3) - S(0)) * (4/3)
= [(4/3)^2 + 2(4/3) + 33 - 33] * (4/3)
= 32/9
So the producer surplus at the equilibrium point is 32/9 dollars.
Learn more about minimum price here:
https://brainly.com/question/13293427
#SPJ11
use the ratio test to determine whether the series is convergent or divergent. [infinity] 13^n N = 1 (n + 1)62n + 1 identify an.
Evaluate the following limit.
lim n → [infinity]
an + 1
an
Since lim n → [infinity]
an + 1
an
We can use the ratio test to determine whether the series ∑(n=1[tex])^(infinity)[/tex][tex]13^n[/tex]/ [(n+1)[tex]6^(2n+1)[/tex]] is convergent or divergent.
We evaluate the limit:
lim n → ∞ [tex]|(13^(n+1) / [(n+2)6^(2n+3)]) / (13^n / [(n+1)6^(2n+1)])|[/tex]
= lim n → ∞ [tex]|(13^(n+1) / 13^n) * [(n+1)6^(2n+1) / (n+2)6^(2n+3)]|[/tex]
= lim n → ∞ [tex]|13 / 6^2| * |(n+1)/(n+2)|[/tex]
= 13/36
Since the limit is less than 1, by the ratio test, the series is convergent.
To find the value of a_n, we can substitute n = 1 into the formula:
a_n = [tex]13^n / [(n+1)6^(2n+1)][/tex]
a_1 = [tex]13 / [(1+1)6^(2+1)] = 13 / (2*6^3)[/tex]
Therefore, a_1 = 13 / 432.
Note that we only needed to find the value of a_1 to apply the ratio test and determine the convergence of the series.
Learn more about convergent
https://brainly.com/question/15415793
#SPJ4
The aquarium has a fish tank in the shape of a prism. if the tank is 3/4 full of water, how much water is in the tank?
The amount of water in the tank can be calculated by multiplying 3/4 to the volume of the tank: 3/4 x V = (3/4)L x W x H.
To calculate the amount of water in the aquarium's fish tank in the shape of a prism,
you would need to know the dimensions of the tank and then multiply the volume of the tank by 3/4.
Let's assume that the aquarium has a rectangular prism shape,
the amount of water in the tank would depend on the dimensions of the tank.
Let's assume the tank has a length of L, a width of W, and a height of H.
The volume of the tank can be calculated by multiplying the length, width, and height together: V = L x W x H.
If the tank is 3/4 full of water, the volume of water in the tank would be 3/4 of the total volume of the tank.
Learn more about rectangular prism here:
https://brainly.com/question/21308574
#SPJ4
Given that a function, g, has a domain of -20 ≤ x ≤ 5 and a range of -5 ≤ g(x) ≤ 45 and that g(0) = -2 and g(-9) = 6, select the statement that could be true for g.
A.
g(7) = -1
B.
g(0) = 2
C.
g(-13) = 20
D.
g(-4) = -11
The option that can be true for the function g(x) is C; g(-13) = 20
Which statement could be true?Here we know that the function g(x) has:
The domain ---> -20 ≤ x ≤ 5
The range ---> -5 ≤ g(x) ≤ 45
And g(0) = -2
g(-9) = 6
There are two statements that could be true:
g(-13) = 20, because -13 belongs to the domain and 20 belongs to the range.
g(0) = 2 could also be true.
Now, we can see that g(-9) > g(0), then as x becomes smaller, g increases, then the option that seems to be correct is g(-13) = 20
Learn more about domain and range:
https://brainly.com/question/10197594
#SPJ1
What is the area of the sector bounded by the arc?
The given circle has a radius of 3 m and the shaded
section has an arc length of 47 m.
nº
Arc length
Circumference
360°
3 m
WIN
nº
360°
arc length
40 m
nº
Area = (97)
360°
Area = { (97)
bem?
The area of the sector is approximately 23.24 m^2.
How to find the area?To find the area of the sector, we first need to find the central angle of the sector.
The entire circumference of the circle is given by 2πr, where r is the radius of the circle. In this case, the circumference is 2π(3) = 6π m.
The arc length given is 47 m, which we can use to find the central angle of the sector:
central angle = (arc length / circumference) × 360°
central angle = (47 / 6π) × 360°
central angle ≈ 299.02°
Now that we have the central angle, we can use the formula for the area of a sector:
area of sector = (central angle / 360°) × πr^2
area of sector = (299.02 / 360) × π(3)^2
area of sector ≈ 7.43π m^2
Rounding to two decimal places, the area of the sector is approximately 23.24 m^2.
Learn more about Area of Sector
brainly.com/question/7512468
#SPJ11
Gilberto Brought $36. 50 to the state fair. He bought a burger a souvenir and a pass. The burger was 1/3 as much as the souvenir and the souvenir cost 1/2 the cost of the pass. Gilberto had $4. 00 left over after buying these items
Gilberto brought $69.00 to the state fair.
How much money did Gilberto bring to the state fair originally?Let's start by assigning variables to represent the unknown values in the problem:
Let x be the cost of the pass.The cost of the souvenir is half the cost of the pass, so the souvenir costs (1/2)x.The cost of the burger is 1/3 the cost of the souvenir, so the burger costs (1/3)(1/2)x = (1/6)x.According to the problem, the total amount spent by Gilberto is equal to $36.50, so we can set up an equation:
x + (1/2)x + (1/6)x = 36.5
Simplifying the equation, we can combine the like terms:
(5/6)x = 36.5
To solve for x, we can multiply both sides by the reciprocal of 5/6:
x = 36.5 / (5/6) = $43.80
So the cost of the pass is $43.80. Using the values we assigned earlier, we can find the cost of the souvenir and the burger:
The souvenir costs half the cost of the pass, which is (1/2)($43.80) = $21.90.The burger costs 1/3 the cost of the souvenir, which is (1/3)($21.90) = $7.30.Therefore, Gilberto spent $43.80 on the pass, $21.90 on the souvenir, and $7.30 on the burger, for a total of $43.80 + $21.90 + $7.30 = $73.00.
However, we are also told that Gilberto had $4.00 left over after buying these items.
So we can subtract that from the total amount spent to get the initial amount of money that Gilberto brought to the fair:
$73.00 - $4.00 = $69.00
Therefore, Gilberto brought $69.00 to the state fair.
Learn more about state fair
brainly.com/question/650189
#SPJ11
The motion of a point on the drum of a clothes dryer is modeled by the function y=12 sin (4/3π t) +20, where t is the time in seconds. How many times does the dryer rotate per minute?
If the motion of a point on the drum of a clothes dryer is modeled by the function y=12 sin (4/3π t) +20, the dryer rotates 40 times per minute.
The function y = 12 sin (4/3π t) + 20 models the vertical motion of a point on the drum of a clothes dryer. The amplitude of the function is 12, which represents the maximum displacement of the point from its rest position. The vertical shift of the function is 20, which represents the height of the point from the ground when the drum is at rest.
To determine the number of times the dryer rotates per minute, we need to find the period of the function, which is the time it takes for the function to complete one full cycle. The period of a sinusoidal function is given by the formula:
T = (2π) / b
where b is the coefficient of the t variable in the sine or cosine function.
In this case, b = (4/3)π, so the period of the function is:
T = (2π) / (4/3π) = 3/2 seconds
This means that the point on the drum completes one full cycle of vertical motion every 3/2 seconds. To convert this to rotations per minute, we need to find the number of cycles per minute:
cycles per minute = (60 seconds per minute) / (3/2 seconds per cycle) = 40 cycles per minute
To learn more about rotations click on,
https://brainly.com/question/29792549
#SPJ1
What’s my gpa?
For school
Answer:
2.2
Step-by-step explanation:
To find your GPA, use the attached image:
After you've written down your numerical scores, divide it by the total classes you're taking, which is 7.
So, your GPA is 2.2
A mouse is moving through a maze and must make four turns where it can go either left or
right. The mouse will escape the maze if it makes three lefts and one right, in any order.
(a) To the right, draw a tree diagram
of all possible routes the mouse
could take.
(b) Using your tree diagram, create
an organized list of the routes. For
example, a route of right, left, left,
right could be listed as RLLR.
(C) What is the probability the mouse
escapes the maze if all turns are
randomly made?
Hence, 25% is the likelihood that the mouse will succeed in escaping the maze if all turns are made at random.
what is probability ?The examination of random chance and the likelihood that they will occur is the focus of the mathematical field of probability. It is a gauge of how likely an event is to occur and is represented by a value between zero and 1. A probability of 1 indicates that an event will undoubtedly occur. The probability of an occurrence is zero if it cannot occur. An event's probability is 0.5, or 50%, when it possesses a 50/50 chance of occurring. The number of favourable outcomes is divided by the entire amount of possible results to determine probability.
given
Based on the tree diagram, the following is an orderly list of every route that might be taken:
Three left turns and one right turn, in whatever order, make up each route.
As there are two options (left or right) for each turn, there are a total of 24 = 16 potential sequences of four turns.
Only if the mouse makes precisely three left turns and one right out of these will it be able to escape the maze.
Three lefts and one right can be arranged in one of four distinct ways (LLL, LLR, LRL, RLL), so the likelihood that the mouse will elude the maze is:
P(escape) = Number of favourable results / Number of potential results = 4 / 16 = 0.25 = 25%
Hence, 25% is the likelihood that the mouse will succeed in escaping the maze if all turns are made at random.
To know more about probability visit:
https://brainly.com/question/11234923
#SPJ1
Chris is using the expression 4x + 2 to represent the number of students in his gym class. There are four times as many students as basketballs, and there are two more students in the locker room. What does x represent? (4 points)
X represents the number of basketballs in Chris's gym class.
Chris represents the number of students in his gym class with the expression 4x + 2. We know that the number of students is four times the number of basketballs, so we can set up the equation 4x = the number of basketballs.
If we substitute this expression for the number of students in the gym class, we get 4(4x) + 2 = the total number of students in the gym class and locker room. We also know that there are two more students in the locker room, so we can add 2 to this expression to get 4(4x) + 4 = the total number of students in the gym class and locker room.
Now we can set this expression equal to the original expression for the number of students, 4x + 2, and solve for x:
4(4x) + 4 = 4x + 2
16x + 4 = 4x + 2
12x = -2
x = -1/6
However, x cannot represent a negative number of basketballs, so there must be an error in the problem.
For more questions like Expression click the link below:
https://brainly.com/question/29583350
#SPJ11
3. Let ya if (x,y) + (0,0) f(x,y) = x2 + y 0 if x=y=0. lim f(x,y) exist? Verify your claim. (x,y)+(0,0) (a) Does
Since the function approaches the same value (0) along both paths, we can claim that the limit lim(x,y)→(0,0) f(x,y) exists and is equal to 0.
Your question is asking whether the limit of the function f(x,y) exists at the point (0,0). The function f(x,y) is defined as:
f(x,y) = x^2 + y if (x,y) ≠ (0,0)
f(x,y) = 0 if x = y = 0
To verify whether the limit exists, we need to check if the function approaches a unique value as (x,y) approaches (0,0). In other words, we need to determine if lim(x,y)→(0,0) f(x,y) exists.
To verify this claim, consider the function along different paths towards (0,0). Let's examine two paths:
1) x = 0: As x approaches 0, f(0,y) = y, and the limit becomes lim(y→0) y = 0.
2) y = x: As y approaches 0 along this path, f(x,x) = x^2 + x, and the limit becomes lim(x→0) (x^2 + x) = 0.
Since the function approaches the same value (0) along both paths, we can claim that the limit lim(x,y)→(0,0) f(x,y) exists and is equal to 0.
Learn more about limit Visit: brainly.com/question/282767
#SPJ11
The measures of the interior angles of a hexagon are represented by
, and. The measure of the largest interior angle is
The measure of the largest interior angle is 105°.
What is the measure of angle?
When two lines or rays intersect at a single point, an angle is created. The vertex is the term for the shared point. An angle measure in geometry is the length of the angle created by two rays or arms meeting at a common vertex.
Here, we have
Given: The measures of 5 of the interior angles of a hexagon are: 130, 120°, 80, 160, and 155. we have to find the measure of the largest interior angle.
The sum of all the six interior angles of a hexagon is 720°.
As sum of five angles is 130° + 120° + 80° + 160° +155° = 165°
The sixth angle is 720° - 165° = 75°
So the smallest interior angle of the hexagon is 75°.
and the largest exterior angle is 180° - 75° = 105°.
Hence, the measure of the largest interior angle is 105°.
Question: The measures of 5 of the interior angles of a hexagon are: 130, 120°, 80, 160, and 155 What is the measure of the largest exterior angle?
To learn more about the measure of angle from the given link
https://brainly.com/question/28293784
#SPJ4
If $x$ is a positive number such that\[\sqrt{8x}\cdot\sqrt{10x}\cdot\sqrt{3x}\cdot\sqrt{15x}=15,\]find all possible values for $x$.
The possible values of x as required to be determined in the task content are; ±½.
What are the possible values of x?It follows from the task content that the possible values of x are to be determined from the given task content.
The given equation can be written algebraically as;
√(8x) • √(10x) • √(3x) • √(15x) = 15
√3600x² = 15
60x² = 15
x² = 15 / 60
x² = 1/4.
x = ± ½.
Ultimately, the possible values of x as required in the task content are; +½ and -½.
Read more on radical equations;
https://brainly.com/question/30314716
#SPJ1
Aiden gave each member of his family a playlist of random songs to listen to and asked them to rate each song between 0 and 10. He compared his family’s ratings with the release year of each song and created the following scatterplot:
What would the linear equation be?
The linear equation in slope intercept form is:
y = -0.1x + 9
What is the Linear Equation from the Scatter Plot?The formula for finding the Linear Equation in slope intercept form is expressed in the form:
y = mx + c
where:
m refers to the slope
c refers to the y-intercept
Looking at the given graph, we can see that:
The y-intercept = 9
The y-intercept is the point where the line crosses the y-axis while x-intercept is the point where the line crosses the x-axis.
Taking the two coordinates:
(1970, 7) and (1990, 5)
Slope:
m = (5 - 7)/(1990 - 1970)
m = -2/20
m = -0.1
Thus, the Equation in slope intercept form is expressed in the form of:
y = -0.1x + 9
Read more about Linear Equation at: https://brainly.com/question/28732353
#SPJ1
What is the average rate if change over the domain -1
I'm sorry, but the domain of a function is usually specified as an interval or range of values, rather than a single point. To calculate the average rate of change of a function over a given domain, we need to know the function itself and the endpoints of the domain.
If you provide me with more details about the function and the domain, I can help you calculate the average rate of change.
To know more about domain refer here
https://brainly.com/question/3111756#
#SPJ11
help me please i legit need help with pythagorean theorm
Answer:
1. [tex]9^{2} + 12^2 = 15^2\\81+144=225[/tex]
Which statement about the function is true? the function is increasing for all real values of x where x < –4. the function is increasing for all real values of x where –6 < x < –2. the function is decreasing for all real values of x where x < –6 and where x > –2. the function is decreasing for all real values of x where x < –4.
The function is increasing for all real values of x where x < –4.
How does the function behave for different values of x?The statement that is true about the function is: "The function is decreasing for all real values of x where x < -4."
In order to determine the behavior of the function, we look at the given options. Among the options, the only statement that aligns with the function being decreasing is the one that states the function is decreasing for all real values of x where x < -4.
If a function is decreasing, it means that as the value of x decreases, the value of the function also decreases. In this case, it indicates that as x becomes more negative, the function's values decrease.
Therefore, the statement that correctly describes the behavior of the function is that it is decreasing for all real values of x where x < -4.
Learn more about function
brainly.com/question/21145944
#SPJ11
The total weight of a shipping crate is modeled by the function c = 24b + 30, * where c is the total weight of the crate with b boxes packed inside the crate. If each crate holds a maximum of 6 boxes, then what are the domain and range of the function for this situation?
The domain of the function is 0 ≤ b ≤ 6, and the range of the function is 30 ≤ c ≤ 174.
Understanding Domain of a FunctionThe function that models the total weight of a crate with b boxes inside is given as:
c = 24b + 30
We know that each crate can hold a maximum of 6 boxes. Therefore, the number of boxes inside the crate can only take values from 0 to 6.
Domain:
The number of boxes b can take values from 0 to 6. Therefore, the domain of the function is:
0 ≤ b ≤ 6
Range:
To find the range of the function, we need to consider the maximum and minimum values that c can take when
0 ≤ b ≤ 6.
When b = 0, the crate is empty, and the total weight of the crate is:
c = 24(0) + 30 = 30.
When b = 6, the crate is full with 6 boxes, and the total weight of the crate is:
c = 24(6) + 30 = 174.
Therefore, the range of the function is:
30 ≤ c ≤ 174
We can then say the domain of the function is 0 ≤ b ≤ 6, and the range of the function is 30 ≤ c ≤ 174.
Learn more about domain here:
https://brainly.com/question/26098895
#SPJ1
During taylor's first test of a car with a mass of 250 grams, she recorded 10 seconds, 10.3 seconds, and 10.4 seconds for her 3 trials. what would be the mean value she would use to compare with the other cars?
The mean value Taylor would use is 10.23 seconds.
What is the mean value of Taylor's recorded times for her car's trials?To calculate the mean value for Taylor's recorded times, we add up the individual times (10 seconds, 10.3 seconds, and 10.4 seconds) to obtain a total of 30.7 seconds.
we divide this total by the number of trials, which in this case is 3.
30.7 seconds divided by 3 equals approximately 10.23 seconds.
The mean value of Taylor's recorded times for her car's trials is approximately 10.23 seconds.
The mean value is often used as a measure of central tendency to represent the average of a set of values.
In this case, it represents the average time recorded by Taylor during her trials.
By calculating the mean, we can compare this value with the mean times of other cars to assess performance.
Learn more about Mean
brainly.com/question/31101410
#SPJ11
The population of a town after t years is represented by the function (t)=7248(0.983)^t. What does the value 0.983 represent in this situation
Answer:
Constant
Step-by-step explanation:
What is an exponential function?
An exponential function is a function with the general form y = abx, a ≠ 0, b is a positive real number and b ≠ 1. In an exponential function, the base b is a constant. The exponent x is the independent variable where the domain is the set of real numbers.
In this case, y=ab^x
where 0.983 is in our b term, which gives the meaning that number is our constant in this exponential function.
Give your answer accurate to 3 decimal places.
Claire starts at point A and runs east at a rate of 12 ft/sec. One minute later, Anna starts at A and runs north at a rate of 7 ft/sec. At what rate (in feet per second) is the distance between them changing after another minute?
______ft/sec
Solving for dz/dt, we get:
dz/dt ≈ 11.650 ft/sec.
So, after another minute, the distance between Claire and Anna is changing at a rate of approximately 11.650 ft/sec.
Hi there! To answer this question, we can use the Pythagorean theorem and implicit differentiation. Let x be the distance Claire runs east and y be the distance Anna runs north. After 1 minute, Claire has already run 12 * 60 = 720 ft. After another minute, x = 720 + 12t, and y = 7t.
Now, we can set up the Pythagorean theorem: x^2 + y^2 = z^2, where z is the distance between them. Substituting the expressions for x and y, we get (720 + 12t)^2 + (7t)^2 = z^2.
To find the rate at which the distance between them is changing (dz/dt), we need to differentiate both sides of the equation with respect to time, t:
2(720 + 12t)(12) + 2(7t)(7) = 2z(dz/dt).
Now, we can plug in the values for t = 2 minutes:
2(720 + 24)(12) + 2(14)(7) = 2z(dz/dt).
Simplifying, we get:
34560 + 392 = 2z(dz/dt).
After 2 minutes, Claire has run 12(120) = 1440 ft, and Anna has run 7(60) = 420 ft. Using the Pythagorean theorem, we can find z:
z = √(1440^2 + 420^2) ≈ 1500 ft.
Now we can find dz/dt:
34952 = 2(1500)(dz/dt).
Learn more about Pythagorean theorem here:
https://brainly.com/question/31142122
#SPJ11
HELP DUE IN 5 min Area=?
Answer:
The answer to your problem is, 39
Step-by-step explanation:
In order to find the area of the triangle use the formula down below:
A = [tex]\frac{h_{b} b}{2}[/tex]
Base = 13
Height = 6
Replace them equals:
= [tex]\frac{6*13}{2}[/tex] = 39
Thus the answer to your problem is, 39
100-3(4. 25)-13-4(2. 99) SOMEONE PLSS HELP MEE THIS IS DIE TMRW!!
The simplified expression of 100-3(4. 25)-13-4(2. 99) is 48.29.
What is PEMDAS?
PEMDAS stands for Parentheses, Exponents, Multiplication and Division (from left to right), and Addition and Subtraction (from left to right). It is a mnemonic or acronym used to remember the order of operations when simplifying mathematical expressions.
To simplify the expression 100-3(4.25)-13-4(2.99), you can follow the order of operations (PEMDAS) which is:
Parentheses
Exponents
Multiplication and Division (from left to right)
Addition and Subtraction (from left to right)
Using this order, you can simplify the expression as follows:
100 - 3(4.25) - 13 - 4(2.99)
= 100 - 12.75 - 13 - 11.96 // multiply 3 and 4 with their respective numbers
= 62.29 - 13 - 11.96 // perform subtraction within parentheses
= 48.29 // perform final subtraction
Therefore, the simplified expression is 48.29.
To learn more about PEDMAS from the given link:
https://brainly.com/question/24086845
#SPJ4