The diameter of a circle is 5 ft. Find its area to the nearest tenth.
Answer:
A = 19.6 ft²
Step-by-step explanation:
A = πr² Use this equation to find the area of the circle
A = π(2.5)² Multiply
A = π(6.25) Multiply
A = 19.6 ft²
Which product represents the fraction of the circle that is shaded?
A
B
C
D
Answer:
B
Step-by-step explanation:
A street performer earns 40% of all his daily earnings at the barclays center subway station.He earns about $60 at that station. Assuming he works everyday and earns the same amount, how much does he earn in two weeks?
Answer:
He earns $2,100 in two weeks.
Step-by-step explanation:
We know that this street performers earn $60 per day at the Barclays center subway station, and that this earning represents 40% (or a proportion of 0.4) of his daily earnings. We can calculate his daily earnings as:
[tex]0.4D=\$\,60\\\\D=\dfrac{\$\,60}{0.4}=\$\,150[/tex]
If the daily earnings are $150, the earnings in 2 weeks (14 days) will be:
[tex]W=14\cdot\$\,150=\$\,2100[/tex]
The sum of two consecutive integers is −19. Find the integers.
Answer:
-9 and -10
Step-by-step explanation:
x + x+1=-19
2x+1=-19
2x=-19-1
2x=-20
x=-10
x+1
-10+1=-9
Answer:
[tex]-9[/tex]
[tex]-10[/tex]
Step-by-step explanation:
[tex]x+x+1=-19[/tex]
[tex]2x+1=-19[/tex]
[tex]2x=-19-1[/tex]
[tex]2x=-20[/tex]
[tex]x=-20 \div 2[/tex]
[tex]x=-10[/tex]
[tex]x+x+1=-19[/tex]
[tex]x+1=-19-x[/tex]
[tex]-10+1=-19-(-10)[/tex]
[tex]-9=-19+10[/tex]
[tex]-9=-9[/tex]
How many commuters must be randomly selected to estimate the mean driving time of Chicago commuters? We want 98% confidence that the sample mean is within 4 minutes of the population mean, and the population standard deviation is known to be 12 minutes. 25 35 49 60
Answer:
49
Step-by-step explanation:
Margin of error = critical value × standard error
ME = CV × SE
The critical value at 98% confidence is z = 2.326.
Standard error is SE = σ / √n.
4 = 2.326 × 12 / √n
n = 49
The line y = kx + 4, where k is a constant, is
graphed in the xy-plane. If the line contains the
point (c,d), where c ≠ 0 and d ≠ 0, what is the slope
of the line in terms of c and d ?
Answer:
(d - 4) / c
Step-by-step explanation:
The slope of the line in terms of c and d is (d - 4) / c.
Here, we have,
To find the slope of the line in terms of the coordinates of the point (c, d), we can use the slope-intercept form of a line, y = mx + b, where m represents the slope.
In the given equation, y = kx + 4, we can see that the coefficient of x is k, which represents the slope of the line.
Since the line contains the point (c, d), we can substitute these values into the equation:
d = kc + 4
To isolate the slope term, we rearrange the equation:
d - 4 = kc
Now, divide both sides by c:
(d - 4) / c = k
Therefore, the slope of the line in terms of c and d is (d - 4) / c.
To learn more on slope click:
brainly.com/question/3605446
#SPJ2
Assuming that a cheese sandwich consists of 2 slices of bread and 3 slices of cheese, determine the number of whole cheese sandwiches that can be prepared from 32 slices of bread and 51 slices of cheese. g
Answer:
Only 16 whole sandwiches can be produced
Step-by-step explanation:
From the question, we know that we will need two slices of bread to make a full sandwich.
We can divide the number of slices of bread by two to check how many full sandwiches can be made.
Number of complete sets of bread = 32/2 = 16 sets
Similarly, we can divide the number of slices of cheese by 3 to find out the number of complete sets of cheese that will be there:
Number of complete sets of cheese = 51/3 = 17 sets
Since we have more cheese than bread, the number of whole sandwiches that can be made will be limited to the number of sets of bread available. (in this case, the ingredient smaller in quantity will be used to limit the production) which is = 16
Therefore only 16 whole sandwiches can be produced
Simplify: 5y + 2p – 4y – 6P
Answer:
[tex]y-4p[/tex]
Step-by-step explanation:
Add/subtract like terms.
[tex]5y+2p-4y-6p\\5y-4y+2p-6p\\y-4p[/tex]
Which of the following is a radical equation?
X3 - 13
X+ 15 - 13
√x+3-13
x+3 - 13
Answer:
√x+3-13
Step-by-step explanation:
This answer is a radical equation because a square root is used in the equation. This makes the equation radical. The other choices have no square roots so they can't be the answers.
Any help would be great
Answer:
88/57
Step-by-step explanation:
Answer: 88:57
Step-by-step explanation:
Length is 88 and width is 57
So the ratio is 88:57
What is the answer to this question–1 × –5?
Answer:
5
Step-by-step explanation:
a minus times by another minus makes a positive, so it is basically 1 x 5
Answer:
5
Step-by-step explanation:
Since the you are multiplying 2 minuses together they will cancel each other out to form a positive number. However if you have an example like this
-6 × 7
Then the answer will be -42 because there is only one negative
Simplify the quotient shown 3480 divided by 29
Answer:
120
Step-by-step explanation:
3480/29=120
120
Simplify ———
1
final result is 120
Mai is making personal pizzas. For 4 pizzas, she uses 10 ounces of cheese.
Complete question:
Mai is making personal pizzas. For 4 pizzas, she uses 10 ounces of cheese.
a. How much cheese does Mai use per Pizza
b. At this rate how much cheese will she need to make 15 Pizza's
Answer:
a. ounces of cheese per pizza = 10/4 = 2.5 ounces of cheese
b. amount of cheese to make 15 pizzas= 2.5 × 15 = 37.5 ounces of cheese
Step-by-step explanation:
Mai is making a personal pizzas .For 4 pizza she uses 10 ounces of cheese. This means Mai uses 10 ounces of cheese in weight to make just 4 pizzas.
a. How much cheese does Mai use per Pizza
Not she uses 10 ounces of cheese to make 4 pizzas. Therefore,
If 4 pizzas requires 10 ounces of cheese
1 pizza will require ? ounces of cheese
cross multiply
ounces of cheese per pizza = 10/4 = 2.5 ounces of cheese
b. At this rate how much cheese will she need to make 15 Pizza's
Since she requires 2.5 ounces of cheese to make 1 pizza
? ounces of cheese will be required to make 15 pizzas
cross multiply
amount of cheese to make 15 pizzas = 2.5 × 15 = 37.5 ounces of cheese
For an exam given to a class, the students' scores ranged from 34 to 99 , with a mean of 78 . Which of the following is the most realistic value for the standard deviation: -14,3,0,56,15?
Clearly explain what's unrealistic about each of the other values.
Answer:
The most realistic value for the standard deviation is 15.
Step-by-step explanation:
The standard deviation of a distribution is a measure of dispersion. It is a measure of the spread of the distribution from the mean of the distribution. It expresses how far most of the distribution is from the mean.
Mathematically, the standard deviation is given as the square root of variance. And variance is an average of the squared deviations from the mean.
Mathematically,
Standard deviation = σ = √[Σ(x - xbar)²/N]
x = each variable (ranges from 34 to 99)
xbar = mean = 78
N = number of variables
Now taking the given possible values of the standard deviation one at a time,
-14
The standard deviation cannot be negative as it is a square root of the average of the sum of square deviations from the mean. Since the square of a number cannot be negative, it directly translates that the standard deviation cannot be negative.
3
A small standard deviation like 3 indicates that the distribution mostly centres about the mean, with very little variation. And the distribution given has a mean (78) that is very far away from at least one of the variables in the distribution. Hence, 3 is too low to pass ad the standard deviation of this distribution described.
0
A standard deviation of 0 indicates that all the variables in the distribution have the same value as the mean. That is, the distribution only contains 1 number, probably multiple times. So, this cannot be the standard deviation for the distribution described.
56
This value represents a value that is too high to express the spread of the distribution described. The mean (78) is very close to the maximum value of the distribution, and far away from the lower value(s), indicating that most of the distribution is in and around the upper values with a few variables closer to the lower limit. A standard deviation as high as 56 for a mean of 78 translates to a distribution with most of variables far from the mean, which isn't the case here.
Moreso, a simple add of the standard deviation to the mean or subtracting the standard deviation from the mean should give at least one of the results with values within the distribution.
(Mean) + (Standard deviation) = 78 + 56 = 134 >> 99 (outside distribution)
(Mean) + (Standard deviation) = 78 - 56 = 22 << 34 (also outside the distribution)
15
This is the most realistic value for the standard deviation as it represents what the distribution described above is.
The mean (78) being close to the maximum value of the distribution, and far away from the lower value(s) indicates that most of the distribution is in and around the upper values with a few variables closer to the lower limit.
So, 15 indicates a perfect blend of small deviations due to the high values close to the mean and the very high deviation from the evidently few lower values.
(Mean) + (Standard deviation) = 78 + 15 = 93 < 99 (within distribution)
(Mean) + (Standard deviation) = 78 - 15 = 63 > 34 (also within the distribution)
Hope this Helps!!!
When The most realistic value for the standard deviation is 15.
Step-by-step explanation:
Standard deviation The standard deviation of a distribution is a measure of dispersion. also, It is a measure of the spread of the distribution from the mean of the distribution. when It expresses how far most of the distribution is from the mean. Then according to Mathematically, the standard deviation is given as the square root of variance. And also variance is an average of the squared deviations from the mean.mathematically,When Standard deviation is = σ = √[Σ(x - xbar)²/N]After that x = each variable (ranges from 34 to 99)then xbar is = mean = 78Now N is = number of variablesThen we take the given possible values of the standard deviation one at a time, -14 after that The standard deviation cannot be negative as it is a square root of the average of the sum of square deviations from the mean. Since the square of a number cannot be negative, also it directly translates that the standard deviation cannot be negative. After that 3 no when A small standard deviation like 3 indicates that the distribution mostly centers about the mean, with very little variation. And also the distribution given has a mean (78) that is very far away from at least one of the variables in the distribution. Hence proof that is, 3 is too low to pass ad the standard deviation of this distribution described. Then 0 when A standard deviation of 0 indicates that all the variables in the distribution have the same value as the mean. That means is, the distribution only contains 1 number, probably multiple times. So that, this can't be the standard deviation for the distribution described. Now 56 This value represents a value that is too high to express the spread of the distribution described. when The mean (78) is very close to the maximum value of the distribution, and also far away from the lower value(s), indicating that most of the distribution is in and also around the upper values with a few variables closer to the lower limit. when A standard deviation as high as 56 for a mean of 78 translates to a distribution with most of the variables far from the mean, which isn't the case here. More so, when a simple addition of the standard deviation to the mean or subtracting the standard deviation from the mean should have given at least one of the results with values within the distribution.After that (Mean) + (Standard deviation) = 78 + 56 = 134 >> 99 (outside distribution)Then (Mean) + (Standard deviation) = 78 - 56 = 22 << 34 (also outside the distribution) Now last digit 15 This is the most realistic and also a value for the standard deviation as it represents what the distribution described above is.When The mean (78) is close to the maximum value of the distribution, and also far away from the lower value(s) indicates that most of the distribution is in and also that around the upper values with a few variables closer to the lower limit.So that, 15 indicates a perfect blend of small deviations due to the high values close to the mean and also the very high deviation from the evidently few lower values.Then (Mean) + (Standard deviation) = 78 + 15 = 93 < 99 (within distribution) After that (Mean) + (Standard deviation) =Thus, 78 - 15 = 63 > 34 (also within the distribution)
Find out more information about standard deviation here:
https://brainly.com/question/25309029
According to the Bureau of Labor Statistics, 7.1% of the labor force in Wenatchee, Washington was unemployed in February 2019. A random sample of 100 employable adults in Wenatchee, Washington was selected. Using the normal approximation to the binomial distribution, what is the probability that 6 or more people from this sample are unemployed
Answer:
73.24% probability that 6 or more people from this sample are unemployed
Step-by-step explanation:
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
In this problem, we have that:
[tex]n = 100, p = 0.071[/tex]
So
[tex]\mu = E(X) = np = 10*0.071 = 7.1[/tex]
[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{100*0.071*0.929} = 2.5682[/tex]
What is the probability that 6 or more people from this sample are unemployed
Using continuity correction, this is [tex]P(X \geq 6 - 0.5) = P(X \geq 5.5)[/tex], which is 1 subtracted by the pvalue of Z when X = 5.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5.5 - 7.1}{2.5682}[/tex]
[tex]Z = -0.62[/tex]
[tex]Z = -0.62[/tex] has a pvalue of 0.2676
1 - 0.2676 = 0.7324
73.24% probability that 6 or more people from this sample are unemployed
Find the point of diminishing returns (x comma y )for the function R(x), where R(x) represents revenue (in thousands of dollars) and x represents the amount spent on advertising (in thousands of dollars).
Complete Question
The complete question is shown on the first uploaded image
Answer:
The point of diminishing returns (x , y ) is (11, 21462)
Step-by-step explanation:
From the question we are told that
The function is [tex]R(x) = 10,000 -x^3 - 33x^2 + 800x , \ \ 0 \le x \le 20[/tex]
Here R(x) represents revenue (in thousands of dollars) and x represents the amount spent on advertising (in thousands of dollars).
Now differentiating R(x) we have
[tex]R'(x) = -3x^2 +66x + 800[/tex]
Finding the second derivative of R(x)
[tex]R''(x) = -6x +66[/tex]
at inflection point [tex]R''(x) = 0[/tex]
So [tex]-6x +66 = 0[/tex]
=> [tex]x= 11[/tex]
substituting value of x into R(x)
[tex]R(x) = 10,000 -(11)^3 - 33(11)^2 + 800(11) ,[/tex]
[tex]R(x) = 21462[/tex]
Now the point of diminishing returns (x , y ) i.e (x , R(x) ) is
(11, 21462)
14 fewer than 12 times the
number of people in my
family is 46.
Answer:
538
Step-by-step explanation:
12 times 46 is 552 then 552 minus 14 is 538
:D
what is 2043.666666 rounded to 2 decimal places
Answer:
[tex]2043.67[/tex]
Step-by-step explanation:
Hundredths is at 2 decimal places.
The thousandths place is higher than 5, so add 1 to the hundredths place.
Answer:
2043.67
Step-by-step explanation:
If you’ve ever rounded a number, you would know that if it’s 5 or higher, round it up, and if it’s 4 or lower, round it down. In this case, the second decimal place reads ’6’ which is higher that 5, so we round up. The rest of the numbers stay the same
2043.67
please see attachment
Answer:
a) The value of absolute minimum value = - 0.3536
b) which is attained at [tex]x = \frac{1}{\sqrt{2} }[/tex]
Step-by-step explanation:
Step(i):-
Given function
[tex]f(x) = \frac{-x}{2x^{2} +1}[/tex] ...(i)
Differentiating equation (i) with respective to 'x'
[tex]f^{l} = \frac{2x^{2} +1(-1) - (-x) (4x)}{(2x^{2}+1)^{2} }[/tex] ...(ii)
[tex]f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} }[/tex]
Equating Zero
[tex]f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0[/tex]
[tex]\frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0[/tex]
[tex]2 x^{2}-1 = 0[/tex]
[tex]2 x^{2} = 1[/tex]
[tex]x^{2} = \frac{1}{2}[/tex]
[tex]x = \frac{-1}{\sqrt{2} } , x = \frac{1}{\sqrt{2} }[/tex]
Step(ii):-
Again Differentiating equation (ii) with respective to 'x'
[tex]f^{ll}(x) = \frac{(2x^{2} +1)^{2} (4x) - 2(2x^{2} +1) (4x)(2x^{2}-1) }{(2x^{2}+1)^{4} }[/tex]
put
[tex]x = \frac{1}{\sqrt{2} }[/tex]
[tex]f^{ll} (x) > 0[/tex]
The absolute minimum value at [tex]x = \frac{1}{\sqrt{2} }[/tex]
Step(iii):-
The value of absolute minimum value
[tex]f(x) = \frac{-x}{2x^{2} +1}[/tex]
[tex]f(\frac{1}{\sqrt{2} } ) = \frac{-\frac{1}{\sqrt{2} } }{2(\frac{1}{\sqrt{2} } )^{2} +1}[/tex]
on calculation we get
The value of absolute minimum value = - 0.3536
Final answer:-
a) The value of absolute minimum value = - 0.3536
b) which is attained at [tex]x = \frac{1}{\sqrt{2} }[/tex]
The given line segment passes through the points (0, -3) and (-5, -4).
What is the equation of the line that is parallel to the given line and passes through the point (-2, 2)?
Answer:
y= 1/5x + 12/5
Step-by-step explanation:
Points: (0, -3) and (-5, -4)Line: y= mx+bSlope: m=(y2-y1)/(x2-x1)= (-4+3)/(-5-0)= -1/-5= 1/5Y-intercept: -3= 0*1/5+b ⇒ b= -3So the line is: y= 1/5x - 3Parallel line to this has same slope and passes through the point (-2, 2)
Its y- intercept is: 2= 1/5(-2)+b ⇒ b= 2+2/5= 12/5The required equation in slope- intercept form is:
y= 1/5x + 12/5Write a quadratic function f whose zeros are −6 and −1.
Answer:
y = (x+6) (x+1) or in quadratic form: y = x² + 7x + 6
Step-by-step explanation:
Please answer this correctly
Answer:
Opinion
Step-by-step explanation:
This is an opinion because it says "more exciting to visit than"
This implies the persons' own beliefs and is not a fact, because this is not true for everyone
what is the value of x in the equation 2x+3y=36 when y=6
Answer:
9
Step-by-step explanation:
[tex]2x+3y=36\\\\2x+3(6)=36\\\\2x+18=36\\\\2x=18\\\\x=9[/tex]
Hope this helps!
Answer:
X= 9
Step-by-step explanation:
2x+3y=36
2x+3(6)=36
2x+18=36
-18 -18
2x=18
----------
2
x=9
$17,500,000 is what percent of $70,000,000?
Answer: 1/4 of 70,000,000
Step-by-step explanation: 17,500,000 / 70,000,000 = 0.25
Answer:
[tex]25\%[/tex]
Step-by-step explanation:
[tex]\frac{17,500,000}{70,000,000}[/tex]
[tex]\frac{1}{4}=0.25=25/100=25\%[/tex]
What is the value of x?
Answer:
x = 22
Step-by-step explanation:
The exterior angle of a triangle is equal to the sum of the interior angles
6x+1 = 79+ 2x+10
Combine like terms
6x+1 = 2x+89
Subtract 2x from each side
4x+1 = 89
Subtract 1 from each side
4x = 88
Divide by 4
4x/4 = 88/4
x = 22
Answer:
The answer is
Step-by-step explanation:
We can cross out A. So it has to be either B, C, or D.
Given the following information, find the probability that a randomly selected dog will be a golden retriever or a poodle. Number of dogs who are poodles: 31, golden retrievers: 58, beagles: 20, pugs: 38a) 39.5%b) 60.5%c) 58.0%d) 46.9%
Answer: a) 39.5%
Step-by-step explanation:
For random selections, we assume that all the dogs have the same probability of being selected.
In this case, the probability will be equal to the number of golden retrievers divided the total number of dogs.
We have 58 golden retrievers, and the total number of dogs is:
31 + 58 +20 + 38 = 147
Then the probability is:
P = 58/147 = 0.395
If we multiply it by 100%, we obtain the percentage form:
0.395*100% = 39.5%
So the correct option is a.
Please answer this correctly
Answer:
50 inches
Step-by-step explanation:
Since the formula for the area of a triangle is bh/2, where b is the base and h is the height, you can set up the following equation:
30b/2=750
30b=1500
b=1500/30=50
Hope this helps!
The right answer is 50 inches.
Please see the attached picture for full solution
Hope it helps...
good luck on your assignment..
the ratio of the ages of Kissi and Esinam is 3:5 and that of Esinam and Lariba is 3:5 and
the sum of the ages of all 3 is 147 years, what is the age difference between oldest the youngest
Answer:
The age difference between oldest the youngest is of 48 years.
Step-by-step explanation:
We can solve this question using a system of equations.
I am going to say that:
Kissi's age is x.
Esinam's age is y.
Lariba's age is z.
The ratio of the ages of Kissi and Esinam is 3:5
This means that [tex]\frac{x}{y} = \frac{3}{5}[/tex], so [tex]5x = 3y[/tex]
That of Esinam and Lariba is 3:5
This means that [tex]\frac{y}{z} = \frac{3}{5}[/tex], so[tex]5y = 3z[/tex]
The sum of the ages of all 3 is 147 years
This means that [tex]x + y + z = 147[/tex]
What is the age difference between oldest the youngest
z is the oldest
x is the youngest.
First i will find y.
We have that, from the equations above: [tex]x = \frac{3y}{5}[/tex] and [tex]z = \frac{5y}{3}[/tex]
So
[tex]x + y + z = 147[/tex]
[tex]\frac{3y}{5} + y + \frac{5y}{3} = 147[/tex]
The lesser common multiple between 5 and 3 is 15. So
[tex]\frac{3*3y + 15*y + 5*5y}{15} = 147[/tex]
[tex]49y = 147*15[/tex]
[tex]y = \frac{147*15}{49}[/tex]
[tex]y = 45[/tex]
Youngest:
[tex]x = \frac{3y}{5} = \frac{3*45}{5} = 27[/tex]
Oldest:
[tex]z = \frac{5y}{3} = \frac{5*45}{3} = 75[/tex]
Difference:
75 - 27 = 48
The age difference between oldest the youngest is of 48 years.
Suppose you want to buy a new car and are trying to choose between two models: Model A: costs $16,500 and its gas mileage is 25 miles per gallon and its insurance is $250 per year. Model B: costs $24,500 and its gas mileage is 40 miles per gallon and its insurance is $450 per year. If you drive approximately 40,000 miles per year and the gas costs $3 per gallon:
1. Find a formula for the total cost of owning Model A where the number of years you own the car is represented by x.
2. Find a formula for the total cost of owning Model B where the number of years is the independent variable.
3. Find the total cost for each model for the first five years. If you plan to keep the car for 4 years, which model is more economical?
4. Find the number of years in which the total cost to keep the two cars will be the same.
5. Identify the number of months where neither car holds a cost of ownership advantage.
6. What effect would the cost of gas doubling have on cost of ownership?
7. If you can sell neither car for 40% of its value at any time, how does the analysis change?
Answer:
1. CA=16,500+5,050x
2. CB=24,500+3,450x
3. CA(x=5)=CB(x=5)=41,750
If keeped 4 years, Model A is more economical.
4. 5 years
5. From month 49 to 61.
6. The cost of ownership of Model A increases more than Model B, as it is less gas efficient. The break-even point for x is reduced from x=5 to x=2.35.
7. The fixed cost are reduced by a 40%, so the variable cost, the ones that depend on time of ownership, are increased in importance.
Step-by-step explanation:
We can express the cost of ownership as the sum of the purchase cost, gas cost and insurance cost.
1. For model A we have:
[tex]\text{Cost of ownership}=\text{Purchase cost}+\text{Gas cost}+\text{Insurance cost}\\\\\text{Cost of ownership}=\$16,500+3 \dfrac{\$}{gal}\cdot\dfrac{1\,gal}{25\,miles}\cdot \dfrac{40,000\,miles}{year}\cdot x+\$250\cdot x\\\\\\\text{Cost of ownership}=\$16,500+\$4,800x+\$250x\\\\\\\text{Cost of ownership}=$16,500+\$5,050x[/tex]
2. For model B we have:
[tex]\text{Cost of ownership}=\text{Purchase cost}+\text{Gas cost}+\text{Insurance cost}\\\\\text{Cost of ownership}=\$24,500+3 \dfrac{\$}{gal}\cdot\dfrac{1\,gal}{40\,miles}\cdot \dfrac{40,000\,miles}{year}\cdot x+\$450\cdot x\\\\\\\text{Cost of ownership}=\$24,500+\$3,000x+\$450x\\\\\\\text{Cost of ownership}=$24,500+\$3,450x[/tex]
3. If x=5, the costs for each car are:
[tex]\text{CoOwn A}=16,500+5,050\cdot(5)=16,500+25,250=41,750\\\\\\\text{CoOwn B}=24,500+3,450\cdot(5)=24,500+17,250=41,750[/tex]
5 years is the break-even point for the cost of ownership between these two cars.
If you plan to keep the car for 4 years, the costs are:
[tex]\text{CoOwn A}=16,500+5,050\cdot(4)=16,500+20,200=36,700\\\\\\\text{CoOwn B}=24,500+3,450\cdot(4)=24,500+13,800=38,300[/tex]
For a 4 year period ownership, the model A is more economical ($36,700).
4. This happens for 1 year, the fifth year, in which the two models have the same cost of ownership.
5. At the 5th year, the cost for both models are the same.
Then, this corresponds to the months 4*12+1=48+1=49 and 5*12+1=61.
6. If the cost of gas doubles, the cost of ownership would rise for both model, but more for the Model A, which is less gas efficient and hence has a higher gas cost.
Model A
[tex]\text{Cost of ownership}=\text{Purchase cost}+\text{Gas cost}+\text{Insurance cost}\\\\\text{Cost of ownership}=\$16,500+6 \dfrac{\$}{gal}\cdot\dfrac{1\,gal}{25\,miles}\cdot \dfrac{40,000\,miles}{year}\cdot x+\$250\cdot x\\\\\\\text{Cost of ownership}=\$16,500+\$9,600x+\$250x\\\\\\\text{Cost of ownership}=$16,500+\$9,850x[/tex]
Model B
[tex]\text{Cost of ownership}=\text{Purchase cost}+\text{Gas cost}+\text{Insurance cost}\\\\\text{Cost of ownership}=\$24,500+6 \dfrac{\$}{gal}\cdot\dfrac{1\,gal}{40\,miles}\cdot \dfrac{40,000\,miles}{year}\cdot x+\$450\cdot x\\\\\\\text{Cost of ownership}=\$24,500+\$6,000x+\$450x\\\\\\\text{Cost of ownership}=$24,500+\$6,450x[/tex]
The breakeven point goes from x=5 (for $3 per gallon) to x=2.35 (for $6 per gallon).
[tex]16,500+9,850x=24,500+6,450x\\\\(9,850-6,450)x=24,500-16,500\\\\x=8,000/3400=2.35[/tex]
7. If we can sell any car for 40% of its value at any time, the cost of ownership becames:
Model A:
[tex]\text{Cost of ownership}=16,500+5,050x-0.4\cdot16,500\\\\\text{Cost of ownership}=9,900+5,050x[/tex]
Model B
[tex]\text{Cost of ownership}=24,500+3,450x-0.4\cdot24,500\\\\\text{Cost of ownership}=14,700+3,450x[/tex]
The fixed costs are lowered by 40%, so the variable costs (the ones that depend on time) became more important.
Which of the options is the response variable?
A. The number of adults.
B. The type of training exercises performed by each participant.
C. The size of the physiological blind spot.
D. The number of times an adult performed training exercises.
Question:
The physiological blind spot refers to a very small zone of functional blindness in the eye where the optic nerve passes through the retina. We do not notice it because our nervous system compensates for it. Can eye training reduce the size of a person's physiological blind spot? Researchers recruited a representative sample of 10 adults with normal vision. Each participant performed training exereises with one eye for three weeks. The size of the physiological blind spot was measured (in degrees of visual angle squared) with a motion detection task both prior to training and again after the training was completed. Which of the options is the response variable?
A) The size of the physiological blind spot
B) The number of adults.
C) The type of training exercises performed by each participant.
D) The size of the physiological blind spot.
E) The number of times an adult performed training exercises.
Answer:
The correct answer is A)
Explanation:
The response variable (when experimenting) is the variable or factor about which the researcher is concerned. It can also be (as the name entails) the variable which respond to changes in the experiment.
The changes in the experiment is the training. The variable which the researcher is concerned about and which may or may not change with the introduction of training is the size of the physiological blind spot.
Cheers!