Given the equation:
н
H
H
H
H H H H H H
1
H H
7
C=C
/
H H
+
+
C=C
...
... -
C=C
/
Н.
с C-C-...
|
TI
H H H H H H
I-O-I
I-O-I
1
Н
H
н
Which type of reaction is represented by this equation?
1.
combustion
2.
esterification
3.
polymerization
4
substitution
Submit Answer
Answer:
The type of reaction is Polymerization
Answer:
combustion?
Explanation:
Yo, like what is that question.
When researchers need to prepare many reactions for polymerase chain reaction (PCR) amplification, they often create a "master mix" solution. A master mix contains the reagents common to all the planned PCR amplifications, regardless of the target DNA. Making a master mix is a way to minimize the number of pipetting steps.Suppose a researcher needs to PCR amplify seven different genes of interest from different organisms. The researcher prepares a master mix and dispenses it to seven different PCR tubes, one for each gene of interest.Select the PCR components the researcher must add to each of the seven tubes of master mix to selectively amplify each gene of interest.dNTPsMg2+-Mg2+-based bufferprimersDNA polymeraseDNA template
Answer:
The master mix contains the following reagents: dNTPs, DNA Polymerase, PCR buffer and MgCl2.
Explanation:
The DNA templates are the gene fragments to amplify by PCR, thereby they have to be added separately in each tube. Moreover, the primer pairs are specific for each gene, thereby they have to be added separately in each tube.
Deoxynucleotide triphosphates (dNTPs) are the building blocks of the DNA molecules: dGTP, dATP, TTP, and dCTP.
The PCR buffer provides a suitable medium for the activity of the DNA polymerase, often it contains Tris-Hcl and KCl.
MgCl2 is a cofactor for the activity of the DNA Polymerase.
The DNA Polymerase is an enzyme that amplifies DNA by adding nucleotides to the 3' end.
Arrange the measurements from least to greatest
Answer: 1.8 micrograms, 1.8 milligrams, 1.8 grams, 1.8 kilograms
Explanation:
what is a mitochondrion
Explanation:
Mitochondria (sing. mitochondria) are organelles, or parts of the eukaryote cell. They are in the cytoplasm, not the nucleus. They make the most cell supply of adenosine triphosphate (ATP), a molecule that cells use as an energy source. ... This means that mitochondria are known as '' the powerhouse of the cell'' or ''cell strength".
Good Luck, and have a great day..
Please choose one of the choices
Answer:
A. the law of constant composition
Explanation:
The molecules in the container would have the same composition because they would have traded around atoms until an equilibrium was reached with every molecule having 1 Hydrogen and 1 Chlorine.
8) What is the molarity (M) of an aqueous solution containing 22.5 g of sucrose (C12H22011) in 35.5 mL of solution?
A) 3.52 M
B) 1.85 x 10-2M
C) 0.104 M
D) 0.0657 M
E) 1.85 M
Answer:
E) 1.85 M
Explanation:
M(C12H22O11) = 342.3 g/mol
22.5 g * 1mol/342.3 g = 0.0657 mol
35.5 mL = 0.0355 L
Molarity = mol solute/L solution = 0.0657 mol/0.0355L =1.85 mol/L = 1.85 M
The molarity of the aqueous solution is 1.85 M. The correct option is E) 1.85 M
From the question,
We are to determine the molarity (that is, concentration) of the given sucrose solution
First, we will determine the number of moles present in the given mass of sucrose
Mass of sucrose = 22.5 g
Using the formula
[tex]Number\ of\ moles = \frac{Mass}{Molar\ mass}[/tex]
Molar mass of sucrose = 342.2965 g/mol
∴ Number of moles of sucrose present = [tex]\frac{22.5}{342.2965}[/tex]
Number of moles of sucrose present = 0.0657325 moles
Now, for the molarity (concentration) of the sucrose solution
From the formula
Number of moles = Concentration × Volume
Then,
[tex]Concentration = \frac{Number\ of\ moles}{Volume}[/tex]
From the question,
Volume = 35.5 mL = 0.0355 L
∴ [tex]Concentration = \frac{0.0657325}{0.0355}[/tex]
Concentration = 1.85 M
Hence, the molarity of the aqueous solution is 1.85 M. The correct option is E) 1.85 M
Learn more here: https://brainly.com/question/23861180
Which correctly lists the three processes that are affected by freeze and thaw cycles?
creep, landslide, and deposition
deposition, creep, and weathering
landslide, slump, and deposition
O slump. weathering, and creep
Answer:
slump. weathering, and creep
Explanation:
Freezing and thawing cycle in geology is the process in which water gets in between soil space or rock cracks, freeze in a cold season, and then melt in a warmer season, exerting a force on the soil or rock around it. This force is due to the expansion and contraction of water when it changes from ice to liquid water.
The three geological processes slump, weathering and creep all depend on thawing and freezing cycle among other factors.
Slump: Slump is a type of geological process that occurs when coherent mass of loosely consolidated materials or a rock layer moves a short distance down a slope. The movement of a slump is characterized by sliding along a concave-upward or planar surface. Causes includes earthquake shocks, thorough wetting, freezing and thawing, undercutting, and loading of a slope.Weathering: This is a geological process that results in the gradual disintegration of rocks into smaller sizes. It is one of the most important soil formation process, and is different from erosion by the degree of movement of the soil formed. Weathering does not move the soil from its origin. Thawing and freezing cycle plays a major role in weathering by helping crack up the rocks and by also tearing the rock apart. plays a major role.Creep: This is the slow, often imperceptible downslope movement of soil or other debris. The effects of creep is often seen in the presence of physical characteristics like bent trees, tilted fences, and cracked walls. Creep is caused by multiple factors, of which heaving is likely the most important process. Heaving involves the expansion and contraction of rock fragments, and occurs during cycles of wetting and drying, as well as freezing and thawing.Answer:
It is slump, weathering and creep
Explanation:
Took the test on edg
C12H22O11 + 12O2 ---> 12CO2 + 11H2O
there are 10.0 g of sucrose and 10.0 g of oxygen reacting. Which is the limiting reagent?
Answer:
Oxygen is the limiting reactant.
Explanation:
Based on the reaction:
C₁₂H₂₂O₁₁ + 12O₂ → 12CO₂ + 11H₂O
1 mole of sucrose reacts with 12 moles of oxygen to produce 12 moles of CO₂ and 11 moles of H₂O.
10.0g of sucrose (Molar mass: 342.3g /mol) are:
10.0g C₁₂H₂₂O₁₁ × (1mole / 342.3g) = 0.0292 moles of C₁₂H₂₂O₁₁
And moles of 10.0g of oxygen (Molar mass: 32g/mol) are:
10.0g O₂ × (1mole / 32g) = 0.3125 moles of O₂
For a complete reaction of 0.0292 moles of C₁₂H₂₂O₁₁ you need (knowing 12 moles of oxygen react per mole of sucrose):
0.0292 moles of C₁₂H₂₂O₁₁ × (12 moles O₂ / 1 mole C₁₂H₂₂O₁₁) = 0.3504 moles of O₂
As you have just 0.3125 moles of O₂, oxygen is the limiting reactant.
how many molecules (not moles) of NH3 are produced from 5.25x10^-4 g of H2?
due in a few, please help. will mark as brainliest
Answer:
not 100% but i think its 1.57x10^20
Explanation:
5.25x10^-4g / 2.016g
2.60x10^-4 x 6.022x10^23= 1.56x10^20 molecules
Give the IUPAC name for the following structure
Answer:
6-metyl-2-heptyne
Explanation:
C-C-C-C-C-C-C hept
2
C-C≡C-C-C-C-C 2-heptyne
C
| 6
C-C≡C-C-C-C-C
6-metyl-2-heptyne
The IUPAC name for the above structure is 6 methyl, hept-2-yne.
What is IUPAC?IUPAC stands for international Union of pure and applied chemistry. It is the body in charge of naming organic chemical compounds.
The naming is is based on a molecule's longest chain of carbons connected by single/double/triple bonds, whether in a continuous chain or in a ring etc.
According to this question, a structure is given. The following applies;
The compound has a triple bond located on the second carbon, hence, belongs to alkyne group. It has seven carbon atoms, hence, is heptyne. The methyl group is on the sixth carbon.Learn more about IUPAC at: https://brainly.com/question/33646537
#SPJ6
tertbutylamine and ammonia. Which is more basic
Answer:
ammonia
Explanation:
A chemist working as a safety inspector finds an unmarked bottle in a lab cabinet. A note on the door of the cabinet says the cabinet is used to store bottles of diethylamine, tetrahydrofuran, chloroform, ethanolamine, and acetone. First, from her collection of Material Safety Data Sheets (MSOS), the chemist finds the following information:
liquid density
diethylamine 1.1 gcm-3
tetrahydrofuran 0.7 9gcm-3
chloroform 0.71 gcm-3
ethanolamine 0.89 gcm-3
acetone 1.6 gcm-3
Next, the chemist measures the volume of the unknown liquid as 0.767 L and the mass of the unknown liquid as 682 g.
1. Calculate the density of the liquid.
2. Given the data above, is it possible to identify the liquid?
3. If it is possible to identify the liquid, do so.
a. dimethyl sulfoxide.
b. acetone.
c. diethylamine.
d. tetrahydrofuran .
e. carbon tetrachloride
Answer:
1. density = 0.89 g/cm3
2. Yes is possible to identify the liquid
3. ethanolamine
Explanation:
Data:
mass = 682 g
volume = 0.767 L = 767 mL or cm3
1.
To calculate the density of the liquid it is necessary to know that the density formula is:
[tex]density=\frac{mass(g)}{volume(cm^{3}) }[/tex]
The data obtained is replaced in the formula:
[tex]density=\frac{682g)}{767(cm^{3}) }=0.89\frac{g}{cm^{3} }[/tex]
2.
With the given data it is possible to identify the liquid, this because the density value is a basic property of each liquid.
3.
It is possible to determine what liquid it is, since when comparing the value obtained with those reported in the collection of Material Safety Data Sheets (MSOS), the value that agrees is that of ethanolamine.
where are chemicals found in the home?
a. only in the bathroom
b. only in locked cabinets
c. in every room
d. only in the kitchen
Answer:
c
Explanation:
chemicals can be found in every part of our lives
.Draw the born-Haber lattice energy cycle for sodium chloride. Explain the concept of resonance using the nitrate ion structure.
Answer:
Born-Haber cycle is consist on four to five steps. 1: ionization energy 2: electron affinity 3: dissociation energy 4: sublimation energy and last is Hess law.Nitrate ion have 3 localized sigma bonds and 1 delocalized pie bond according to the resonance structure.Explanation:
Step 1: NaCl(s) → Na(s) + 1/2 Cl2(g) ΔHf (ionization energy) in this step energy is required to change the phase of the compound
Step 2: Na(s) + 1/2 Cl2(g) → Na(g) + 1/2 Cl2(g) ΔHa (elements needed to be in gaseous state for born-haber cycle so metal changes from solid to gas state by changing the enthalpy.
Step 3: Na(g) + 1/2 Cl2(g) → Na(g) + Cl (g) 1/2ΔHd
Step 4: Na(g) + Cl(g) → Na⁺(g) + Cl⁻(g) IE+EA ( in this step both ionization energy and electron affinity was involved because in metal (Na) electron is added which needs the energy and this energy draw from the step 3 and Chlorine require releasing electron to be in ionic state so when electron leaves the orbit energy releases.
Step 5: final step is Hess Law which is the combination of all the steps which step 4 again go back to step 5 and this cycle continues by repeating same steps Na⁺(g) + Cl⁻(g)→NaCl(s)
at this step heat of formation is calculated
Heat of formation= atomization energy+ dissociation energy+ sum of ionization energies + sum of electron affinity + lattice energy.
2: if we look at the electron configuration of the nitrogen it has 5 electrons in its outermost shell which indicates it can make 5 bonds 4 bonds and 1 lone pair usually and Oxygen has 6 electrons in its outermost shell. So nitrate ion have the total number of 24 electrons including the 1 electron which shows on the compound.
So when they make nitrate ion NO₃⁻¹ it shows that nitrate has 3 resonance structures. Nitrogen's three sigma bonds are attached to oxygen and fourth one make 1 pie bond which can rotate, delocalized and change its position anytime from one Oxygen atom to other oxygen atom.
5. Rubbing alcohol is a commonly used disinfectant and has a cooling effect when applied to the skin. The active ingredient in rubbing alcohol is isopropanol. In drugstores, the most common concentration of rubbing alcohol sold contains 70% (vol/vol) isopropanol in water. Assuming the rubbing alcohol manufacturer uses a 100% isopropanol solution, what volume of pure isopropanol is required to produce a 200-mL bottle of rubbing alcohol
Answer:
Explanation:
70% (vol/vol) means
cotnaimns 70 %(vol/vol) 70 ml of isoprapnol is there in 100 ml of Rubbing sold alcohol.
if it is 200 ml then obvouly it has the 70*2 =140 ml of isoproanol required.
Alcohol is an organic compound that when rubbed on the skin it evaporates quickly leaving a cool effect on the skin. The reason why it evaporates is because it has loosely bound molecules and a low boiling temperature.
The volume of pure isopropanol required to produce a 200-ml bottle of rubbing alcohol is 140 ml
From the question:
Alcohol sold contains 70%(vol/vol). This means 70 ml of the solute of isopropanol can be found in 100 ml of solution.
Hence:
100ml of solution = 70ml of isopropanol
200ml of solution = ?
Cross Multiply
200 ml x 70 ml / 100 ml
= 140 ml
Therefore, the volume of pure isopropanol required to produce a 200-ml bottle of rubbing alcohol is 140 ml
To learn more, visit the link below:
https://brainly.com/question/3693273
Propane (C3H8) burns in a combustion reaction. How many grams of C3H8 are needed to produce 80.3 mols CO2 ?
Answer:
1177.88g of C3H8
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
C3H8 + 5O2 —> 3CO2 + 4H2O
Next we shall determine the number of mole of C3H8 required to produce 80.3 moles of CO2. This is illustrated below:
From the balanced equation above,
1 mole of C3H8 reacted to produce 3 moles of CO2.
Therefore, Xmol of C3H8 will react to produce 80.3 moles of CO2 i.e
Xmol of C3H8 = 80.3/3
Xmol of C3H8 = 26.77 moles
Finally, we shall convert 26.77 moles of C3H8 to grams.
Molar mass of C3H8 = (3x12) + (8x1) = 44g/mol
Mole of C3H8 = 26.77 moles
Mass of C3H8 =..?
Mass = mole x molar mass
Mass of C3H8 = 26.77 x 44
Mass of C3H8 = 1177.88g
Therefore, 1177.88g of C3H8 are needed for the reaction
A researcher placed 25.0 g of silver chloride, AgCl, in sunlight and allowed the substance to decompose completely to form silver, Ag, with the release of chlorine gas, Cl2. The gas was collected in a container during the decomposition. The researcher determined that the mass of the silver formed was 18.8 g, and the mass of the chlorine gas formed was 6.2 g. The equation for the reaction is:
Answer:
A. The law of definite proportions states that all pure samples of a particular chemical compound contain the same elements combines in the same proportion by mass.
B. The law of conservation of mass states that during ordinary chemical reactions, matter can neither be created or destroyed.
Note: The full question is as follows;
A researcher placed 25.0 g of silver chloride, AgCl, in sunlight and allowed the substance to decompose completely to form silver, Ag, with the release of chlorine gas, Cl2. The gas was collected in a container during the decomposition. The researcher determined that the mass of the silver formed was 18.8 g, and the mass of the chlorine gas formed was 6.2 g. The equation for the reaction is:
2AgCl ----> 2Ag + Cl2
a. State the law of definite proportions. Then use the researcher's data to confirm the law of definite proportions. Show your calculations.
b. State the law of conservation of matter. Then use the researcher's data to confirm the conservation of matter. Show your calculations.
Explanation:
A. Mass of silver obtained from AgCl = 18.8g.
Percentage mass of silver in the chloride = (18.8/25.0) * 100 = 75.2 %
Mass of chlorine obtained from AgCl = 6.2
Percentage mass of chlorine = (6.2/25) * 100 = 24.8 %
In one mole of AgCl with a molar mass of 143.3 g/mol; mass of silver = 107.8, mass of Cl = 35.5
Percentage mass of Ag = (107.8/143.3) * 100 = 75.2%
Percentage mass of Cl = (35.5/143.3) * 100 = 24.8%
Since the percentages by mass of Ag and AgCl obtained from the sample is the same to that obtained from a mole of AgCl, the law of definite proportions which states that all pure samples of a particular chemical compound contain the same elements combined in the same proportion by mass is verified.
B. Mass of reactant; AgCl sample = 25.0
Mass of products; At = 18.8 g; Cl = 6.2 g
Sum of products masses = 18.8 + 6.2 = 25.0 g
Therefore mass of reactant = mass of products.
This is in accordance with the law of conservation of mass which states that during ordinary chemical reactions, matter is neither created nor destroyed.
What is the Arrhenius definition of an acid? A substance that increases H3O+ concentration when it is dissolved in water. A substance that increases OH– concentration when it is dissolved in water. A compound that donates protons. A compound that accepts protons.
Answer:
A substance that increases H3O+ concentration when it is dissolved in water.
Explanation:
Note that H3O+ and H+ are used quite interchangeably in chemistry.
An acid makes the H+ content higher, thereby decreasing the pH.
Answer:
a
A substance that increases H3O+ concentration when it is dissolved in water.
Explanation:
Find the age ttt of a sample, if the total mass of carbon in the sample is mcmcm_c, the activity of the sample is AAA, the current ratio of the mass of 14 6C 614C to the total mass of carbon in the atmosphere is rrr, and the decay constant of 14 6C 614C is λλlambda. Assume that, at any time, 14 6C 614C is a negligible fraction of the total mass of carbon and that the measured activity of the sample is purely due to 14 6C 614C. Also assume that the ratio of mass of 14 6C 614C to total carbon mass in the atmosphere (the source of the carbon in the sample) is the same at present and on the day when the number of 14 6C 614C atoms in the sample was set. Express your answer in terms of the mass mamam_a of a 14 6C 614C atom, mcmcm_c, AAA, rrr, and λλlambda. View Available Hint(s)
Answer:
Explanation:
An artifact is found in a desert cave. The anthropologists who found this artifact would like to know its age. They find that the present activity of the artifact is 9.25 decays/s and that the mass of carbon in the artifact is 0.100 kg. To find the age of the artifact, they will need to use the following constants:
r=1.2
The activity of carbon 14 is
[tex]A=A_0e^{\lambda t}[/tex]
where,
[tex]A_0[/tex] is the initial activity of the compound
Solve for t
[tex]-\lambda t=In\frac{A}{A_0}[/tex]
[tex]t=-\frac{1}{\lambda} In(\frac{A}{A_0} )[/tex]
[tex]=-\frac{1}{\lambda} In(\frac{A}{\lambda r(\frac{m_c}{m_a} )} )[/tex]
since,
[tex]A_0=\lambda r(\frac{m_c}{m_a} )[/tex]
[tex]=-\frac{1}{\lambda} In(\frac{A\ m_a}{\lambda r m_c} )[/tex]
Now, the age of the artifact is
[tex]=-\frac{1}{\lambda} In(\frac{A\ m_a}{\lambda r m_c} )[/tex]
[tex]=-\frac{1}{1.21\times 10^{-4}} In(\frac{(9.25)(2.32\times 10^{-26}}{1.21\times 10^{-4}(\frac{1}{3.15569\times10^7} )(1.2\times 10^{-12})(0.100)}} )\\\\=6303.4 \ years[/tex]
to two significant figure = 6300 years
A student states that the graduated cylinder contains 150 mL of water his statement is
A. A prediction
B. An observation
C. A theory
D. A hypothesis
The correct answer is B. An observation
Explanation:
An observation is defined as a statement or conclusion you made after observing or measuring a phenomenon, this includes statements based on precise instruments. For example, if you conclude a plant grows 2 inches every month by measuring the plant during this time, this is classified as an observation. The conclusion of the student is also an observation because he concludes this after analyzing the volume of the water in the cylinder through the lines in the graduated cylinder, considering the water is just in the middle of 100 mL and 200 mL which indicates there are 150 mL of water.
Answer:
B. An observation
Explanation:
Hello,
Given the illustration, such statements is considered as an observation, since it came up from something the student realized with his/her own eyes, as in the volumetric cylinder the level of the liquid reached 150 mL of water. Predictions are not observed but assumed, theories are stated when experimentation is already deeply studied and hypothesis are assumptions before experimenting.
Regards.
Choose the INCORRECT statement. A. Temperatures of two bodies are equal when the average kinetic energies of the two bodies become the same. B. The heat capacity is the quantity of heat required to change the temperature of the system by one degree. C. The specific heat is the heat capacity for one mole of substance. D. Most metals have low specific heats, as metals can be heated quickly. E. The law of conservation of energy can be written: qsystem qsurroundings
Answer:
Option C
The specific heat is the heat capacity for one mole of a substance.
Explanation:
The incorrect statement is The specific heat is the heat capacity for one mole of a substance.
This is because the specific heat capacity is the amount of heat required to raise the temperature of 1 gramme of a substance by 1 degree Celcius.
Note that the unit in question here for the specific heat capacity of the substance is in grammes.
The definition given in the options is actually for the molar heat capacity of the substance, not the specific heat capacity.
The decay of a radioactive material is monitored using a Geiger counter. At the start, the count rate is 2000 decays/minute. Four hours later the decay rate is 500 counts/min. What is the half-life of the material?
Answer:
The half-life of the material is 2 years
Explanation:
Given;
initial count rate = 2000 decays/minute
final count rate = 500 counts/min
decay time = Four hours
To determine the half life of the material; we create a simple decay table that matches the decay time and count rates.
time (years) count rate
0 2000 decays/minute
2 1000 decays/minute
4 500 decays/minute
Half life is the time intervals = 2 years
Also using a formula;
[tex]N = \frac{N_o}{(t/2)^2} \\\\N_o-is \ the \ initial \ count\ rate\\\\N-is \ the \ final \ count\ rate\\\\t/_2 - is \ the\ half\ life \\\\N = \frac{N_o}{(t/2)^2} \\\\500 = \frac{2000}{(t/2)^2}\\\\(t/_2)^2 = \frac{2000}{500} \\\\(t/_2)^2 = 4\\\\t/_2 = \sqrt{4} \\\\t/_2 = 2 \ years[/tex]
Therefore, the half-life of the material is 2 years
9. Predict the major products formed when: (a) Toluene is sulfonated. (c) Nitrobenzene is brominated. (b) Benzoic acid is nitrated. (d) Isopropylbenzene reacts with acetyl chloride and AlCl3. If the major products would be a mixture of ortho and para isomers, you should so state.
Answer:
a) ortho-para isomers predominates
b) 3-nitrobenzoic acid ( meta isomer predominates)
c) 3-bromo nitrobenzene ( meta isomer predominates)
d) the ortho- para isomers predominates
Explanation:
a) Toluene contains -CH3 which is an ortho- para- director hence the major product of the sulphonation of toluene should be the ortho- para isomers.
b) The major product of the nitration of benzoic acid is 3-nitrobenzoic acid. This is an electrophilic substitution in which the meta isomer predominates.
c) The meta isomer predominates giving 3-bromo nitrobenzene as the major product.
d) The isopropyl group is an ortho- para director hence the ortho- para isomers predominates .
state the importance of uric acid biomarker
Answer:
u
uric acid is a useful diagnostic tool as screening for most of purine metabolic disorders. The importance of uric acid measurement in plasma and urine with respect of metabolic disorders is highlighted. Not only gout and renal stones are indications to send blood to the laboratory for uric acid examination
rinking water suggest an upper limit of 250 mg/L for chloride ion. If 1.03×104 liters of water in a storage tank contains 1.40 grams of Cl-, what is the contaminant level in ppm? in ppb? Is this level acceptable based on EPA guidelines?
Answer:
This water has a level acceptable, 0.1359ppm and 135.9ppb.
Explanation:
1.40g of Cl⁻ are:
1.40g Cl⁻ × (1000mg / 1g) = 1400mg Cl⁻
In 1.03x10⁴L:
1400mg / 1.03x10⁴L = 0.1359mg/L.
As the upper limit of Cl⁻ in water is 250mg/L, this water has a level acceptable
ppm are the ratio between mg of solute and liters of solution, that means the tank contains 0.1359mg/L = 0.1359ppm
ppb, parts per billion are 1000 times ppm, thus, parts per billion of the storage tank are:
0.1359ppm × 1000 = 135.9ppb
Calculate the mass of CaCl2•2H2O required to make 100.0 mL of a 0.100 M solution. Each of the calculations below will take you through the necessary steps. You will be asked to show your answer and calculations for each. Calculate the moles of CaCl2•2H2O in 100.0 mL of a 0.100 M solution Enter your answer:
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
The mass should be considered as the 1.4701 grams and the moles should be 0.01.
Calculation of the mass and moles:Since we know that
Molarity = moles of solute/volume of solution in liters
So,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
Now The mass should be
Moles = mass/molar mass
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
hence, The mass should be considered as the 1.4701 grams and the moles should be 0.01.
Learn more about moles here: https://brainly.com/question/24817060
Predict the products of the following elimination reaction, and draw the major product formed. Make sure to consider the stereochemistry of the reaction. 3-chloro-3-methylpentane reacts with sodium tertbutoxide in tertbutanol.
Predict the products of the following elimination reaction, and draw the major product formed. Make sure to consider the stereochemistry of the reaction. 3-chloro-3-methylpentane reacts with sodium ethoxide in ethanol.
Answer:
see explanation below
Explanation:
In the first case, we have a reaction where we have the 3-chloro-3-methylpentane reacting with t-butoxide. The t-butoxide is a very voluminous base, so the strength of substracting a hydrogen atom is reduced. Therefore, the reaction taking place here will be an E2 but instead of substracting the hydrogen from the carbons 2 or 4, it will substract it from the methyl group, cause it has less steric hindrance there and the reaction will go faster.
In the second case, the sodium ethoxide is a strong base, so it will rapidly substract an atom of hydrogen from carbon 2 or 4 to form the (Z) - 3 - methyl - 2- pentene and the substitution product.
Look picture for mechanism and products.
what would happen if you place two positive charges next to each other and let go. would they attract, stay still, or they would repel
Answer:
they would repel
Explanation:
unlike charges attract while like ones repel.
What is the name of this molecule? (will give BRAINLIEST)
A straight chain of four carbons. There is a triple bond between the second and third carbons when counting from left to right or right to left.
Answer:
2 - Butyne
Explanation:
The name of the molecule with a carbon atoms arranged in a straight chain with a triple bond between the second and third carbons is 2 - Butyne.
2- Butyne is an alkyne with structural formula given below. Some of the properties of Butyne include it is a produced artificially, it is volatile and colorless in nature.
Hence, the given molecules described is 2 - Butyne.
One of the many remarkable enzymes in the human body is carbonic anhydrase, which catalyzes the interconversion of carbon dioxide and water with bicarbonate ion and protons. If it were not for this enzyme, the body could not rid itself rapidly enough of the CO2 accumulated by cell metabolism. The enzyme catalyzes the dehydration (release to air) of up to 107 CO2 molecules per second. Which components of this description correspond to the terms enzyme, substrate, and turnover number?
Answer:
Enzyme is carbonic anhydrase
Substrate is [tex]CO_2[/tex]
Turnover number is [tex]10^{7}[/tex]
Explanation:
An enzyme is used by a living organism as a catalyst to perform a specific biochemical reaction.
A substrate is a molecule upon which an enzyme acts.
Turnover number refers to the number of substrate molecules transformed by a single enzyme molecule per minute. Here, the enzyme is the rate-limiting factor.
Here,
Enzyme is carbonic anhydrase
Substrate is [tex]CO_2[/tex]
Turnover number is [tex]10^{7}[/tex]