Answer:
They got £84 altogether.
Step-by-step explanation:
We can see that Richard get's 6 parts and Stephen gets 1 part. We can subtract these two to get 5 parts. We know that five parts equals £60, so we can divide by 5 to get 1 part equals £12. We are looking for the amount they got altogether, which is equal to 7 parts, 6 parts + 1 part. We multiply £12 by 7, leaving us with £84, which is our answer.
PLEASE HELP the inverse of the function graphed below is a function
True or false
Functions
Function NotationVertical Line Test
ApplicationStep 1: DefineLet's see what we are given.
We are given a graph of an inverse of a function.
Step 2: IdentifyWe need to figure out whether the graphed inverse function is a function or not.
By the definition of a function, we know that every x input must correlate with one y output. In layman's terms, each respective x input has its own specific y output.
This definition builds the foundation of the Vertical Line Test. We can use this simple "tool" to verify whether or not a given graph is a function or not.
By placing a vertical line "on" the graph, we can move it to determine whether an x input has only one y output.If a graph passes the Vertical Line Test, it is said to be a function.If a graph fails the Vertical Line Test, it is said to not be a function, but rather a relation, etc.Step 3: TestWhen we apply the Vertical Line Test to the graphed inverse function, we can see that every x input has only one specific y output.
∴ we can conclude that the graphed inverse function is indeed a function.
AnswerThe answer to the question would be A. True.
___
Learn more about functions: https://brainly.com/question/30017262
Learn more about Algebra I: https://brainly.com/question/17011730
___
Topic: Algebra I
Unit: Functions
A broker has calculated the expected values of two different financial instruments X and Y. Suppose that E(x)= $100, E(y)=$90 SD(x)= 90$ and SD(y)=$8. Find each of the following.
a. E(X+ 10) and SD(X+ 10)
b. E(5Y) and SD(5Y)
c) E(X+ Y) and SD(X+ Y)
d) What assumption must you make in part c?
Expectation is linear, meaning
E(a X + b Y) = E(a X) + E(b Y)
= a E(X) + b E(Y)
If X = 1 and Y = 0, we see that the expectation of a constant, E(a), is equal to the constant, a.
Use this property to compute the expectations:
E(X + 10) = E(X) + E(10) = $110
E(5Y) = 5 E(Y) = $450
E(X + Y) = E(X) + E(Y) = $190
Variance has a similar property:
V(a X + b Y) = V(a X) + V(b Y) + Cov(X, Y)
= a^2 V(X) + b^2 V(Y) + Cov(X, Y)
where "Cov" denotes covariance, defined by
E[(X - E(X))(Y - E(Y))] = E(X Y) - E(X) E(Y)
Without knowing the expectation of X Y, we can't determine the covariance and thus variance of the expression a X + b Y.
However, if X and Y are independent, then E(X Y) = E(X) E(Y), which makes the covariance vanish, so that
V(a X + b Y) = a^2 V(X) + b^2 V(Y)
and this is the assumption we have to make to find the standard deviations (which is the square root of the variance).
Also, variance is defined as
V(X) = E[(X - E(X))^2] = E(X^2) - E(X)^2
and it follows from this that, if X is a constant, say a, then
V(a) = E(a^2) - E(a)^2 = a^2 - a^2 = 0
Use this property, and the assumption of independence, to compute the variances, and hence the standard deviations:
V(X + 10) = V(X) ==> SD(X + 10) = SD(X) = $90
V(5Y) = 5^2 V(Y) = 25 V(Y) ==> SD(5Y) = 5 SD(Y) = $40
V(X + Y) = V(X) + V(Y) ==> SD(X + Y) = √[SD(X)^2 + SD(Y)^2] = √8164 ≈ $90.35
Gravel is being dumped from a conveyor belt at a rate of 15 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 12 ft high? (Round your answer to two decimal places.)
Answer:
0.13 ft/min
Step-by-step explanation:
We are given that
[tex]\frac{dV}{dt}=15ft^3/min[/tex]
We have to find the increasing rate of change of height of pile when the pile is 12 ft high.
Let d be the diameter of pile
Height of pile=h
d=h
Radius of pile,r=[tex]\frac{d}{2}=\frac{h}{2}[/tex]
Volume of pile=[tex]\frac{1}{3}\pi r^2 h=\frac{1}{12}\pi h^3[/tex]
[tex]\frac{dV}{dt}=\frac{1}{4}\pi h^2\frac{dh}{dt}[/tex]
h=12 ft
Substitute the values
[tex]15=\frac{1}{4}\pi(12)^2\frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt}=\frac{15\times 4}{\pi(12)^2}[/tex]
[tex]\frac{dh}{dt}=0.13ft/min[/tex]
Given A triangle with sides x=6.35 cm and Y=12.25 cm with an angle of 90 degrees between them, find the length of the hypotenuse and the size of the other two angles.
Answer:
Hypotenuse = 13.798 cm, Angle1 = 27.4° and Angle2 = 62.59°
Step-by-step explanation:
The first step to help us understand the question would be to draw it out.
A right angled triangle, with the two sides that make the right angle being x and y (it does not matter which way you put x and y).
I have attached the quick sketch I will refer to.
To find the length of the hypotenuse (lets call it H) we can use Pythagoras theorem as shown below
[tex]{x^{2}+y^{2}} = H^{2}[/tex]
Substitute in our values for x and y, and solve for H
[tex]{6.35^{2}+12.25^{2}} = H^{2}[/tex]
[tex]190.385 = H^{2}[/tex]
[tex]\sqrt{190.385} = H[/tex]
H = 13.79 cm
To find the other two angles of the triangle we will use trigonometry
I will first look for angle ∅. Since we have all three sides of the triangle we can use any of the three trig functions, I chose to use Tan
Tan ∅ [tex]= \frac{opposite}{adjacent}[/tex]
Substitute in our values for x and y, and solve for ∅
Tan ∅ = [tex]\frac{6.35}{12.25}[/tex]
∅ = [tex]tan^{-1} \frac{6.35}{12.25}[/tex]
∅ = 27.4°
Now do the same for angle β. I chose to use Tan again
Tan β [tex]= \frac{opposite}{adjacent}[/tex]
Substitute in our values for x and y, and solve for β
Tan β = [tex]\frac{12.25}{6.35}[/tex]
β = [tex]tan^{-1} \frac{12.25}{6.35}[/tex]
β = 62.59°
Bonnie volunteers to bring bags of candy to her child's class for the Halloween party. She buys a bag containing 240, a bag containing 624, and a bag containing 336 pieces. Age needs to use all the candy to create identical treat bags. How many treat bags can bonnie make so that each one has the same number and variety of candy? How many of each type of candy will be in each bag?
Answer:
Number of bags that Bonnie can make so that each one has the same number of candies = 48
Number of candies from bag I in each of the treat bag = 5
Number of candies from bag II in each of the treat bag = 13
Number of candies from bag III in each of the treat bag = 7
Step-by-step explanation:
Given: One bag (I) has 240 candies, one bag (II) has 624 candies and one bag (III) has 336 candies
To find: Number of bags that Bonnie can make so that each one has the same number of candies and number of each type of candies in each bag
Solution:
[tex]240=2^4\times 3\times 5\\624=2^4\times3\times13\\336=2^4\times3\times7[/tex]
Highest common factor (H.C.F) = [tex]2^4\times3=48[/tex]
So,
Number of bags that bonnie can make so that each one has the same number of candies = 48
Now,
[tex]\frac{240}{48}=5\\ \frac{240}{48}=13\\\frac{240}{48}=7[/tex]
Number of candies from bag I in each of the treat bag = 5
Number of candies from bag II in each of the treat bag = 13
Number of candies from bag III in each of the treat bag = 7
A phone charger requires 0.5 A at 5V. It is connected to a transformer with 100 % of efficiency whose primary contains 2200 turns and is connected to 220-V household outlet.
(a) How many turns should there be in the secondary?
(b) What is the current in the primary?
(c) What would be the output current and output voltage values if number of secondary turns (N2) doubled of its initial value?
Answer:
a. 50 turns
b. 0.0114 A
c. 0.25 A, 10 V
Step-by-step explanation:
Given:-
- The required current ( Is ) = 0.5 A
- The required voltage ( Vs ) = 5 V
- Transformer is 100% efficient ( ideal )
- The number of turns in the primary coil, ( Np ) = 2200
- The Voltage generated by power station, ( Vp ) = 220 V
Find:-
a. The number of turns in the secondary coil of the transformer
b. The current supplied by the power station
c. The effect on output current and voltage when the number of turns of secondary coil are doubled.
Solution:-
- For ideal transformers that consists of a ferromagnetic core with two ends wounded by a conductive wire i.e primary and secondary.
- The power generated at the stations is sent to home via power lines and step-down before the enter our homes.
- A household receives a voltage of 220 V at one of it outlets. We are to charge a phone that requires 0.5 A and 5V for the process.
- The outlet and any electronic device is in junction with a smaller transformer.
- All transformers have two transformation ratios for current ( I ) and voltage ( V ) that is related to the ratio of number of turns in the primary and secondary.
Voltage Transformation = [tex]\frac{N_p}{N_s} = \frac{V_p}{V_s}[/tex]
Where,
Ns : The number of turns in secondary winding
- Plug in the values and evaluate ( Ns ):
[tex]N_s = N_p*\frac{V_s}{V_p} \\\\N_s = 2200*\frac{5}{220} \\\\N_s = 50[/tex]
Answer a: The number of turns in the secondary coil should be Ns = 50 turns.
- Similarly, the current transformation is related to the inverse relation to the number of turns in the respective coil.
Current Transformation = [tex]\frac{N_p}{N_s} = \frac{I_s}{I_p}[/tex]
Where,
Ip : The current in primary coil
- Plug in the values and evaluate ( Ip ):
[tex]I_p = \frac{N_s}{N_p}*I_s\\\\I_p = \frac{50}{2200}*0.5\\\\I_p = 0.0114[/tex]
Answer b: The current in the primary coil should be Ip = 0.0114 Amp.
- The number of turns in the secondary coil are doubled . From the transformation ratios we know that that voltage is proportional to the number of turns in the respective coils. So if the turns in the secondary are doubled then the output voltage is also doubled ( assuming all other design parameters remains the same ). Hence, the output voltage is = 2*5V = 10 V
- Similary, current transformation ratio suggests that the current is inversely proportional to the number of turns in the respective coils. So if the turns in the secondary are doubled then the output current is half of the required ( assuming all other design parameters remains the same ). Hence, the output current is = 0.5*0.5 A = 0.25 A
Parker marks sixths on number line. He writes 5/6 just before 1. What fraction does he write on the first mark to the right of 1?
Answer:
The first fraction at the right of 1 is [tex]\frac{7}{6}[/tex] or [tex]1\frac{1}{6}[/tex]
Step-by-step explanation:
Given
Marks of 6ths on a number line
Fraction 5/6 just before 1
Required
What fraction is at the right 1
To get the first fraction at the right of 1, we need to get the difference between each fraction;
This is calculated as follows;
[tex]Difference = 1 - \frac{5}{6}[/tex]
Take LCM
[tex]Difference = \frac{6 - 5}{6}[/tex]
[tex]Difference = \frac{1}{6}[/tex]
This implies that the difference between each mark is [tex]\frac{1}{6}[/tex].
To get the first mark at the right of 1;
We simply add the difference to 1;
This implies that;
[tex]Mark = 1 + \frac{1}{6}[/tex]
Take LCM
[tex]Mark = \frac{6 + 1}{6}[/tex]
[tex]Mark = \frac{7}{6}[/tex]
Convert to mixed fraction
[tex]Mark = 1\frac{1}{6}[/tex]
Hence, the first fraction at the right of 1 is [tex]\frac{7}{6}[/tex] or [tex]1\frac{1}{6}[/tex]
Any help would be great
Answer:
63
Step-by-step explanation: The ratio from planet A to B is 100 to 3. If an elephant weight 2100 is planet a, then we are multiplying 21 to hundred. Whatever you do on the left side you have to do it on the right side and if you multiply 21 and 3 on the right side then you get 63.
Answer:
63 pounds
Step-by-step explanation:
The ratio for Planet A to Planet B is
100 : 3
Creating a proportionality with the unknown as x
=> [tex]\frac{100}{3} = \frac{2100}{x}[/tex]
Isolating x would give
x = [tex]\frac{2100 * 3}{100}[/tex]
x = 21 × 3
x = 63 pounds
sum what is the sum of 199+ -24=
?
Answer:
175
Step-by-step explanation:
+ × - = -
thus 199+(-24)
199-24
175
Answer: 199 + -24 = 175
Step-by-step explanation: 199 is a positive number and -24 is a negative number. If the positive number is bigger than the negative number you subtract. So forget that the - sign is there and subtract it.
A university warehouse has received a shipment of 25 printers, of which 10 are laser printers and 15 are inkjet models. If 6 of these 25 are selected at random to be checked by a particular technician, what is the probability that exactly 3 of those selected are laser printers (so that the other 3 are inkjets)
Answer:
The probability is 0.31
Step-by-step explanation:
To find the probability, we will consider the following approach. Given a particular outcome, and considering that each outcome is equally likely, we can calculate the probability by simply counting the number of ways we get the desired outcome and divide it by the total number of outcomes.
In this case, the event of interest is choosing 3 laser printers and 3 inkjets. At first, we have a total of 25 printers and we will be choosing 6 printers at random. The total number of ways in which we can choose 6 elements out of 25 is [tex]\binom{25}{6}[/tex], where [tex]\binom{n}{k} = \frac{n!}{(n-k)!k!}[/tex]. We have that [tex]\binom{25}{6} = 177100[/tex]
Now, we will calculate the number of ways to which we obtain the desired event. We will be choosing 3 laser printers and 3 inkjets. So the total number of ways this can happen is the multiplication of the number of ways we can choose 3 printers out of 10 (for the laser printers) times the number of ways of choosing 3 printers out of 15 (for the inkjets). So, in this case, the event can be obtained in [tex]\binom{10}{3}\cdot \binom{15}{3} = 54600[/tex]
So the probability of having 3 laser printers and 3 inkjets is given by
[tex] \frac{54600}{177100} = \frac{78}{253} = 0.31[/tex]
Find the length of side x in simplest radical form with a rational denominator
Answer:
[tex] x = 7 \sqrt{3} [/tex]
Step-by-step explanation:
[tex] \tan \: 30 \degree = \frac{7}{x} \\ \\ \therefore \: \frac{1}{ \sqrt{3} } = \frac{7}{x} \\ \\ x = 7 \sqrt{3} \\ [/tex]
Aisha needs to be at least 48 inches tall to ride the colossal coaster at the amusement park. If she grows 5 inches during the next year, Aisha will still not be tall enough to ride. In the context of this situation, what does the inequality x less-than 43 represent?
Answer:
Aisha is shorter than 43 inches.
Step-by-step explanation:
[tex]x+5=48[/tex]
[tex]x=48-5[/tex]
[tex]x=43[/tex]
[tex]x >43[/tex]
Answer:
The answer is B!
Step-by-step explanation:
Test taking! <3
IQ levels: A study investigated whether there are differences between the mean IQ level of people who were reared by their biological parents and those who were reared by someone else. What is the null hypothesis in this case
Answer:
The null hypothesis: there is no difference between the mean IQ level of people who were reared by their biological parents and those who were reared by someone else.
Step-by-step explanation:The null hypothesis can be a general statement mostly in statistics that proposes no difference or no relationship between 2 phenomena etc
Researchers always carry out a study to test against the null hypothesis ie the opposite of the null hypothesis showing that there is a difference. In this study, the researchers aim is to establish that there is a difference between the mean IQ level of people who were reared by their biological parents and those who were reared by someone else. This goes against the null which states that
there is no difference between the mean IQ level of people who were reared by their biological parents and those who were reared by someone else.
Twice the difference of a number and 4 is equal to three times the sum of the number and 6. Find the number.
The number is
Answer:
-26
Step-by-step explanation:
2(x-4)=3(x+6)
2x-8=3x+18
2x-2x -8 = 3x-2x +18
-8 =X+18
-8-18=x+18-18
-26 = x
The value of the unknown number is -26.
Given that, twice the difference of a number and 4 is equal to three times the sum of the number and 6.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
Let the unknown number x.
Twice the difference of a number and 4 = 2(x-4)
Three times the sum of the number and 6 = 3(x+6)
So, equation is 2(x-4)=3(x+6)
⇒ 2x-8=3x+18
⇒ 3x-2x=-8-18
⇒ x=-26
Therefore, the value of the unknown number is -26.
To learn more about an equation visit:
https://brainly.com/question/1529522.
#SPJ2
In ΔEFG, ∠E \cong≅∠G, GE = 7 and FG = 15. Find the length of EF.
Answer: EF = 15
Step-by-step explanation:
The given description is that of an isosceles triangle. The base angles are congruent, therefore the sides opposite of those angles are also congruent.
The base angles are ∠E and ∠G and the vertex angle is ∠F.
The sides opposite to the base angles are EF and FG.
Thus, EF ≡ FG.
Since FG = 15 and FG = EF, then 15 = EF.
Based on the definition of an isosceles triangle, the length of EF in the triangle is: 15 units.
What is an Isosceles Triangle?An isosceles triangle has two sides that are congruent. The angles opposite these congruent sides are also congruent.
ΔEFG is an isosceles triangle. The congruent sides are, FG and EF.
Therefore, EF = FG = 15 units.
Learn more about isosceles triangle on:
https://brainly.com/question/11884412
What is the value of y ??????????????
Answer & Step-by-step explanation:
For this problem we can just set up an equation and equal it to 180.
(2y) + (y + 10) + 50 = 180
Combine like terms.
3y + 60 = 180
Subtract 60 from 180.
3y = 120
Divide 120 by 3.
y = 40
So, the value of y is 40°
A charity receives 2025 contributions. Contributions are assumed to be mutually independent and identically distributed with mean 3125 and standard deviation 250. Calculate the approximate 90th percentile for the distribution of the total contributions
Answer:
The 90th percentile for the distribution of the total contributions is $6,342,525.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For sums of size n, the mean is [tex]\mu*n[/tex] and the standard deviation is [tex]s = \sqrt{n}*\sigma[/tex]
In this question:
[tex]n = 2025, \mu = 3125*2025 = 6328125, \sigma = \sqrt{2025}*250 = 11250[/tex]
The 90th percentile for the distribution of the total contributions
This is X when Z has a pvalue of 0.9. So it is X when Z = 1.28. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]1.28 = \frac{X - 6328125}{11250}[/tex]
[tex]X - 6328125 = 1.28*11250[/tex]
[tex]X = 6342525[/tex]
The 90th percentile for the distribution of the total contributions is $6,342,525.
Please help me i need the answer if i knew it i will complete all of them by my self (: .
The right answer is 100 units^2
please see the attached picture for full solution
Hope it helps
Good luck on your assignment,
The population of bats in a large cave is 7000 and is growing exponentially at 14% per year. Write a function to represent the population of bats after
tt
t years, where the monthly rate of change can be found from a constant in the function.
Answer:
y=7000+14^t
Step-by-step explanation:
This equation shows that the original population of bats was 7000 and grows exponentially at a rate of 14% per year.
I put the graph below so you can see it.
In this exercise we have to identify how to write an exponential function from the data informed in the text, in this way we find that:
[tex]y=7000+14^t[/tex]
From the information given in the statement we find that:
The original population of bats was 7000Rate of 14% per year.Then writing this function as:
[tex]y=7000+14^t[/tex]
See more about function at brainly.com/question/5245372
What is the solution to y + 8.5 = 17.2?
Answer:
y+8.5 = 17.2
y = 17.2-8.5
= 8.7
Answer:
y+8.5 = 17.2
y = 17.2-8.5
= 8.7
Step-by-step explanation:
yes the answer above me is correct
Please answer this correctly
Answer:
20-39 => 2
40-59 => 1
60-79 => 1
80-99 => 6
100-119 => 5
Answer: 2, 1, 1, 6, 5
Step-by-step explanation:
20-39
2 | 3
3 | 9
40-59
5 | 0
60-79
7 | 5
80-99
8 | 1 2 4
9 | 3 9 9
100-119
10 | 1 1 5 6
11 | 1
Observe the expression below and select the true statement(s).
3y(7 + 2x) + 9ry - 10
The "(7 + 2x)" in the first term is a factor.
The "9" in the second term is a coefficient.
The "By" in the first term is a factor.
The "10" in the third term is a coefficient.
The "2" in the first term is a constant.
The "x" in the second term is an exponent
Answer: The 9 in the second term is a coefficient that is true. I think that is the only thing that is true. There may be one more thing that is true.
The 10 in the third term is not a coefficient.
The 2 is not a constant
the x is not an exponent.
those are the ones that I'm sure about.
Please correct anything if i'm wrong.
:)
The perimeter of the rectangle playing field is 432 yards the length of the field is 4 yards less than triple the width The perimeter of the rectangle playing field is 432 yards the length of the field is 4 yards less than triple the width. What is the length and width in yards?
Answer:
160 yards
Step-by-step explanation:
P=2l+2w
P=2(3w-8)+2(w)
432=2(3w-8)+2(w)
432=6w-16+2w
432=8w-16
432+16=8w
448=8w
w=448/8
w=56yards
l=3(56)-8
l=168-8=160yards
While filing your income tax, you report annual contributions of $100 to a public radio station, $300 to PBS (television station), $150 to a woman’s shelter, and $450 to other charitable organizations.
Find your monthly expense.
Hey there! I'm happy to help!
Let's add up all of these contributions.
100+300+150+450=1000
However, this is annual. We want monthly. So, we simply divide by 12.
1000/12≈83.33
Therefore, the monthly expense is $83.33
I hope that this helps! Have a wonderful day!
Solve for x: 3x - 5 = 2x + 6.
Your answer
Answer:
3x-5=2x+6
x-5=6
x=11
What’s the correct answer for this question?
Answer:
1)
Volume of pyramid = 1/3(Ab)(h)
Where Ab is the area of base, h is height
Volume of cone = 1/3(Ab)(h)
a) Their formula for finding volume is same. Also, their painting heads are same.
b) Pyramids have a tetragonal base while cones have a polygonal base
2) Pyramids
Volume of cone = (1/3) πr²h
Since Area of a circle = πr²
So
Volume of pyramid = (1/3)(A)(h)
So we can use the formula of a circle in cone's formula
Answer:
i dont know but i want points
Step-by-step explanation:
hehehe
Jake made a rectangular garden area as shown in the figure. He wants to add 3 inches of topsoil to the entire area.
36 in
15 in
How much topsoil does Jake need to get at the nursery?
540 in.
1,080 in.
1,386 in.
1,620 in.
Answer:
1,620in
Step-by-step explanation:
LxWxH
36 x 15 x 3 = 1,620 in
Answer:
1620
Step-by-step explanation:
Please answer this correctly
Answer:
153 square feet is the area
Answer:
153 ft^2
Step-by-step explanation:
If the top side were 24 ft long and the right side 10 ft long, you'd have a yellow rectangle with area 10 ft * 24 ft = 240 ft^2.
Now we subtract the parts that are missing.
3 ft * 13 ft = 39 ft^2
3 ft * 16 ft = 48 ft^2
240 ft^2 - 39 ft^2 - 48 ft^2 = 153 ft^2
A sports car manufacturer paints its cars silver, white, black, and red in the following proportions: ?
Color: Silver White Black Red
Proportion: .2 .3 .1 .4
We know that 40% of these cars are manufactured with tan leather upholstery while the remaining 60% are manufactured with gray leather.
A. Assuming that the choice of exterior color and leather color are independent, what is the probability that a randomly selected sports car from this manufacturer will be white with gray upholstery?
B. Assuming that we know the car has tan upholstery, what is the probability that the car is either silver or white?
Answer:
A. The probability that a randomly selected sports car from this manufacturer will be white with gray upholstery is P=0.12.
B. Assuming that we know the car has tan upholstery, the probability that the car is either silver or white is P=0.50.
Step-by-step explanation:
We first start by stating that the events "exterior color" and "leather color" are independent, so the probability of the outcomes of each event is not affected by the outcomes of the other event.
A. The probability of having a car that is white (W) with gray upholstery (G) is equal to the probability of having a car that is white multiplied by the probability of having a car with gray leather upholstery. Mathematically, this is:
[tex]P(\text{W\&G})=P(W)\cdot P(G)=0.3\cdot 0.4=0.12[/tex]
B. As the events are independent, the probability of having a silver or white car, given that the car has tan upholstery, is the same as the probabiltiy of having a silver or white car:
[tex]P(S\,or\,W | T)=P(S\,or\,W)=P(S)+P(W)=0.20+0.30=0.50[/tex]
As a birthday gift, you are mailing a new personal digital assistant (PDA) to your cousin in Toledo. The PDA cost $414. There is a 3 percent chance it will be lost or damaged in the mail. Is it worth $4 to insure the mailing?Explain, using the concept of expected value.
Answer:
It is worth $4 to insure the mailing.
Step-by-step explanation:
The random variable X can be defined as the money value.
The PDA costs, $414.
It is provided that there is a 3% chance it will be lost or damaged in the mail.
So, there is 97% chance it will not be lost or damaged in the mail.
The insurance costs $4.
If the PDA is lost or damaged in the mail when there is no insurance the money value would be of -$414.
And if the PDA is lost or damaged in the mail when there is an insurance the money value would be of $414 - $4 = $410.
Compute the expected value of money as follows:
[tex]\text{E (X)}=(0.97\times 410)+(0.03\times -414)[/tex]
[tex]=397.7-12.42\\=385.28[/tex]
The expected value of money in case the PDA is lost or damaged in the mail or not is $385.28.
Thus, it is worth $4 to insure the mailing.