Place the following atoms in order of increasing atomic radii: se, sb, br, and te

Answers

Answer 1

The order of increasing atomic radii for the given elements is: Br < Sb < Se < Te.

When we talk about atomic radii, we are referring to the size of an atom. The atomic radius increases as we move down a group in the periodic table, and it decreases as we move across a period. This is because as we move down a group, the number of electron shells increases, leading to a larger atomic radius.

Conversely, as we move across a period, the number of protons in the nucleus increases, leading to a stronger attractive force on the electrons, resulting in a smaller atomic radius.

In the case of the four elements given - selenium (Se), antimony (Sb), bromine (Br), and tellurium (Te) - we need to determine their position in the periodic table to determine the order of increasing atomic radii.

Starting from the top, we have selenium (Se) and tellurium (Te) in the same group, but Te has a larger atomic number, so it has more electron shells, resulting in a larger atomic radius. Next, we have antimony (Sb), which is in the same period as Te, but with a smaller atomic number, meaning it has a smaller atomic radius.

Finally, we have bromine (Br), which has the smallest atomic number and is also in the same period as Sb, so it has the smallest atomic radius.

Therefore, the order of increasing atomic radii for the given elements is: Br < Sb < Se < Te.

To know more about atomic radii, visit:

https://brainly.com/question/14086621#

#SPJ11


Related Questions

A compound is made up of 94. 5 g of aluminum and 199. 5 g or fluorine. Determine the empirical formula of the compound.



HELPPPP

Answers

The empirical formula of a compound made up of 94.5 g of aluminum and 199.5 g of fluorine is AlF₃.

To determine the empirical formula of the compound, we need to first calculate the moles of each element present in the sample.

Moles of aluminum = 94.5 g / 26.98 g/mol = 3.50 mol

Moles of fluorine = 199.5 g / 18.99 g/mol = 10.51 mol

Next, we need to determine the smallest whole number ratio between these two values.

Dividing both values by 3.50, we get:

Moles of aluminum = 1

Moles of fluorine = 3

Therefore, the empirical formula of the compound is AlF₃.

To know more about the empirical formula refer here :

https://brainly.com/question/14425592#

#SPJ11

What is the pH of a solution where [OH⁻]=0. 00030M

Answers

The pH of the solution where [tex][OH⁻][/tex]=0.00030 M is 11.48. This indicates that the solution is basic, or alkaline, since the pH is greater than 7.

To determine the pH of a solution where[tex][OH⁻][/tex]=0.00030 M, we can use the relationship between the concentrations of hydrogen ions and hydroxide ions in water, which is defined by the equation[tex]Kw = [H⁺][OH⁻].[/tex]At 25°C, the value of Kw is [tex]1.0 x 10^-14[/tex].

If we substitute the concentration of hydroxide ions given in the question ([tex][OH⁻][/tex]=0.00030 M) into this equation, we can solve for the concentration of hydrogen ions:

[tex]Kw = [H⁺][OH⁻]\\1.0 x 10^-14 = H⁺\\[H⁺] = 3.3 x 10^-12 M[/tex]

Now that we know the concentration of hydrogen ions, we can use the formula for pH, which is defined as [tex]pH = -log[H⁺][/tex], to find the pH of the solution:

[tex]pH = -log(3.3 x 10^-12)[/tex]

pH = 11.48

To know more about pH refer to-

https://brainly.com/question/2288405

#SPJ11

Balance equation for 15 g of solid Mg reacts with 15 g of HCl and produce MgCl2 and H2

Answers

When 15 g of Mg reacts with 15 g of HCl, 19.6 g of MgCl₂ and 0.208 g mass of H₂ are produced.

The molar mass of Mg is 24.31 g/mol, and the molar mass of HCl is 36.46 g/mol. To determine the number of moles of each substance, we divide the given mass by its molar mass:

moles of Mg = 15 g ÷ 24.31 g/mol = 0.618 mol

moles of HCl = 15 g ÷ 36.46 g/mol = 0.411 mol

Determine the limiting reactant in the reaction by comparing the number of moles of each reactant:

Mg: 0.618 mol

HCl: 0.411 mol × (1 mol Mg ÷ 2 mol HCl) = 0.206 mol

Since HCl is the limiting reactant, it will be completely consumed in the reaction. The amount of MgCl₂ produced can be calculated as:

moles of MgCl₂ = moles of HCl = 0.206 mol

mass of MgCl₂ = moles of MgCl₂ × molar mass of MgCl₂

mass of MgCl₂ = 0.206 mol × 95.21 g/mol = 19.6 g

Similarly, the amount of H₂ produced can be calculated as:

moles of H₂ = moles of HCl × (1 mol H₂ ÷ 2 mol HCl)

moles of H₂ = 0.206 mol × (1 mol H₂ ÷ 2 mol HCl) = 0.103 mol

mass of H₂ = moles of H₂ × molar mass of H₂

mass of H₂ = 0.103 mol × 2.02 g/mol = 0.208 g

To learn more about mass follow the link:

https://brainly.com/question/4577984

#SPJ4

What volume (in litres) of 0. 200 M NaOH is required to neutralize 22. 3 mL of 0. 152 M HCl?

Answers

To solve this problem, we can use the following equation:

Moles of acid = Moles of base

where "acid" refers to the HCl and "base" refers to the NaOH.

First, let's calculate the moles of HCl:

moles of HCl = concentration of HCl × volume of HCl

            = 0.152 mol/L × 0.0223 L

            = 0.0033856 mol

Next, let's calculate the volume of NaOH required to neutralize the HCl:

moles of NaOH = moles of HCl

volume of NaOH = moles of NaOH / concentration of NaOH

We know the concentration of NaOH (0.200 M), so let's substitute in the values:

moles of NaOH = 0.0033856 mol

volume of NaOH = 0.0033856 mol / 0.200 mol/L

              = 0.016928 L

              = 16.928 mL (rounded to three decimal places)

Therefore, 16.928 mL of 0.200 M NaOH is required to neutralize 22.3 mL of 0.152 M HCl.

To know more about problem refer here

https://brainly.com/question/31611375#

#SPJ11

What volume of nitrogen reacts with 33. 6 litres of oxygen to produce nitrogen

dioxide

Answers

The balanced chemical equation for the reaction of nitrogen and oxygen to produce nitrogen dioxide is:

2NO + O2 → 2NO2

According to the equation, 1 mole of nitrogen reacts with 0.5 moles of oxygen to produce 1 mole of nitrogen dioxide.

To determine the volume of nitrogen required to react with 33.6 L of oxygen, we need to convert the volume of oxygen to moles, and then use the mole ratio to find the moles of nitrogen required, and finally convert to volume of nitrogen.

Using the ideal gas law, we can convert the given volume of oxygen to moles:

n(O2) = PV/RT

where P is the pressure, V is the volume, R is the gas constant, and T is the temperature in Kelvin.

Assuming standard temperature and pressure (STP) conditions of 1 atm and 273 K, we get:

n(O2) = (1 atm) × (33.6 L) / [(0.0821 L·atm/mol·K) × (273 K)] = 1.37 moles of O2

Using the mole ratio from the balanced chemical equation, we know that 2 moles of NO react with 1 mole of O2. So the number of moles of NO required to react with 1.37 moles of O2 is:

n(NO) = 2 × (1.37 moles of O2) = 2.74 moles of NO

Finally, we can convert the moles of NO to volume using the ideal gas law:

V(NO) = n(NO)RT/P

Assuming STP conditions again, we get:

V(NO) = (2.74 mol) × (0.0821 L·atm/mol·K) × (273 K) / (1 atm) ≈ 60.4 L

Therefore, approximately 60.4 L of nitrogen would be required to react with 33.6 L of oxygen to produce nitrogen dioxide, under the given conditions.

To know more about chemical refer here

https://brainly.com/question/29240183#

#SPJ11

Your shopping cart has a mass of 20 kg. If you push it with a force of 20 N, what is the acceleration of the cart?

Answers

Answer:

1000m/s^2

Explanation:

since F=ma

:a=m/F

Yo convert ur m from kg to g

20×1000

20000

a=20000\20

a=1000m/s^2

The Si unit of hurtz equals one wave passing a fixed point in one _____

Answers

The Si unit of Hertz (Hz) represents the frequency of a wave, which is defined as the number of complete cycles of a wave passing a fixed point per second.

In other words, one Hertz equals one wave passing a fixed point in one second. This unit is commonly used to measure the frequency of various types of waves, including sound waves, electromagnetic waves, and radio waves.

For example, if a sound wave has a frequency of 440 Hz, it means that the sound wave completes 440 cycles of compression and rarefaction (the peaks and troughs of the wave) per second. Similarly, if a radio wave has a frequency of 100 MHz (megahertz), it means that the wave completes 100 million cycles per second.

The Hertz unit was named after Heinrich Hertz, a German physicist who was the first to demonstrate the existence of electromagnetic waves. Hertz's experiments in the late 19th century paved the way for the development of modern radio, television, and other forms of wireless communication.

In summary, the Si unit of Hertz equals one wave passing a fixed point in one second, and it is a fundamental unit of measurement for the frequency of various types of waves.

To know more about frequency, visit:

https://brainly.com/question/5102661#

#SPJ11

`Name:
Date:
Properties of Matter - Crunch time Review
1. If two objects balance like the ones shown below, what must be true?
A. Object A has more mass than object B.
Both objects have the same mass.
C. Object A has more volume than object B.
D. Both objects have the same volume.

Answers

Answer:

d

Explanation:

because i did it

Calculate the mass of iron that releases 2432 J of energy as its temperture rises from 25. 0 degrees * C to 87. 0 degrees * C. (The specific heat of iron is 0. 448 J/g^ C)

Answers

To solve this problem, we can use the formula:

q = m * c * ΔT

where q is the heat energy absorbed or released, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.

We know that the heat energy released by the iron is 2432 J, the specific heat capacity of iron is 0.448 J/g°C, the initial temperature of the iron is 25.0°C, and the final temperature of the iron is 87.0°C.

The mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.

Substituting the values in the formula, we get:

2432 J = m * 0.448 J/g°C * (87.0°C - 25.0°C)

Simplifying the equation, we get:

m = 2432 J / (0.448 J/g°C * 62.0°C)

m = 96.2 g

Therefore, the mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.

To know more about temperature rise refer here:

https://brainly.com/question/2006890

#SPJ11

you need to make an aqueous solution of 0.172 m iron(ii) nitrate for an experiment in lab, using a 250 ml volumetric flask. how much solid iron(ii) nitrate should you add?

Answers

We need to add 7.7 g of solid iron(II) nitrate to make a 0.172 M solution in 250 mL volumetric flask.

First, we can use molarity and volume of solution to find the number of moles of iron(II) nitrate needed:

moles of [tex]Fe(NO_3)_2[/tex]= Molarity × Volume in liters

moles of [tex]Fe(NO_3)_2[/tex] = 0.172 mol/L × 0.250 L = 0.043 mol

Next, we can use the molar mass of iron(II) nitrate to find the mass of the solid that needs to be added:

mass of [tex]Fe(NO_3)_2[/tex] = moles of [tex]Fe(NO_3)_2[/tex] × molar mass of [tex]Fe(NO_3)_2[/tex]

mass of [tex]Fe(NO_3)_2[/tex]= 0.043 mol × (55.85 g/mol + 2 × 14.01 g/mol + 6 × 16.00 g/mol)

mass of [tex]Fe(NO_3)_2[/tex]= 0.043 mol × 179.86 g/mol = 7.7 g

To know more about volumetric flask, here

brainly.com/question/19517011

#SPJ1

A 98. 5°C metal bolt is placed in a calorimeter of 23. 1°C water. Which way will the heat energy flow?

Answers

Hi! The heat energy will flow from the 98.5°C metal bolt to the 23.1°C water in the calorimeter.

This is because heat always flows from a higher temperature object to a lower temperature object until thermal equilibrium is reached.

This principle is known as the second law of thermodynamics or the law of heat transfer. It describes the natural tendency for heat to move from regions of higher temperature to regions of lower temperature.

Heat transfer occurs through three main mechanisms: conduction, convection, and radiation.

In the given scenario, conduction is the primary mechanism of heat transfer. When the hot metal bolt comes into contact with the water in the calorimeter, the thermal energy from the bolt is transferred to the water molecules in direct contact with it.

The water molecules gain kinetic energy and begin to vibrate more rapidly, thereby increasing their temperature. As a result, the metal bolt loses thermal energy, and its temperature decreases.

This transfer of heat will continue until the metal bolt and water reach thermal equilibrium, where both objects have the same temperature. At this point, the heat flow between them will cease, as there is no longer a temperature difference to drive the transfer of thermal energy.

To learn more about heat, refer below:

https://brainly.com/question/1429452

#SPJ11

How many moles are in a sample having 9. 3541 x 10^13 particles?

Answers

The sample has approximately 0.000155 moles.

To determine the number of moles in a sample of a substance given the number of particles, we need to use Avogadro's number, which states that there are[tex]6.022 x 10^23[/tex] particles in one mole of a substance.

Using this conversion factor, we can calculate the number of moles in the sample as follows:

[tex]9.3541 x 10^13[/tex]particles x 1 mole / [tex]6.022 x 10^23[/tex] particles ≈ 0.000155 moles

Therefore, the sample has approximately 0.000155 moles.

It's important to note that the number of particles in a sample does not depend on the substance's molar mass or atomic weight, but rather on the number of atoms, molecules, or ions present in the sample. Knowing the number of moles in a sample can be useful in determining other properties of the substance, such as its mass or volume.

To know more about Avogadro's number refer to-

https://brainly.com/question/28812626

#SPJ11

Find the molarity of 4. 18 g MgCl2 in 500 mL of water

Answers

To find the molarity of 4.18 g MgCl2 in 500 mL of water, we first need to calculate the number of moles of MgCl2 present in the solution.

MgCl2 has a molar mass of 95.21 g/mol (Mg is 24.31 g/mol and Cl is 35.45 g/mol). Therefore, the number of moles of MgCl2 in 4.18 g is:

4.18 g / 95.21 g/mol = 0.04396 mol MgCl2

The solution's volume must then be changed from mL to L:

500 mL = 0.5 L

Finally, we can use the formula for molarity:

Molarity = moles of solute / volume of solution in liters

Molarity = 0.04396 mol / 0.5 L = 0.08792 M

Therefore, the molarity of 4.18 g MgCl2 in 500 mL of water is 0.08792 M.

What do you mean by molarity?

The number of moles of solute per liter of solution is known as molarity, which serves as a measurement of a solution's concentration. It is denoted by the symbol "M" and is expressed in units of moles per liter (mol/L).

Molarity is an important concept in chemistry, as it is used to measure the concentration of solutions in a variety of chemical reactions and processes. It is commonly used in stoichiometry calculations to determine the amount of reactants or products required in a chemical reaction, and is also used in titration experiments to determine the concentration of an unknown solution.

To know more about Molarity:

https://brainly.com/question/8732513

#SPJ11

A gas has a pressure of 499.0 mm Hg at 50.0 °C. What is the
temperature at standard pressure (1 atm = 760 mmHg)?

Answers

The temperature of the gas at standard pressure is 219.02 °C.

What is the temperature of the gas at standard pressure (1 atm = 760 mmHg)?

Gay-Lussac's law states that the pressure exerted by a given quantity of gas varies directly with the absolute temperature of the gas.

It is expressed as;

P₁/T₁ = P₂/T₂

We know that the pressure (P1) is 499.0 mmHg at a temperature (T1) of 50.0°C. We want to find the temperature (T2) at standard pressure (P2 = 1 atm = 760 mmHg). We also know that the volume (V1) is constant, so we can write:

P₁/T₁ = P₂/T₂

Solving for T2, we get:

T2 = (P2 × T1)/P1

T2 = (760 mmHg × 323.15 K)/499.0 mmHg

T2 = 492.172 K

Converting this temperature to °C, we get:

T2 = 492.172 K - 273.15

T2 = 219.02 °C

Therefore, the temperature is 219.02 °C.

Learn more about Gay-Lussac's law here: brainly.com/question/1358307

#SPJ1

Answer:

492.17 K (2 d.p.) = 219.02 °C (2 d.p.)

Explanation:

To find the final pressure inside the steel tank, we can use Gay-Lussac's law since the volume is constant.

Gay-Lussac's law

[tex]\boxed{\sf \dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}}[/tex]

where:

P₁ is the initial pressure.T₁ is the initial temperature (in kelvins).P₂ is the final pressure.T₂ is the final temperature (in kelvins).

As we are solving for the final temperature, rearrange the equation to isolate T₂:

[tex]\sf T_2=\dfrac{P_2T_1}{P_1}[/tex]

Convert the initial temperature from Celsius to Kelvin by adding 273.15:

[tex]\implies \sf T_1=50+273.15=323.15\;K[/tex]

The standard pressure is 1 atm = 760 mmHg.

Therefore, the values to substitute into the equation are:

P₁ = 499.00 mmHgT₁ = 323.15 KP₂ = 760 mmHg

Substitute the values into the equation and solve for T:

[tex]\implies \sf T_2=\dfrac{760 \cdot 323.15}{499}[/tex]

[tex]\implies \sf T_2=\dfrac{245594}{499}[/tex]

[tex]\implies \sf T_2=492.172344689...[/tex]

[tex]\implies \sf T_2=492.17\;K\;(2\;d.p.)[/tex]

Therefore, the temperature at standard pressure for a gas with a pressure of 499.0 mmHg at 50.0 °C is 492.17 K (or 219.02 °C).

What volume of a 1.2M solution must be used to produce .5 L of a .7M solution?

Answers

Answer:

1,2million or meter

Explanation:

or 1 million until 7m

The evaporation heat of mercury is 296 kJ/ kg. Calculate how much heat needs to be provided to change 50 g of this substance into vapour at its boiling point

Answers

To calculate the amount of heat required to change 50 g of mercury into vapor at its boiling point, we need to use the following formula:

Q = m * H_vap

where Q is the amount of heat required, m is the mass of the substance, and H_vap is the heat of vaporization.

We are given that the heat of vaporization of mercury is 296 kJ/kg. To use this value, we need to convert the mass of mercury to kilograms:

m = 50 g = 0.05 kg

Now we can use the formula to calculate the amount of heat required:

Q = 0.05 kg * 296 kJ/kg = 14.8 kJ

Therefore, 14.8 kJ of heat needs to be provided to change 50 g of mercury into vapor at its boiling point.

To know more about required refer here

https://brainly.com/question/2929431#

#SPJ11

Nicolaas' model demonstrates that and are primarily responsible for the movement of water on earth

Answers

Nicolaas' model is a scientific model that explains the movement of water on Earth. According to the model, the two primary factors responsible for the movement of water on Earth are evaporation and precipitation.

Evaporation occurs when water changes from a liquid to a gas state due to heat from the sun. This process results in the formation of water vapor that rises into the atmosphere. Precipitation occurs when water vapor condenses in the atmosphere and falls back to the surface as rain, snow, or hail. These two processes play a critical role in the water cycle, which is essential for the survival of life on Earth. Therefore, Nicolaas' model highlights the significance of evaporation and precipitation in the movement of water on Earth.

Learn more about Nicolaas' model at https://brainly.com/question/15923461

#SPJ11

how does backbone help?​

Answers

Answer:

Backbone help us to be straight ,walk ,sleep etc

Explanation:

Backbone is the part of human body which is located back of our body.

It effort helps us to be straight do various work

The spine or the backbone is the central structure of the vertebrate body and it serves a few imperative capacities:

Bolster: The spine gives bolster for the body and makes a difference keep up its shape.Security: The spine encases and ensures the spinal rope, which is mindful for transmitting signals between the brain and the rest of the body.Connection: Muscles, tendons, and ligaments join to the spine, permitting for development and giving steadiness.Blood cell generation: The springy tissue interior a few of the bones of the spine produces ruddy and white blood cells.Mineral capacity: The bones of the spine store minerals such as calcium and phosphorus, which are imperative for bone quality and other substantial capacities. 

To know more about backbone,

https://brainly.com/question/30052045

What happens in a decomposition reaction? A. Two ions trade places. B. Two substances combine to form one substance. C. The charges of the atoms change. D. Compounds break down into smaller compounds.​

Answers

A single compound decomposes into two or more smaller compounds or components during a decomposition reaction. Option D

A number of mechanisms, such as heat, light, or the addition of another molecule, can cause this. A significant quantity of potential energy is often held in the chemical bonds of the reactant component, and this energy is released during the reaction.

For instance, hydrogen peroxide's typical breakdown reaction involves the molecule dissolving into water and oxygen gas:

[tex]2H_2O_2 \rightarrow 2 H_2O + O_2[/tex]

The heat breakdown of calcium carbonate to produce calcium oxide and carbon dioxide gas is another illustration:

[tex]CaO + CO_2 = CaCO_3[/tex]

Decomposition reactions are crucial components of several chemical processes in both nature and industry. They are characterised by the dissolution of bigger molecules into smaller ones. Option D

For more such questions on Decomposition reactions

https://brainly.com/question/14608831

Two students in a chemistry lab start a particular lab with 1. 23 g of aluminum. They react it with excess sulfuric acid to produce aluminum sulfate. If they produce 3. 00 g of aluminum sulfate what is their percent yield

Answers

The percent yield for the reaction of 1.23 g of aluminum with excess sulfuric acid to produce 3.00 g of aluminum sulfate is 38.46%.

To find the percent yield for the reaction of aluminum with sulfuric acid to produce aluminum sulfate, you need to follow these steps:

1. Write the balanced chemical equation for the reaction:
2 Al + 3 H₂SO₄ → Al₂(SO₄)₃ + 3 H₂

2. Calculate the molar mass of aluminum (Al) and aluminum sulfate (Al₂(SO₄)₃):
Al: 26.98 g/mol
Al₂(SO₄)₃: (2 × 26.98) + (3 × [4 × 16.00 + 32.07]) = 53.96 + 342.15 = 342.15 g/mol

3. Determine the moles of aluminum used in the reaction:
moles of Al = mass of Al / molar mass of Al = 1.23 g / 26.98 g/mol = 0.0456 mol

4. Calculate the theoretical yield of aluminum sulfate based on the moles of aluminum:
moles of Al₂(SO₄)₃ = 0.0456 mol Al × (1 mol Al₂(SO₄)₃ / 2 mol Al) = 0.0228 mol Al₂(SO₄)₃
mass of Al₂(SO₄)₃ = moles of Al₂(SO₄)₃ × molar mass of Al₂(SO₄)₃ = 0.0228 mol × 342.15 g/mol = 7.80 g (theoretical yield)

5. Calculate the percent yield:
percent yield = (actual yield / theoretical yield) × 100% = (3.00 g / 7.80 g) × 100% = 38.46%

So, the percent yield for the reaction of 1.23 g of aluminum with excess sulfuric acid to produce 3.00 g of aluminum sulfate is 38.46%.

To know more about molar mass :

https://brainly.com/question/20552052

#SPJ11

A truck weighs 7280 pounds. If the pressure exerted by its tires on the ground is 87. 5 pounds per square centimeter,what is the area of one tire that in contact with the road

Answers

The area of one tire in contact with the road is approximately 378 square centimeters.

To solve this problem, we need to use the formula:

Pressure = Force/Area

We can rearrange this formula to solve for the area:

Area = Force/Pressure

First, we need to convert the weight of the truck from pounds to newtons, since pressure is typically measured in newtons per square meter. We can use the conversion factor 1 pound = 4.44822 newtons.

Weight of truck = 7280 pounds x 4.44822 newtons/pound
Weight of truck = 32,355.26 newtons

Now we can plug in the values for force and pressure:

Area = 32,355.26 newtons / 87.5 pounds per square centimeter

To convert pounds per square centimeter to newtons per square meter, we need to use the conversion factor 1 pound per square centimeter = 98,066.5 newtons per square meter.

Area = 32,355.26 newtons / (87.5 pounds per square centimeter x 98,066.5 newtons per square meter per pound per square centimeter)

Area = 0.0378 square meters

Finally, we can convert square meters to square centimeters by multiplying by 10,000:

Area = 0.0378 square meters x 10,000 square centimeters per square meter

Area = 378 square centimeters

Therefore, the area of one tire in contact with the road is approximately 378 square centimeters.

Know more about Pressure here:

https://brainly.com/question/1890275

#SPJ11

A spiderweb and a kevlar jacket have some obvious differences. Which property is similar between the web and the jacket?.

Answers

One property that is similar between a spiderweb and a Kevlar jacket is their tensile strength.

Tensile strength is the ability of a material to resist breaking under tension or stretching.

Spider silk is known to be one of the strongest natural fibers, with a tensile strength comparable to steel. Kevlar is a synthetic polymer that is widely used in body armor, ropes, and other products that require high strength-to-weight ratios.

Kevlar has a tensile strength five times stronger than steel, making it an ideal material for applications where high strength and durability are required.

Both spider silk and Kevlar are known for their remarkable strength, and their ability to withstand tensile forces, making them highly desirable for use in a variety of applications where strength and durability are essential.

To know more about spiderweb refer to-

https://brainly.com/question/18880314

#SPJ11

Complex Ion Formation:Cu(NH3)42 Ecell, after adding 6 M NH3to the copper cell 0. 77V. Use the Nernst equation to calculate the concentration of that free copper (II) ion that is in equilibrium with the complexed copper (II) ion, Cu(NH3)42 in the solution. Does the calculated value for the [Cu2 ] make sense (look up the Kf for the formation of Cu(NH3)42 ) and rationalize your findings)

Answers

The concentration of free copper (II) ions in equilibrium with Cu(NH₃)₂ is 5.15 x 10⁻¹⁰ M.

1. Write the half-reaction for Cu²⁺ and Cu(NH₃)₂: Cu²⁺ + 2NH₃ ⇌ Cu(NH₃)₂²⁺
2. Use the Nernst equation: E = E° - (0.05916/n) * log(Q)
3. Rearrange for [Cu²⁺]: [Cu²⁺] = 10^((E° - E) * n / 0.05916)
4. Plug in the values: E° = 0.77V, E = 0, n = 2
5. Calculate [Cu²⁺]: [Cu²⁺] = 5.15 x 10⁻¹⁰ M

The calculated value for [Cu²⁺] makes sense, as the Kf for Cu(NH₃)₂ formation is large, indicating a strong complex formation and low [Cu²⁺] concentration.

To know more about Nernst equation click on below link:

https://brainly.com/question/31593791#

#SPJ11

what would earth be like if vascular plants never developed

Answers

If the vascular plants never developed, the Earth would be drastically different. Vascular plants are responsible for much of the oxygen production on our planet, so the atmosphere would contain significantly less oxygen. Additionally, without the root systems of vascular plants, soil erosion would be much more prevalent and the landscape would likely be more barren.

The evolution of many animals, including insects and birds, would have been impacted as well, as many of these species rely on vascular plants for food and shelter. Overall, the absence of vascular plants would have a profound effect on the ecology and biodiversity of our planet.

For more questions on: oxygen

https://brainly.com/question/28009615

#SPJ11

How many moles of aluminium are needed to react completely with 213 g CL2?

Answers

2.00 moles of aluminum are needed to react completely with 213 g of Cl₂.

How to get the number of moles

Prior to calculating the moles of aluminum (Al) required for a complete reaction with 213 g chlorine gas (Cl₂), it is necessary to write and balance the Al and Cl₂ chemical equation:

2Al + 3Cl₂ → 2 AlCl₃.

compute the quantity of Cl₂ in moles

molar mass of Cl₂

= 2 x atomic mass of Cl

= 2 x 35.45 g/mol

= 70.90 g/mol

To obtain moles of Cl₂ simply divide its mass by its molar weight as per this formula:

= 213 g / 70.90 g/mol = 3.00 mol.

moles of Al

= (moles of Cl₂ x 2) / 3

= (3.00 mol x 2) / 3

= 2.00 mol

Learn more about moles of aluminum at

https://brainly.com/question/30459977

#SPJ1

Someone help me please

Answers

Answer: C

Explanation: When distinguishing between opinion and fact, it's important to pick out certain words or phrases.

EX 1: Apple's are healthy, but you shouldn't eat too many of them. Fact

EX 2: I don't think you should eat that banana, they don't taste good to me. Opinion

Try to say the sentence in your head as if you were talking to another person, and try to determine your answer that way.

How many liters of H2O gas are produced when


7. 25 liters of C3H8 are


burned at STP?


C3H8 + 5O2 → 3CO2 + 4H2O

Answers

At STP, 27.8 liters of H2O gas are produced when 7.25 liters of C3H8 are burned .

When 7.25 liters of C3H8 are burned at STP, according to the balanced chemical equation, 4 moles of H2O gas are produced for every 1 mole of C3H8.

First, we need to determine the number of moles of C3H8 in 7.25 liters. We can use the ideal gas law:

PV = nRT

Where P = pressure (STP = 1 atm), V = volume (7.25 L), n = number of moles, R = gas constant (0.0821 L atm/mol K), and T = temperature (STP = 273 K).

Solving for n:

n = PV/RT
n = (1 atm)(7.25 L)/(0.0821 L atm/mol K)(273 K)
n = 0.296 moles

Now we can use the mole ratio from the balanced equation to determine the number of moles of H2O produced:

1 mole C3H8 : 4 moles H2O

0.296 moles C3H8 x (4 moles H2O/1 mole C3H8) = 1.184 moles H2O

Finally, we can convert moles of H2O to liters of gas at STP using the same ideal gas law:

n = PV/RT

V = nRT/P
V = (1.184 mol)(0.0821 L atm/mol K)(273 K)/(1 atm)
V = 27.8 L

Therefore, 27.8 liters of H2O gas are produced when 7.25 liters of C3H8 are burned at STP.

Know more about Ideal Gas Law here:

https://brainly.com/question/4147359

#SPJ11

If 2. 40 mol of carbon are exposed to 3. 10 mol of steam identify the limiting reactant? How many moles of each product are formed? SHOW WORK OR NO CREDIT!!

Answers

Limiting reactant in the given condition is Carbon, Moles of CO formed is 2.40 mol and moles of H2 formed is 2.40 mol

To determine the limiting reactant, we need to compare the amount of each reactant to their stoichiometric coefficients in the balanced chemical equation. The balanced equation for the reaction between carbon and steam is:

C (s) + H2O (g) → CO (g) + H2 (g)

The stoichiometric coefficients tell us that 1 mole of carbon reacts with 1 mole of steam to produce 1 mole of carbon monoxide and 1 mole of hydrogen gas.

So, for 2.40 moles of carbon, we need 2.40 moles of steam to react completely. However, we only have 3.10 moles of steam available, which means that steam is in excess and carbon is the limiting reactant.

To find the number of moles of products formed, we use the stoichiometric coefficients. Since carbon is the limiting reactant, we can use its amount to determine the theoretical yield of products.

From the balanced equation, 1 mole of carbon produces 1 mole of CO and 1 mole of H2. Therefore, 2.40 moles of carbon will produce 2.40 moles of CO and 2.40 moles of H2.

So, the answer to the question is:
Limiting reactant: Carbon
Moles of CO formed: 2.40 mol
Moles of H2 formed: 2.40 mol

Know more about Limiting Reactant here:

https://brainly.com/question/14225536

#SPJ11

Write the following chemical reactions and balance:



Potassium reacts with sodium oxide to produce potassium oxide and sodium

Answers

The chemical reaction between potassium and sodium oxide results in the formation of potassium oxide and sodium. The balanced equation for this reaction is:
2K + Na₂O -> K₂O + 2Na


This reaction is an example of a displacement reaction, where a more reactive element (potassium) displaces a less reactive element (sodium) from its compound (sodium oxide). The displacement occurs because potassium has a greater tendency to lose electrons and form cations compared to sodium.

Potassium oxide is an important chemical compound with many industrial applications, including in the production of glass, ceramics, and fertilizers. It is also used as a drying agent and catalyst in organic reactions.

Sodium, on the other hand, is a highly reactive metal that is commonly found in compounds such as sodium chloride (table salt) and sodium hydroxide (lye). It is an essential element for many biological processes, including nerve and muscle function.

Overall, this chemical reaction between potassium and sodium oxide is important because it highlights the reactivity of these elements and the formation of useful compounds such as potassium oxide. It also emphasizes the importance of balancing chemical equations to ensure that the reactants and products are in the correct proportions.

To learn more about displacement reaction visit:

https://brainly.com/question/20690229

#SPJ11

If a piece of aluminum that is 3.90 g and at 99.3°C is dropped into 10.0 g of water at 22.6°C, the final temperature is 28.6°C. What is the specific heat capacity of aluminum?

Answers

To solve for the specific heat capacity of aluminum, we can use the formula:
q = m × c × ΔT, Where q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.

First, we need to calculate the heat transferred from the aluminum to the water:

q = mAl × cAl × ΔTAl
q = (3.90 g) × cAl × (28.6°C - 99.3°C)
q = -978 J

Note that we get a negative value for q because heat is transferred from the aluminum to the water, so the aluminum loses heat.

Next, we can calculate the heat gained by the water:

q = mwater × cwater × ΔTwater

q = (10.0 g) × cw × (28.6°C - 22.6°C)
q = 240 J

Setting these two equations equal to each other, we can solve for the specific heat capacity of aluminum:

mAl × cAl × ΔTAl = mwater × cwater × ΔTwater
cAl = (mwater × cw × ΔTwater) / (mAl × ΔTAl)
cAl = (10.0 g) × (4.184 J/g·°C) × (28.6°C - 22.6°C) / [(3.90 g) × (99.3°C - 28.6°C)]
cAl = 0.900 J/g·°C

Therefore, the specific heat capacity of aluminum is 0.900 J/g·°C.

For more questions on: capacity

https://brainly.com/question/27862577

#SPJ11

Other Questions
The boy biked 600 m at a speed of 10 m/s, how long did it take him to bike the total distance? Why is expressed sequence tag library a fitting name for a collection of clones made from mRNA?please help :(((( you are the administrator for the westsim domain. organizational units (ous) have been created for each company department. user and computer accounts for each department have been moved into their respective department ous. computers in the accounting department use a custom application. during installation, the application creates a local group named acctmagic. this group is used to control access to the program. by default, the account used to install the application is made a member of the group. you install the application on each computer in the accounting department. all accounting users must be able to run the application on any computer in the department. you need to add each user as a member of the acctmagic group. you create a domain group named accounting and make each user a member of this group. you then create a gpo named acct software linked to the accounting ou. you need to define the restricted group settings. what should you do? answer create a restricted group named accounting. add the acctmagic group as a member. create a restricted group named acctmagic. add the accounting domain group as a member. create a restricted group named accounting. define the group as a member of the acctmagic group. create a restricted group named acctmagic. define the group as a member of the accounting domain group. which of the following describes a call option? group of answer choices a. the right to buy an asset for a certain price. b. the obligation to buy an asset for a certain price. c. the right to sell an asset for a certain price. d. the obligation to sell an asset for a certain price. Which group of the periodic table contains element t? 6.03 Symbols & Word Choice Write UpInstructionsAnswer each of the following questions with at least one complete sentence. Be certain to number each response so that it corresponds with the question it is answering. 1. What are some observations we can make about the culture of Leon and Ken based off their last rites ritual? To clarify, think about where this ritual takes place, when the ritual occurs, and the types of materials involved. 2. Reread the passage describing the last rites ritual. This ritual and how it is described sets a tone of reverence, peace, and positivity. What words or phrases are contributing to that tone?3. How is the symbol of the holy water interpreted differently by Leon and the priest?4. How does the priests response to Leon's and Ken's death ceremony reveal his attitude toward the Native American last rights compared to the catholic ones? Suppose f'(x) = 8x + 12x + 2 and f(1) = -4. Then f(-1) equals (Enter a number for your answer.) i need the answer for this +explanation it had me confused Find the Riemann sum S for the following information. Round your answer to the nearest hundredth. f(x) = 64 - x; [a, b] = (-8, -3]; n = 5.c = -7.5.c = -6.5.c = -5.5.c = - 4.5.c = -3.5 Why did philip ll need a navy to defeat the greek city-states? a) the city states were surrounded by water b) most city states were located on islands c) most city states were located across the adriatic sead) the city states has allies near the mediterranean sea an elderly patient who has hypothermia is at greater risk for * a. sepsis. b. seizure. c. acute edema. d. deep vein thrombosis. Josh pushes a table with a force of 80. N at an angle of 30to the table. If he pushes the table 5 meters, how muchwork has he done? Joules The data set is 12, 46, 32, 18, 26, 41, 46. the mean is 31.6 and the median is 32. if we add another 12, what affect does this have on the mean and median? Where are most core countries found? What is the osmotic pressure for a 4. 50% by a mass aqueous solution of glucose (C6H12O6) at 300 K? Write a net ionic equation for the reaction that occurs when sodium carbonate (aq) and excess hydroiodic acid are combined. The city of Annandale has been directed to upgrade its primary wastewater treatment plant to a secondary treatment plant with sludge recycle that can meet an effluent standard of 11 mg/l BOD5. The following data are available: Flow = 0. 15 m3/s, MLSS = 2,000 mg/L. Kinetic parameters: Ks = 50 mg/L, max = 3. 0 d1, kd = 0. 06 d1, Y = 0. 6 Existing plant effluent BOD5 = 84 mg/L. a. Calculate the SRT (?c) and HRT (?) for the aeration tank. b. Calculate the required volume of the aeration tank. c. Calculate the food to microorganism ratio in the aeration tank. d. Calculate the volumetric loading rate in kg BOD5/m3-d for the aeration tank. e. Calculate the mass and volume of solids wasted each day, when the underflow solids concentration is 12,000 mg/L The spinner has 8 congurent sections it is spun 24 times what is a reasonable prediction for the number of times the spinner will land on the number 3. How long narcotics inventory is done? When a company has a current obligation to make a future payment to their supplier due to a shipment of supplies that were received last week, the company would record this transaction with an increase to an asset account and a(n) ________ account. Multiple choice question