Answer:
sorry xouldnt answer all
Explanation:
thier is ¹² equations ln tour answer
A spiderweb and a kevlar jacket have some obvious differences. Which property is similar between the web and the jacket?.
One property that is similar between a spiderweb and a Kevlar jacket is their tensile strength.
Tensile strength is the ability of a material to resist breaking under tension or stretching.
Spider silk is known to be one of the strongest natural fibers, with a tensile strength comparable to steel. Kevlar is a synthetic polymer that is widely used in body armor, ropes, and other products that require high strength-to-weight ratios.
Kevlar has a tensile strength five times stronger than steel, making it an ideal material for applications where high strength and durability are required.
Both spider silk and Kevlar are known for their remarkable strength, and their ability to withstand tensile forces, making them highly desirable for use in a variety of applications where strength and durability are essential.
To know more about spiderweb refer to-
https://brainly.com/question/18880314
#SPJ11
Two students in a chemistry lab start a particular lab with 1. 23 g of aluminum. They react it with excess sulfuric acid to produce aluminum sulfate. If they produce 3. 00 g of aluminum sulfate what is their percent yield
The percent yield for the reaction of 1.23 g of aluminum with excess sulfuric acid to produce 3.00 g of aluminum sulfate is 38.46%.
To find the percent yield for the reaction of aluminum with sulfuric acid to produce aluminum sulfate, you need to follow these steps:
1. Write the balanced chemical equation for the reaction:
2 Al + 3 H₂SO₄ → Al₂(SO₄)₃ + 3 H₂
2. Calculate the molar mass of aluminum (Al) and aluminum sulfate (Al₂(SO₄)₃):
Al: 26.98 g/mol
Al₂(SO₄)₃: (2 × 26.98) + (3 × [4 × 16.00 + 32.07]) = 53.96 + 342.15 = 342.15 g/mol
3. Determine the moles of aluminum used in the reaction:
moles of Al = mass of Al / molar mass of Al = 1.23 g / 26.98 g/mol = 0.0456 mol
4. Calculate the theoretical yield of aluminum sulfate based on the moles of aluminum:
moles of Al₂(SO₄)₃ = 0.0456 mol Al × (1 mol Al₂(SO₄)₃ / 2 mol Al) = 0.0228 mol Al₂(SO₄)₃
mass of Al₂(SO₄)₃ = moles of Al₂(SO₄)₃ × molar mass of Al₂(SO₄)₃ = 0.0228 mol × 342.15 g/mol = 7.80 g (theoretical yield)
5. Calculate the percent yield:
percent yield = (actual yield / theoretical yield) × 100% = (3.00 g / 7.80 g) × 100% = 38.46%
So, the percent yield for the reaction of 1.23 g of aluminum with excess sulfuric acid to produce 3.00 g of aluminum sulfate is 38.46%.
To know more about molar mass :
https://brainly.com/question/20552052
#SPJ11
If the pressure of a 7. 2 liter sample of gas changes from 735 mmHg to 800 mmHg and the temperature remains constant, what is the new volume of
gas?
06. 62 L
оооо
0 5. 9 L
0 7. 2L
The new volume of gas is 6.62 L when the pressure changes from 735 mmHg to 800 mmHg at a constant temperature.
According to Boyle's Law, at a constant temperature, the pressure and volume of a gas are inversely proportional. This means that as the pressure of the gas increases, its volume decreases, and vice versa. Therefore, we can use this law to find the new volume of gas when the pressure changes from 735 mmHg to 800 mmHg.
Using the formula P1V1 = P2V2, where P1 is the initial pressure, V1 is the initial volume, P2 is the final pressure, and V2 is the final volume, we can solve for V2.
Plugging in the values given in the question, we get:
735 mmHg x 7.2 L = 800 mmHg x V2
Solving for V2, we get:
V2 = (735 mmHg x 7.2 L) / 800 mmHg
V2 = 6.62 L
Therefore, the new volume of gas is 6.62 L when the pressure changes from 735 mmHg to 800 mmHg at a constant temperature.
To know more about pressure, visit:
https://brainly.com/question/18431008#
#SPJ11
What volume (in litres) of 0. 200 M NaOH is required to neutralize 22. 3 mL of 0. 152 M HCl?
To solve this problem, we can use the following equation:
Moles of acid = Moles of base
where "acid" refers to the HCl and "base" refers to the NaOH.
First, let's calculate the moles of HCl:
moles of HCl = concentration of HCl × volume of HCl
= 0.152 mol/L × 0.0223 L
= 0.0033856 mol
Next, let's calculate the volume of NaOH required to neutralize the HCl:
moles of NaOH = moles of HCl
volume of NaOH = moles of NaOH / concentration of NaOH
We know the concentration of NaOH (0.200 M), so let's substitute in the values:
moles of NaOH = 0.0033856 mol
volume of NaOH = 0.0033856 mol / 0.200 mol/L
= 0.016928 L
= 16.928 mL (rounded to three decimal places)
Therefore, 16.928 mL of 0.200 M NaOH is required to neutralize 22.3 mL of 0.152 M HCl.
To know more about problem refer here
https://brainly.com/question/31611375#
#SPJ11
The Si unit of hurtz equals one wave passing a fixed point in one _____
The Si unit of Hertz (Hz) represents the frequency of a wave, which is defined as the number of complete cycles of a wave passing a fixed point per second.
In other words, one Hertz equals one wave passing a fixed point in one second. This unit is commonly used to measure the frequency of various types of waves, including sound waves, electromagnetic waves, and radio waves.
For example, if a sound wave has a frequency of 440 Hz, it means that the sound wave completes 440 cycles of compression and rarefaction (the peaks and troughs of the wave) per second. Similarly, if a radio wave has a frequency of 100 MHz (megahertz), it means that the wave completes 100 million cycles per second.
The Hertz unit was named after Heinrich Hertz, a German physicist who was the first to demonstrate the existence of electromagnetic waves. Hertz's experiments in the late 19th century paved the way for the development of modern radio, television, and other forms of wireless communication.
In summary, the Si unit of Hertz equals one wave passing a fixed point in one second, and it is a fundamental unit of measurement for the frequency of various types of waves.
To know more about frequency, visit:
https://brainly.com/question/5102661#
#SPJ11
Complex Ion Formation:Cu(NH3)42 Ecell, after adding 6 M NH3to the copper cell 0. 77V. Use the Nernst equation to calculate the concentration of that free copper (II) ion that is in equilibrium with the complexed copper (II) ion, Cu(NH3)42 in the solution. Does the calculated value for the [Cu2 ] make sense (look up the Kf for the formation of Cu(NH3)42 ) and rationalize your findings)
The concentration of free copper (II) ions in equilibrium with Cu(NH₃)₂ is 5.15 x 10⁻¹⁰ M.
1. Write the half-reaction for Cu²⁺ and Cu(NH₃)₂: Cu²⁺ + 2NH₃ ⇌ Cu(NH₃)₂²⁺
2. Use the Nernst equation: E = E° - (0.05916/n) * log(Q)
3. Rearrange for [Cu²⁺]: [Cu²⁺] = 10^((E° - E) * n / 0.05916)
4. Plug in the values: E° = 0.77V, E = 0, n = 2
5. Calculate [Cu²⁺]: [Cu²⁺] = 5.15 x 10⁻¹⁰ M
The calculated value for [Cu²⁺] makes sense, as the Kf for Cu(NH₃)₂ formation is large, indicating a strong complex formation and low [Cu²⁺] concentration.
To know more about Nernst equation click on below link:
https://brainly.com/question/31593791#
#SPJ11
If 2. 40 mol of carbon are exposed to 3. 10 mol of steam identify the limiting reactant? How many moles of each product are formed? SHOW WORK OR NO CREDIT!!
Limiting reactant in the given condition is Carbon, Moles of CO formed is 2.40 mol and moles of H2 formed is 2.40 mol
To determine the limiting reactant, we need to compare the amount of each reactant to their stoichiometric coefficients in the balanced chemical equation. The balanced equation for the reaction between carbon and steam is:
C (s) + H2O (g) → CO (g) + H2 (g)
The stoichiometric coefficients tell us that 1 mole of carbon reacts with 1 mole of steam to produce 1 mole of carbon monoxide and 1 mole of hydrogen gas.
So, for 2.40 moles of carbon, we need 2.40 moles of steam to react completely. However, we only have 3.10 moles of steam available, which means that steam is in excess and carbon is the limiting reactant.
To find the number of moles of products formed, we use the stoichiometric coefficients. Since carbon is the limiting reactant, we can use its amount to determine the theoretical yield of products.
From the balanced equation, 1 mole of carbon produces 1 mole of CO and 1 mole of H2. Therefore, 2.40 moles of carbon will produce 2.40 moles of CO and 2.40 moles of H2.
So, the answer to the question is:
Limiting reactant: Carbon
Moles of CO formed: 2.40 mol
Moles of H2 formed: 2.40 mol
Know more about Limiting Reactant here:
https://brainly.com/question/14225536
#SPJ11
Methane (CH4) is a common fuel to heat homes in the winter. What is the molar enthalpy of combustion of methane? Assume this combustion occurs entirely in the gas phase. Bond Enthalpies(in kJ molâ1):CâC: 347 CâH: 413 HâH:432 OâH: 467 C=C: 614C=O: 745O=O: 498
A)â710kJ molâ1
B)â297 kJmolâ1
C)â1843 kJmolâ
1D)+792 kJmolâ1
E)+567 kJmol
The molar enthalpy of combustion of methane in the gas phase is approximately -1360 kJ/mol, which is closest to -297 kJ/mol. The correct option is B.
To determine the molar enthalpy of combustion of methane, we need to use the bond enthalpies provided to calculate the energy released when the bonds in methane are broken and new bonds are formed in the combustion reaction.
The balanced chemical equation for the combustion of methane is:
CH4(g) + 2O2(g) → CO2(g) + 2H2O(l)
Breaking the bonds in methane requires energy while forming the new bonds in carbon dioxide and water releases energy. The molar enthalpy of combustion is the net energy released per mole of methane combusted.
Using the bond enthalpies given, we can calculate the energy required to break the bonds in methane:
4C-H bonds x 413 kJ/mol = 1652 kJ/mol
1C-C bond x 347 kJ/mol = 347 kJ/mol
Total energy required to break bonds in methane = 1652 kJ/mol + 347 kJ/mol = 1999 kJ/mol
Next, we can calculate the energy released by forming the new bonds in carbon dioxide and water:
2C=O bonds x 745 kJ/mol = 1490 kJ/mol
4O-H bonds x 467 kJ/mol = 1868 kJ/mol
Total energy released by forming new bonds = 1490 kJ/mol + 1868 kJ/mol = 3358 kJ/mol
The net energy released in the combustion of methane is the energy released by forming new bonds minus the energy required to break the old bonds:
Net energy released = 3358 kJ/mol - 1999 kJ/mol = 1359 kJ/mol
to know more about combustion reaction refer here:
https://brainly.com/question/30566775#
#SPJ11
7. 50 mL of an acetic acid (CH3CO2H, 60. 05 g/mole) stock solution was added to an analyte flask, along with 15 mL of water. 14. 36 mL of 0. 0915 M NaOH titrant was required to titrate the analyte solution to the endpoint. Calculate the concentration of the stock solution. Watch significant figures
The concentration of the acetic acid stock solution is 0.026259 M, considering significant figures.
To solve this problem, we first need to write out the balanced chemical equation for the reaction between acetic acid (CH₃CO₂H) and sodium hydroxide (NaOH):
CH₃CO₂H + NaOH → CH₃CO₂Na + H₂O
We can see from this equation that the stoichiometry of the reaction is 1:1 - that is, one mole of acetic acid reacts with one mole of NaOH. We also know that the volume of the analyte solution is 50 mL + 15 mL = 65 mL.
Next, we need to use the volume and concentration of the NaOH titrant to calculate the number of moles of NaOH that were added to the analyte solution:
V1 = 14.36 mL = 0.01436 L (convert mL to L)
C1 = 0.0915 M
n(NaOH) = V1 x C1 = 0.01436 L x 0.0915 mol/L = 0.00131294 mol
Since the stoichiometry of the reaction is 1:1, we know that this is also the number of moles of acetic acid that were present in the analyte solution. We can use this information to calculate the concentration of the stock solution:
n(CH₃CO₂H) = n(NaOH) = 0.00131294 mol
V2 = 50 mL = 0.05 L (convert mL to L)
M = n/V = 0.00131294 mol / 0.05 L = 0.026259 M
So the concentration of the acetic acid stock solution is 0.026259 M.
Learn more about stock solutions at https://brainly.com/question/3942978
#SPJ11
A gas sample having an initial temperature of 80℃ and an initial volume of 135 l is cooled to a final temperature of 12℃ and a final volume of 103 l. if the final pressure of the gas is 1.50 atm, what was the initial pressure?
If the final pressure of the gas is 1.50 atm, the initial pressure would be 2.16 atm.
In order to solve this problem, we need to use the combined gas law equation, which relates the pressure, volume, and temperature of a gas. The combined gas law states that PV/T = constant, where P is pressure, V is volume, and T is temperature.
We know the initial temperature, initial volume, final temperature, final volume, and final pressure of the gas. We can use this information to solve for the initial pressure.
First, we can use the combined gas law to find the constant in the equation:
(Pinitial)(Vinitial)/(Tinitial) = (Pfinal)(Vfinal)/(Tfinal)
Substituting in the values we know, we get:
(Pinitial)(135 L)/(353 K) = (1.50 atm)(103 L)/(285 K)
Solving for Pinitial, we get:
Pinitial = (1.50 atm)(103 L)(353 K)/(285 K)(135 L)
Pinitial = 2.16 atm
Therefore, the initial pressure of the gas was 2.16 atm.
In summary, we used the combined gas law equation to solve for the initial pressure of a gas sample with an initial temperature of 80℃ and an initial volume of 135 l that was cooled to a final temperature of 12℃ and a final volume of 103 l with a final pressure of 1.50 atm. We found that the initial pressure of the gas was 2.16 atm.
To know more about initial pressure, visit:
https://brainly.com/question/23710615#
#SPJ11
Help plssssssssss
what are the condensed formula of the following alkyl
no.of alkyles condensed formula
carbons
1 methyl
2 ethyl
3 propyl
4 butyl
5 pentyl
6 hexyl
7 heptyl
8 oktyl
9 nonyl
10 dekyl
11 undekyl
12. dodekyl
Here are the condensed formulas for each alkyl group, with the number of number of carbons:
1. Methyl (1 carbon): CH3-
2. Ethyl (2 carbons): CH3CH2-
3. Propyl (3 carbons): CH3CH2CH2-
4. Butyl (4 carbons): CH3(CH2)3-
5. Pentyl (5 carbons): CH3(CH2)4-
6. Hexyl (6 carbons): CH3(CH2)5-
7. Heptyl (7 carbons): CH3(CH2)6-
8. Octyl (8 carbons): CH3(CH2)7-
9. Nonyl (9 carbons): CH3(CH2)8-
10. Decyl (10 carbons): CH3(CH2)9-
11. Undecyl (11 carbons): CH3(CH2)10-
12. Dodecyl (12 carbons): CH3(CH2)11-
These formulas represent alkyl groups, which are fragments of alkane molecules with one hydrogen atom removed. They can attach to other molecules and form various organic compounds.
Know more about Alkyl Group here:
https://brainly.com/question/30896901
#SPJ11
Write the following chemical reactions and balance:
Potassium reacts with sodium oxide to produce potassium oxide and sodium
The chemical reaction between potassium and sodium oxide results in the formation of potassium oxide and sodium. The balanced equation for this reaction is:
2K + Na₂O -> K₂O + 2Na
This reaction is an example of a displacement reaction, where a more reactive element (potassium) displaces a less reactive element (sodium) from its compound (sodium oxide). The displacement occurs because potassium has a greater tendency to lose electrons and form cations compared to sodium.
Potassium oxide is an important chemical compound with many industrial applications, including in the production of glass, ceramics, and fertilizers. It is also used as a drying agent and catalyst in organic reactions.
Sodium, on the other hand, is a highly reactive metal that is commonly found in compounds such as sodium chloride (table salt) and sodium hydroxide (lye). It is an essential element for many biological processes, including nerve and muscle function.
Overall, this chemical reaction between potassium and sodium oxide is important because it highlights the reactivity of these elements and the formation of useful compounds such as potassium oxide. It also emphasizes the importance of balancing chemical equations to ensure that the reactants and products are in the correct proportions.
To learn more about displacement reaction visit:
https://brainly.com/question/20690229
#SPJ11
Calculate the mass of iron that releases 2432 J of energy as its temperture rises from 25. 0 degrees * C to 87. 0 degrees * C. (The specific heat of iron is 0. 448 J/g^ C)
To solve this problem, we can use the formula:
q = m * c * ΔT
where q is the heat energy absorbed or released, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.
We know that the heat energy released by the iron is 2432 J, the specific heat capacity of iron is 0.448 J/g°C, the initial temperature of the iron is 25.0°C, and the final temperature of the iron is 87.0°C.
The mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.
Substituting the values in the formula, we get:
2432 J = m * 0.448 J/g°C * (87.0°C - 25.0°C)
Simplifying the equation, we get:
m = 2432 J / (0.448 J/g°C * 62.0°C)
m = 96.2 g
Therefore, the mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.
To know more about temperature rise refer here:
https://brainly.com/question/2006890
#SPJ11
A truck weighs 7280 pounds. If the pressure exerted by its tires on the ground is 87. 5 pounds per square centimeter,what is the area of one tire that in contact with the road
The area of one tire in contact with the road is approximately 378 square centimeters.
To solve this problem, we need to use the formula:
Pressure = Force/Area
We can rearrange this formula to solve for the area:
Area = Force/Pressure
First, we need to convert the weight of the truck from pounds to newtons, since pressure is typically measured in newtons per square meter. We can use the conversion factor 1 pound = 4.44822 newtons.
Weight of truck = 7280 pounds x 4.44822 newtons/pound
Weight of truck = 32,355.26 newtons
Now we can plug in the values for force and pressure:
Area = 32,355.26 newtons / 87.5 pounds per square centimeter
To convert pounds per square centimeter to newtons per square meter, we need to use the conversion factor 1 pound per square centimeter = 98,066.5 newtons per square meter.
Area = 32,355.26 newtons / (87.5 pounds per square centimeter x 98,066.5 newtons per square meter per pound per square centimeter)
Area = 0.0378 square meters
Finally, we can convert square meters to square centimeters by multiplying by 10,000:
Area = 0.0378 square meters x 10,000 square centimeters per square meter
Area = 378 square centimeters
Therefore, the area of one tire in contact with the road is approximately 378 square centimeters.
Know more about Pressure here:
https://brainly.com/question/1890275
#SPJ11
The evaporation heat of mercury is 296 kJ/ kg. Calculate how much heat needs to be provided to change 50 g of this substance into vapour at its boiling point
To calculate the amount of heat required to change 50 g of mercury into vapor at its boiling point, we need to use the following formula:
Q = m * H_vap
where Q is the amount of heat required, m is the mass of the substance, and H_vap is the heat of vaporization.
We are given that the heat of vaporization of mercury is 296 kJ/kg. To use this value, we need to convert the mass of mercury to kilograms:
m = 50 g = 0.05 kg
Now we can use the formula to calculate the amount of heat required:
Q = 0.05 kg * 296 kJ/kg = 14.8 kJ
Therefore, 14.8 kJ of heat needs to be provided to change 50 g of mercury into vapor at its boiling point.
To know more about required refer here
https://brainly.com/question/2929431#
#SPJ11
Would you expect a C8 molecule to boil at a higher or lower temperature than a C24 molecule?
I would expect a C24 molecule to boil at a higher temperature than a C8 molecule.
What is the temperature about?The boiling point of a molecule depends on the strength of intermolecular forces between the individual molecules. Intermolecular forces are forces that exist between molecules and they include dipole-dipole forces, hydrogen bonding, London dispersion forces, and ion-dipole forces.
This is because the boiling point of a molecule is directly related to its size and the strength of its intermolecular forces. A larger molecule such as C24 has more electrons and a larger surface area, which results in stronger intermolecular forces such as London dispersion forces.
These stronger forces require more energy to be overcome and thus result in a higher boiling point. In contrast, a smaller molecule such as C8 has weaker intermolecular forces and requires less energy to overcome them, resulting in a lower boiling point.
Read more about temperature here:
https://brainly.com/question/25677592
#SPJ1
you need to make an aqueous solution of 0.172 m iron(ii) nitrate for an experiment in lab, using a 250 ml volumetric flask. how much solid iron(ii) nitrate should you add?
We need to add 7.7 g of solid iron(II) nitrate to make a 0.172 M solution in 250 mL volumetric flask.
First, we can use molarity and volume of solution to find the number of moles of iron(II) nitrate needed:
moles of [tex]Fe(NO_3)_2[/tex]= Molarity × Volume in liters
moles of [tex]Fe(NO_3)_2[/tex] = 0.172 mol/L × 0.250 L = 0.043 mol
Next, we can use the molar mass of iron(II) nitrate to find the mass of the solid that needs to be added:
mass of [tex]Fe(NO_3)_2[/tex] = moles of [tex]Fe(NO_3)_2[/tex] × molar mass of [tex]Fe(NO_3)_2[/tex]
mass of [tex]Fe(NO_3)_2[/tex]= 0.043 mol × (55.85 g/mol + 2 × 14.01 g/mol + 6 × 16.00 g/mol)
mass of [tex]Fe(NO_3)_2[/tex]= 0.043 mol × 179.86 g/mol = 7.7 g
To know more about volumetric flask, here
brainly.com/question/19517011
#SPJ1
how does backbone help?
Answer:
Backbone help us to be straight ,walk ,sleep etc
Explanation:
Backbone is the part of human body which is located back of our body.
It effort helps us to be straight do various work
The spine or the backbone is the central structure of the vertebrate body and it serves a few imperative capacities:
Bolster: The spine gives bolster for the body and makes a difference keep up its shape.Security: The spine encases and ensures the spinal rope, which is mindful for transmitting signals between the brain and the rest of the body.Connection: Muscles, tendons, and ligaments join to the spine, permitting for development and giving steadiness.Blood cell generation: The springy tissue interior a few of the bones of the spine produces ruddy and white blood cells.Mineral capacity: The bones of the spine store minerals such as calcium and phosphorus, which are imperative for bone quality and other substantial capacities.To know more about backbone,
https://brainly.com/question/30052045
A compound is made up of 94. 5 g of aluminum and 199. 5 g or fluorine. Determine the empirical formula of the compound.
HELPPPP
The empirical formula of a compound made up of 94.5 g of aluminum and 199.5 g of fluorine is AlF₃.
To determine the empirical formula of the compound, we need to first calculate the moles of each element present in the sample.
Moles of aluminum = 94.5 g / 26.98 g/mol = 3.50 mol
Moles of fluorine = 199.5 g / 18.99 g/mol = 10.51 mol
Next, we need to determine the smallest whole number ratio between these two values.
Dividing both values by 3.50, we get:
Moles of aluminum = 1
Moles of fluorine = 3
Therefore, the empirical formula of the compound is AlF₃.
To know more about the empirical formula refer here :
https://brainly.com/question/14425592#
#SPJ11
Balance equation for 15 g of solid Mg reacts with 15 g of HCl and produce MgCl2 and H2
When 15 g of Mg reacts with 15 g of HCl, 19.6 g of MgCl₂ and 0.208 g mass of H₂ are produced.
The molar mass of Mg is 24.31 g/mol, and the molar mass of HCl is 36.46 g/mol. To determine the number of moles of each substance, we divide the given mass by its molar mass:
moles of Mg = 15 g ÷ 24.31 g/mol = 0.618 mol
moles of HCl = 15 g ÷ 36.46 g/mol = 0.411 mol
Determine the limiting reactant in the reaction by comparing the number of moles of each reactant:
Mg: 0.618 mol
HCl: 0.411 mol × (1 mol Mg ÷ 2 mol HCl) = 0.206 mol
Since HCl is the limiting reactant, it will be completely consumed in the reaction. The amount of MgCl₂ produced can be calculated as:
moles of MgCl₂ = moles of HCl = 0.206 mol
mass of MgCl₂ = moles of MgCl₂ × molar mass of MgCl₂
mass of MgCl₂ = 0.206 mol × 95.21 g/mol = 19.6 g
Similarly, the amount of H₂ produced can be calculated as:
moles of H₂ = moles of HCl × (1 mol H₂ ÷ 2 mol HCl)
moles of H₂ = 0.206 mol × (1 mol H₂ ÷ 2 mol HCl) = 0.103 mol
mass of H₂ = moles of H₂ × molar mass of H₂
mass of H₂ = 0.103 mol × 2.02 g/mol = 0.208 g
To learn more about mass follow the link:
https://brainly.com/question/4577984
#SPJ4
PLEASE HELP
Andrea plans to go fishing in the morning, so she checks the weather forecast. The forecast shows a high-pressure area forming near her fishing spot. Using the weather data below, predict the possible weather conditions for Andrea’s trip.
Time (a.m.) Temperature (°C) Pressure (mb)
7.00 14 995
8.00 14 1001
9.00 14 1113
10.00 15 1120
A.
cloudy skies with minimal precipitation
B.
clear skies with minimal precipitation
C.
cloudy skies with moderate precipitation
D.
clear skies with heavy precipitation
B Answer:
Explanation:
Higher, 1020 mb +, rising pressure and temp are associated with clear skies and low precipitation
A soft lump of clay has water run on top of it. Most of the water and clay runs off the table. After a long while, the water is turned off and allowed to dry. There is no clay left; instead, there are small pebbles and other types of components left on the table.
Which natural process is this modeling?
The natural process being modeled is weathering, specifically physical weathering.
Physical weathering is the process by which rocks and minerals are broken down into smaller pieces without changing their chemical composition. Water is one of the most significant agents of physical weathering.
The scenario described in the question illustrates how water can cause physical weathering by soaking into a lump of clay, then drying out, leaving behind small pebbles and other components. The water expands as it freezes, causing the clay to crack, and as it dries, it evaporates, leaving behind the broken pieces.
Over time, this process can break down larger rocks and minerals into smaller particles, creating sediment that can be transported by wind, water, or ice, and deposited elsewhere. The result of physical weathering is often a mix of angular fragments that have the same composition as the original rock or mineral.
To know more about physical weathering, refer here:
https://brainly.com/question/29616084#
#SPJ11
The volume of a sample of hydrogen gas at 0. 997 atm is 5. 00 L. What will be the new volume if the pressure is decreased to 0. 977 atm?
The new volume of the hydrogen gas is 5.12 L when the pressure is decreased to 0.977 atm.
The relationship between pressure and volume is described by Boyle's Law, which states that when the pressure of a gas decreases, its volume increases proportionally, and vice versa. In other words, the pressure and volume of a gas are inversely proportional, assuming temperature and amount of gas remain constant.
In this case, the initial pressure of the hydrogen gas is 0.997 atm, and its initial volume is 5.00 L. If the pressure is decreased to 0.977 atm, we can use Boyle's Law to calculate the new volume:
P1V1 = P2V2
Where P1 and V1 are the initial pressure and volume, and P2 and V2 are the new pressure and volume.
Substituting the given values, we get:
(0.997 atm)(5.00 L) = (0.977 atm)(V2)
Solving for V2, we get:
V2 = (0.997 atm)(5.00 L) / (0.977 atm)
V2 = 5.12 L
Therefore, the new volume of the hydrogen gas is 5.12 L when the pressure is decreased to 0.977 atm.
To know more about hydrogen gas, visit:
https://brainly.com/question/12494649#
#SPJ11
Counting Atoms and Elements in a Chemical Formula (8. 5D)
For example, the chemical formula for water is H₂O. This tells us that there are two hydrogen atoms (H) and one oxygen atom (O) in each molecule of water. To count the number of atoms in a chemical formula, we can use the subscripts (the numbers that come after each element symbol) to determine how many atoms of each element are present. For example, in the chemical formula NaCl (which represents salt), there is one sodium (Na) atom and one chlorine (Cl) atom in each molecule.
Let us discuss this in detail. To count atoms and elements in a chemical formula, you need to understand the following terms:
- Atoms: The basic unit of a chemical element, consisting of protons, neutrons, and electrons.
- Elements: A substance that cannot be broken down into simpler substances, consisting of only one type of atom.
- Chemical Formula: A representation of a substance using symbols for its constituent elements and numbers to indicate the ratio of atoms in the compound.
Now, let's count the atoms and elements in a given chemical formula, for example, H₂O (water):
1. Identify the elements in the formula: In this case, we have two elements - Hydrogen (H) and Oxygen (O).
2. Count the atoms of each element: The subscript number next to each element symbol indicates the number of atoms of that element in the compound. For Hydrogen (H), the subscript is 2, meaning there are 2 Hydrogen atoms. For Oxygen (O), there is no subscript, which means there is only 1 Oxygen atom (when no subscript is present, it is understood to be 1).
So, in the chemical formula H₂O, there are 2 Hydrogen atoms and 1 Oxygen atom, for a total of 3 atoms.
Learn more about chemical formulas at https://brainly.com/question/11574373
#SPJ11
What volume of nitrogen reacts with 33. 6 litres of oxygen to produce nitrogen
dioxide
The balanced chemical equation for the reaction of nitrogen and oxygen to produce nitrogen dioxide is:
2NO + O2 → 2NO2
According to the equation, 1 mole of nitrogen reacts with 0.5 moles of oxygen to produce 1 mole of nitrogen dioxide.
To determine the volume of nitrogen required to react with 33.6 L of oxygen, we need to convert the volume of oxygen to moles, and then use the mole ratio to find the moles of nitrogen required, and finally convert to volume of nitrogen.
Using the ideal gas law, we can convert the given volume of oxygen to moles:
n(O2) = PV/RT
where P is the pressure, V is the volume, R is the gas constant, and T is the temperature in Kelvin.
Assuming standard temperature and pressure (STP) conditions of 1 atm and 273 K, we get:
n(O2) = (1 atm) × (33.6 L) / [(0.0821 L·atm/mol·K) × (273 K)] = 1.37 moles of O2
Using the mole ratio from the balanced chemical equation, we know that 2 moles of NO react with 1 mole of O2. So the number of moles of NO required to react with 1.37 moles of O2 is:
n(NO) = 2 × (1.37 moles of O2) = 2.74 moles of NO
Finally, we can convert the moles of NO to volume using the ideal gas law:
V(NO) = n(NO)RT/P
Assuming STP conditions again, we get:
V(NO) = (2.74 mol) × (0.0821 L·atm/mol·K) × (273 K) / (1 atm) ≈ 60.4 L
Therefore, approximately 60.4 L of nitrogen would be required to react with 33.6 L of oxygen to produce nitrogen dioxide, under the given conditions.
To know more about chemical refer here
https://brainly.com/question/29240183#
#SPJ11
A 4.1 g sample of gold (specific heat capacity = 0.130 J/g °C) is heated using 52.2 J of energy. If the original temperature of the gold is 25.0°C, what is its final temperature?
To solve this problem, we can use the formula:
q = m*c*ΔT, where q is the amount of heat energy absorbed by the gold, m is the mass of the gold, c is the specific heat capacity of gold, and ΔT is the change in temperature of the gold.
We are given the mass of gold (m = 4.1 g), the specific heat capacity of gold (c = 0.130 J/g °C), and the amount of energy used to heat the gold (q = 52.2 J). We are asked to find the final temperature of the gold (ΔT).
Rearranging the formula, we get:
ΔT = q/(m*c)
Substituting the values we know, we get:
ΔT = 52.2 J / (4.1 g * 0.130 J/g °C)
ΔT = 98.92 °C
This is the change in temperature of the gold. To find the final temperature, we add this to the original temperature of 25.0°C:
Final temperature = 25.0°C + 98.92°C
Final temperature = 123.92°C
Therefore, the final temperature of the gold is 123.1°C.
For more questions on: absorbed
https://brainly.com/question/29598149
#SPJ11
What happens in a decomposition reaction? A. Two ions trade places. B. Two substances combine to form one substance. C. The charges of the atoms change. D. Compounds break down into smaller compounds.
A single compound decomposes into two or more smaller compounds or components during a decomposition reaction. Option D
A number of mechanisms, such as heat, light, or the addition of another molecule, can cause this. A significant quantity of potential energy is often held in the chemical bonds of the reactant component, and this energy is released during the reaction.
For instance, hydrogen peroxide's typical breakdown reaction involves the molecule dissolving into water and oxygen gas:
[tex]2H_2O_2 \rightarrow 2 H_2O + O_2[/tex]
The heat breakdown of calcium carbonate to produce calcium oxide and carbon dioxide gas is another illustration:
[tex]CaO + CO_2 = CaCO_3[/tex]
Decomposition reactions are crucial components of several chemical processes in both nature and industry. They are characterised by the dissolution of bigger molecules into smaller ones. Option D
For more such questions on Decomposition reactions
https://brainly.com/question/14608831
`Name:
Date:
Properties of Matter - Crunch time Review
1. If two objects balance like the ones shown below, what must be true?
A. Object A has more mass than object B.
Both objects have the same mass.
C. Object A has more volume than object B.
D. Both objects have the same volume.
Answer:
d
Explanation:
because i did it
What is the pH of a solution where [OH⁻]=0. 00030M
The pH of the solution where [tex][OH⁻][/tex]=0.00030 M is 11.48. This indicates that the solution is basic, or alkaline, since the pH is greater than 7.
To determine the pH of a solution where[tex][OH⁻][/tex]=0.00030 M, we can use the relationship between the concentrations of hydrogen ions and hydroxide ions in water, which is defined by the equation[tex]Kw = [H⁺][OH⁻].[/tex]At 25°C, the value of Kw is [tex]1.0 x 10^-14[/tex].
If we substitute the concentration of hydroxide ions given in the question ([tex][OH⁻][/tex]=0.00030 M) into this equation, we can solve for the concentration of hydrogen ions:
[tex]Kw = [H⁺][OH⁻]\\1.0 x 10^-14 = H⁺\\[H⁺] = 3.3 x 10^-12 M[/tex]
Now that we know the concentration of hydrogen ions, we can use the formula for pH, which is defined as [tex]pH = -log[H⁺][/tex], to find the pH of the solution:
[tex]pH = -log(3.3 x 10^-12)[/tex]
pH = 11.48
To know more about pH refer to-
https://brainly.com/question/2288405
#SPJ11
flew by Mercury in 1974; took photographs, temperature readings, and gathered atmosphere information; sent the information back to earth through radio waves
In 1974, the 1973-launched Mariner 10 spacecraft made history by flying by Mercury for the first time.
What is spacecraft?A vehicle made specifically for space travel is a spaceship. It can encompass both spacecraft made for study, observation, and the deployment of satellites and other payloads as well as those made for human exploration, communication, and transportation. They typically consist of a propulsion system, navigation system, communications system, and numerous payloads, among other things. Typically, a spacecraft needs a launch vehicle to get off the ground and a re-entry mechanism to land safely.
It recorded temperature readings, snapped pictures, and gathered data on the planet's atmosphere during its flyby. Then, radio waves were used to transmit all of this data back to Earth. The mission was a great success and revealed a tonne of fresh Mercury-related data.
To learn more about spacecraft, visit:
brainly.com/question/29383012
#SPJ1
The complete question is,
passed past Mercury in 1974, taking pictures, measuring temperatures, and gathering data on the atmosphere before radio-transmitting the data back to Earth.