Answer:
How do you figure out if a relation is a function? You could set up the relation as a table of ordered pairs. Then, test to see if each element in the domain is matched with exactly one element in the range. If so, you have a function!
Step-by-step explanation:
A rectangle has an area of 96cm2 it's length is 4cm longer than it's width. Calculate the length and width.
Answer:
I think l
Step-by-step explanation:
first add 96 and4 then 2 I think
The area of a circle is 153.86 square meters. What is the diameter of the circle? Use 3.14 for π.
Answer:
14m
Step-by-step explanation:
The area of a circle is given by
A = pi r^2
153.86 = 3.14 r^2
Divide each side by 3.14
153.86 /3.14 = r^2
49 = r^2
Take the square root of each side
sqrt(49) = sqrt(r^2)
7 = r
We want the diameter which is twice the radius
d = 2r
d =2*7
d =14
Answer:
I just wanted to add on it is 14 i tried it on savaas and it worked
Step-by-step explanation:
Mr Chan flies from London to Los Angeles, a distance of 8800 km.
The flight takes 11 hours and 10 minutes.
His plane leaves London at 09 35 local time.
The local time in Los Angeles is 8 hours behind the time in London.
Calculate the local time when the plane arrives in Los Angeles.
Answer:
12 45
Step-by-step explanation:
plane leaves London at 09 35
plane arrives in Los Angeles after 11 hrs and 10 min
considering time difference:
11 10 - 8 00= 03 10local arrival time:
09 35 + 03 10= 12 45 local timeDan and Camille each have a gift card with a combined balance of $350.00. Dan spent 1/2 of his card balance while Camille spent 1/3 of her card balance. They are both left with an equal amount on their gift cards left. What are they left with.
Fifty random shoppers at an electronics store have been interviewed and 35 of them intend to purchase a newly released smart phone. What probability distribution describes this situation and what are its mean and standard deviation of phone sales if we are concerned about 1071 shoppers that day
Answer:
We use the binomial distribution to describe this situation.
The mean number of phone sales is 749.7 with a standard deviation of 15.
Step-by-step explanation:
For each shopper, there are only two possible outcomes. Either they plan to purchase the newly released smart phone, or they do not. Each customer is independent of other customers. So we use the binomial distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Fifty random shoppers at an electronics store have been interviewed and 35 of them intend to purchase a newly released smart phone.
This means that [tex]p = \frac{35}{50} = 0.7[/tex]
What are its mean and standard deviation of phone sales if we are concerned about 1071 shoppers that day
1071 shoppers, so [tex]n = 1071[/tex]
Mean
[tex]E(X) = 1071*0.7 = 749.7[/tex]
Standard deviation
[tex]\sqrt{V(X)} = \sqrt{1071*0.7*0.3} = 15[/tex]
The mean number of phone sales is 749.7 with a standard deviation of 15.
Please answer this correctly
Answer:
676
Step-by-step explanation:
lxw
14x35
4x24
6x15
676
If an exponential model was used to fit the data set below, which of the following would be the best prediction for the output of the model if the input was x=20?
Answer:
The equation is found to be: [tex]y = 50.6e^{0.16x}[/tex]
y(20) = 1241.34
Step-by-step explanation:
The given data is:
x: 3 7 11 14 17
y: 83 142 301 450 722
Now, we find sum summation values, relevant to the formula of exponential regression model, using calculator:
∑ ln y = 27.77305, ∑x ln y = 308.1494, ∑x = 52, ∑ x² = 664
and, n = no. of data points = 5
Now, we use formulae of exponential regression model to find out values of constant:
b = (n∑x lny - ∑x ∑ln y)/[n∑x² - (∑x)²]
b = [(5)(308.1494) - (52)(27.77305)]/[(5)(664) - (52)²]
b = 0.16
Now, for a;
a = (∑ln y - b∑x)/n
Therefore,
a = [(27.77305) - (0.16)(52)]/5
a = 3.9
For, α:
α = e^a = e^3.9
α = 50.6
So, the final equation of exponential regression model is given as:
[tex]y = \alpha e^{bx}\\ y = 50.6e^{0.16x}[/tex]
Now, we find value of y for x = 20:
y(20) = (50.6) e^(0.16*20)
y(20) = 1241.34
A soccer league has 180 players. Of those players 50% are boys. How many boys are in the soccer league?
Answer:
90 boys
Step-by-step explanation:
There are 180 players
Multiply by the percent that are boys to find the number of boys
180 * 50%
180 * .50
90
Answer:
90 boys
Step-by-step explanation:
The soccer league has 180 players, and 50% or half are boys.
Multiply the total number of players in the league by the percent that are boys.
total number of players * percent of boys
180* 50%
Convert 50% to a decimal by dividing by 100, or moving the decimal place 2 spaces to the left.
50/100=0.50
50.0–>5.0–>0.50
180*0.50
Multiply
90
There are 90 boy soccer players in the league.
Please help. I’ll mark you as brainliest if correct!
Answer:
When x = -1/4 and when x = -15/4
Step-by-step explanation:
The x intercept will be when f(x)=0, so
0 = 4|x+2| -7
7 = 4|x+2|
|x+2|=7/4 here you have to cases
case 1
x+2=7/4
x=7/4-2
x=-1/4 = -0.25
case 2
x+2 = -7/4
x = -2-7/4
x = -15/4 = -3.75
123 grams is rounded to nearest whole. Write down the minimum possible mass it could have been.
Answer:
The nearest whole is 122.99 repeated
Step-by-step explanation:
Please help! Which statement is true, about the following of the two triangles? (Refer to image)
A: ΔADC≅Δ ACB, by the SSS congruence postulate.
B: ΔADC≅ΔACB, by the SAS congruence postulate.
C: ΔADC≅ ΔCBA, by the SSS congruence postulate.
D: ΔADC≅ΔCBA, by the SAS congruence postulate.
Answer:
The answer is C because DC = BA and DA = CB (given) and AC = CA (reflexive property).
The probability of event A is 0.48, the probability of event A and B is 0.21, and the probability of events A or B is 0.89. What is the probability of event B? THE ANSWER IS 0.62
Answer:
P(B) = 0.62
Step-by-step explanation:
P(A or B) = P(A) + P(B) - P(A and B)
So, Putting the givens
0.89 = 0.48 + P(B) - 0.21
0.89 = 0.27 + P(B)
P(B) = 0.89 - 0.27
P(B) = 0.62
Find the measure of angle b
Answer: The measure of angle B is 31 degrees.
Step-by-step explanation:
180 -149 = 31
Answer:
31 degrees
Step-by-step explanation:
We can see that 149 degrees and b are on a line. If they are next to each other they are called adjacent angles. There is a rule that adjacent angles add up to 180 degrees. So we subtract 149 from 180 and we get 31 degrees for angle b.
Hope this helps! :)
What’s the correct answer for this?
Answer:
270 inches³
Step-by-step explanation:
Volume of carton = wlh
Where w is width, h is height and length is l
V = (9)(5)(6)
V = 270 inches³
what is tge surface area of tge dquare pyramid GELP IM TIMED AND ABOUT TO RUN OUT OF TIME
Answer:
Step-by-step explanation:
You have 125 g of a certain seasoning and are told that it contains 14.0 g of salt. What is the percentage of salt by mass in this seasoning? Express the percentage numerically. Do not round.
Answer:
[tex]\frac{14}{125}\times 100=11.2\%[/tex]
Problem PageQuestion A Web music store offers two versions of a popular song. The size of the standard version is 2.6 megabytes (MB). The size of the high-quality version is 4.2 MB. Yesterday, the high-quality version was downloaded four times as often as the standard version. The total size downloaded for the two versions was 4074 MB. How many downloads of the standard version were there?
Answer:
There were 210 downloads of the standard version.
Step-by-step explanation:
This question can be solved using a system of equations.
I am going to say that:
x is the number of downloads of the standard version.
y is the number of downloads of the high-quality version.
The size of the standard version is 2.6 megabytes (MB). The size of the high-quality version is 4.2 MB. The total size downloaded for the two versions was 4074 MB.
This means that:
[tex]2.6x + 4.2y = 4074[/tex]
Yesterday, the high-quality version was downloaded four times as often as the standard version.
This means that [tex]y = 4x[/tex]
How many downloads of the standard version were there?
This is x.
[tex]2.6x + 4.2y = 4074[/tex]
Since [tex]y = 4x[/tex]
[tex]2.6x + 4.2*4x = 4074[/tex]
[tex]19.4x = 4074[/tex]
[tex]x = \frac{4074}{19.4}[/tex]
[tex]x = 210[/tex]
There were 210 downloads of the standard version.
Calculate the surface area of the egg (in μm2). The formula for calculating the surface area (SA) of a sphere is given below. SA = 4Ïr2. Use 3.14 as the value for Ï.
Answer:
[tex]31400\mu m^2[/tex]
Step-by-step explanation:
We are given that
Diameter of egg,d=[tex]100\mu m[/tex]
We have to find the surface area of egg in [tex]\mu m^2[/tex].
Radius of egg,r=[tex]\frac{d}{2}=\frac{100}{2}=50\mu m[/tex]
Surface area of sphere=[tex]4\pi r^2[/tex]
Where [tex]\pi=3.14[/tex]
Using the formula
Surface area of egg=[tex]4\times 3.14(50)^2[/tex]
Surface area of egg=[tex]31400\mu m^2[/tex]
Hence, the surface area of the egg=[tex]31400\mu m^2[/tex]
A car travelled 80km in 48minutes. find the speed of the car in km/hr
80km / 48 min = 1 2/3 km per minute.
1 2/3 km per minute x 60 minutes(1 hour) = 100 km per hour
an=(−3n+4)n(−4n−8)n In this problem you must attempt to use the Root Test to decide whether the series converges. Compute L=limn→[infinity]|an|−−−√n Enter the numerical value of the limit L if it converges, INF if it diverges to infinity, MINF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. L= Which of the following statements is true? A. The Root Test says that the series converges absolutely. B. The Root Test says that the series diverges. C. The Root Test says that the series converges conditionally. D. The Root Test is inconclusive, but the series converges absolutely by another test or tests. E. The Root Test is inconclusive, but the series diverges by another test or tests. F. The Root Test is inconclusive, but the series converges conditionally by another test or tests. Enter the letter for your choice here:
Answer:
L = 3/4
Option A. The Root Test says that the series converges absolutely.
Step-by-step explanation:
By using the root test equation given in the question. L = 3/4
Since L < 1, the series converges absolutely.
For clarity of expression, the detailed calculation is contained in the attached file. Check the file attached for the complete calculation to this question.
Sonya has two red marbles and three yellow marbles. She chooses three marbles at random. What is the probability that she has at least one marble of each color?
Answer:
90% probability that she has at least one marble of each color
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
The order in which the marbles are selected is not important. So we use the combinations formula to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
What is the probability that she has at least one marble of each color?
Desired outcomes:
Two red(from a set of 2) and one yellow(from a set of 3)
Or
One red(from a set of 2) and two yellows(from a set of 3).
So
[tex]D = C_{2,2}*C_{3,1} + C_{2,1}*C_{3,2} = \frac{2!}{2!(2-2)!}*\frac{3!}{1!(3-1)!} + \frac{2!}{1!(2-1)!}*\frac{3!}{2!(3-2)!} = 3 + 6 = 9[/tex]
Total outcomes:
Three marbles, from a set of 3 + 2 = 5. So
[tex]T = C_{5,3} = \frac{5!}{3!(5-3)!} = 10[/tex]
Probability:
[tex]p = \frac{D}{T} = \frac{9}{10} = 0.9[/tex]
90% probability that she has at least one marble of each color
The top of a lighthouse is 100 m above sea level. The angle of elevation from the
deck of the sailboat to the top of the lighthouse is 28°. Calculate the distance
between the sailboat and the lighthouse.
Answer:
188 m
Step-by-step explanation:
The tangent of the angle is the ratio of the side opposite (height of the lighthouse) to the side adjacent (distance to the lighthouse):
tan(28°) = (100 m)/distance
distance = (100 m)/tan(28°) ≈ 188 m
The distance between the sailboat and the lighthouse is about 188 m.
The illustration below is an example of a semi regular tessellation
true or false?
The correct answer is False
Explanation:
A tessellation refers to a regular pattern created by using regular polygons; additionally, in a tessellation, there are no gaps or spaces between the polygons. Besides this, a tesselation is categorized as regular if there is only one type of polygon in all the pattern or as semi-regular if there are two or more polygons but these still form a regular pattern. According to this, the illustration below is not a semi-regular tessellation because this only includes one polygon (hexagons), and therefore this would be classified as a regular tessellation.
Answer:
B
Step-by-step explanation:
Tony rode his bicycle 3 7/10 miles to school. What is this distance written as a decimal?
Answer:
the distance written as a decimal is 3.7
37/10 = 3,7
Achievements :)
The number of traffic accidents at a certain intersection is thought to be well modeled by a Poisson process. If the probability of no accident within a year is 5 percent. What is the mean waiting time between accidents
if percent of 1 year was 5%:
meaning time between accidents must be atleast 1 week
The mean waiting time that exists between the accidents would be:
- 1 week
'Mean waiting time' is determined through the contemplated value of an odd(random/casual) variable.
Given that,
Probability(P) of no accident taking place in 1 year = 5%
Assuming T be the accidents' number that takes place during a year,
Since 5% is the probability or chance of no accident to take place,
The mean waiting time between accidents = 1 week at least via Poisson process.
Thus, 1 week would be the correct answer.
Learn more about 'Mean' here:
brainly.com/question/521501
If f(x) = (-x)^3, what is f(-2)?
-6
-8
8
6
Answer:
The answer is 8
Step-by-step explanation:
Plug -2 in for x. The double-negative inside the parenthesis makes it positive, then do the exponent.
Answer:
-(-2)^3 = 2^3 = 8
Answer is C
Step-by-step explanation:
So we plug in the numbers. We have -2 as x. (-(-2)^3 would be our thing. Thats because our x is the negative so the negative of -2 is 2.
2^3 = 8
therefore its 8
How do I solve part b and c
Answer:
part a: 52%
part b: 0.4
part c: 0.24
Step-by-step explanation:
For part one, you find the frequency of the number of people that are less that 20. You add the number of tics in each bar and you divide by the total.
so for part a it is (7+6+9+4)/ (7+6+9+4+4+12+8)
for part b you add up the values that are greater than 25(less than 35)
(12+8)/total
part c you find the number of people between 25 and 30
that's 12
over total
12/total
Translate the phrase into a variable expression. Use the letter d to name the variable. If necessary use the asterisk for multiplication and the slash for division. the product of 40 and distance to the finish line
Answer:
40*d
Step-by-step explanation:
The word product means multiplication, and here it is multiplying 40 and the distance(d).
Answer:
40x5
Step-by-step explanation:
Estimate the quotient 241 ÷ 5. A. 40 B. 250 C. 50 D. 60
Answer:
The quotient of 241 ÷ 5 is 48.
Step-by-step explanation:
Division is splitting into equal parts or groups.
The quotient is the answer after we divide one number by another.
To find the quotient 241 ÷ 5 you must:
Write the problem in long division format
[tex]5\overline{|\smallspace241}[/tex]
Divide 24 by 5 to get 4
Multiply the quotient digit 4 by the divisor 5
Subtract 20 from 24
Bring down the next number of the dividend
Divide 41 by 5 to get 8
Multiply the quotient digit 8 by the divisor 5
Subtract 40 from 41
[tex]\mathrm{The\:solution\:for\:Long\:Division\:of}\:\frac{241}{5}\:\mathrm{is}\:48\:\mathrm{with\:remainder\:of}\:1\\\\48\quad \mathrm{Remainder}\quad \:1[/tex]
In a study of the relationship of the shape of a tablet to its dissolution time, 6 disk-shaped ibuprofen tablets and 8 oval-shaped ibuprofen tablets were dissolved in water. The dissolve times, in seconds, were as follows:
Disk: 269.0, 249.3, 255.2, 252.7, 247.0, 261.6
Oval: 268.8, 260.0, 273.5, 253.9, 278.5, 289.4, 261.6, 280.2 Can you conclude that the mean dissolve times differ between the two shapes? Conduct a hypothesis test at the
α = 5% level.
a. State the appropriate null and alternative hypotheses.
b. Compute the test statistic.
c. Compute the P-value.
d. State the conclusion of the test in the context of this setting.
Answer:
Step-by-step explanation:
This is a test of 2 independent groups. Let μ1 be the mean dissolution time for disk-shaped ibuprofen tablets and μ2 be the mean dissolution time for oval-shaped ibuprofen tablets.
The random variable is μ1 - μ2 = difference in the mean dissolution time for disk-shaped ibuprofen tablets and the mean dissolution time for oval-shaped ibuprofen tablets.
We would set up the hypothesis.
a) The null hypothesis is
H0 : μ1 = μ2 H0 : μ1 - μ2 = 0
The alternative hypothesis is
H1 : μ1 ≠ μ2 H1 : μ1 - μ2 ≠ 0
This is a two tailed test.
For disk shaped,
Mean, x1 = (269.0 + 249.3 + 255.2 + 252.7 + 247.0 + 261.6)/6 = 255.8
Standard deviation = √(summation(x - mean)²/n
n1 = 6
Summation(x - mean)² = (269 - 255.8)^2 + (249.3 - 255.8)^2 + (255.2 - 255.8)^2+ (252.7 - 255.8)^2 + (247 - 255.8)^2 + (261.6 - 255.8)^2 = 337.54
Standard deviation, s1 = √(337.54/6) = 7.5
For oval shaped,
Mean, x2 = (268.8 + 260 + 273.5 + 253.9 + 278.5 + 289.4 + 261.6 + 280.2)/8 = 270.7375
n2 = 8
Summation(x - mean)² = (268.8 - 270.7375)^2 + (260 - 270.7375)^2 + (273.5 - 270.7375)^2+ (253.9 - 270.7375)^2 + (278.5 - 270.7375)^2 + (289.4 - 270.7375)^2 + (261.6 - 270.7375)^2 + (280.2 - 270.7375)^2 = 991.75875
Standard deviation, s2 = √(991.75875/8) = 11.1
b) Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is
(x1 - x2)/√(s1²/n1 + s2²/n2)
Therefore,
t = (255.8 - 270.7375)/√(7.5²/6 + 11.1²/8)
t = - 3
c) The formula for determining the degree of freedom is
df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²
df = [7.5²/6 + 11.1²/8]²/[(1/6 - 1)(7.5²/6)² + (1/8 - 1)(11.1²/8)²] = 613.86/51.46
df = 12
We would determine the probability value from the t test calculator. It becomes
p value = 0.011
d) Since alpha, 0.05 > than the p value, 0.011, then we would reject the null hypothesis. Therefore, we can conclude that at 5% significance level, the mean dissolve times differ between the two shapes