Answer:
Option 2
Step-by-step explanation:
Because the slope is -0.09 the answer is the second option. A negative slope means a decrease.
Fraction - Multiplication : (a) 2/9 x 1/13 (b) 12/5 x 35/21
[tex]answer \\ a. \frac{2}{117} \\ b. 4 \\ solution \\ a. \: \frac{2}{9} \times \frac{1}{13} \\ = \frac{2 \times 1}{9 \times 13} \\ = \frac{2}{117} \\ b. \: \frac{12}{5} \times \frac{35}{21} \\ = divide \: 35 \: by \: 5 \: it \: becomes \\ = 12 \times \frac{7}{21} \\ divide \: 21 \: by \: 7 \: it \: becomes \\ = 12 \times \frac{1}{3} \\ divide \: 12 \: by \: 3 \: it \: becomes \\ = 4 \times 1 \\ = 4 \\ hope \: it \: helps \\ good \: luck \: on \: your \: assignment[/tex]
Answer:
[tex](a) \frac{2}{117} [/tex]
[tex](b)4[/tex]
Step-by-step explanation:
[tex](a) \frac{2}{9} \times \frac{1}{13} \\ = \frac{2}{117} [/tex]
[tex](b) \frac{12}{5} \times \frac{35}{21} \\ = \frac{84}{21} \\ = \frac{28}{7} \\ = 4[/tex]
hope this helps
brainliest appreciated
good luck! have a nice day!
What postulate would justify the following statement?
If D is between A and B, than AD+DB=AB
Answer:
A, D and B must be in a straight line.
Step-by-step explanation:
If D is between A and B, than AD+DB=AB
This would mean A, D and B would be in a straight line.
What is a word problem for 15 minus 28?
Answer:
A word problem for that would be Sam had 28 chocolates and Bob took away 15. How many does Sam have left?
Step-by-step explanation:
I don't know how to show work for writing a word problem. Sorry
Answer:
Step-by-step explanation:
Jane has $15 in her bank account. She wrote a $28 check for buying a fiction book. How much is her balance now?
I would like to purchase 20 products at a cost of $65 per product. What would be my total with 3.5 sales tax
Answer:
Answer:
The total is: $ 1345.5
Step-by-step explanation:
It is given that:
I would like to purchase 20 products at a cost 65.00 per product.
This means that the cost of 20 products will be:
Also, there is a sales tax of 3.5%
This means that a person has to pay a extra 3.5% on the total cost of the items he purchased.
i.e. he need to pay 3/5% on $ 1300
This means that the amount of tax he need to pay is: 3.5% of 1300
= 3.5%×1300
= 0.035×1300
= $ 45.5.
Hence, the total cost is: $ 1300+$ 45.5
This means that the total cost is: $ 134.5
Please answer this correctly
Answer: 30
Step-by-step explanation:
Q1: 120
Q3: 150
To find the interquartile range, subtract Q1 from Q3, which is 150-120. Therefore, the interquartile range of the kitten's weight, is 30
Answer: 30 grams
Step-by-step explanation:
The interquartile range is the range within the boxed areaa. You subtract the minimum value from the maximum value.
150 - 120 = 30
Here's a graph of a linear function. Write the
equation that describes that function.
Express it in slope-intercept form.
Help please !!!
Answer:
y=2x-4
Step-by-step explanation:
Will mark brainliest! Thanks ! and like if you can please explain it cuz I want to understand it to :)
Answer: F.) 7 triangles
Step-by-step explanation:
Congruent means completely equal in side lengths and angles. Think of this weird figure like 4 triangles that are see through and are covering a diamond underneath
Of those 4 "see through triangles", there are 3 equal to ΔABC
Now on the diamond underneath, there is another 4. Its hard to actually explain what I mean, but take two triangles from that dimaond. Theyre gonna be congruent to ΔABC.
That's 4 + 3 = 7 total triangles
Nathan spins 2 different spinners at the same time.There are a total of 10 possible outcomes.which pair of spinners did Nathan spin?
Answer:
The one divided into five part and the one divided into two parts
Step-by-step explanation:
find the option with one that has five parts and one with two parts :3
hope this helps!!
It is the graph with 5 numbers and 5 letters
I ready diagnostic
What’s the correct answer for this?
Answer:
D.
Step-by-step explanation:
Since opposite angles of a quadrilateral inscribes in a circle add up to 180°
So,
<P + <N = 180°
2x+2x-12 = 180°
4x = 180+12
4x = 192
Dividing both sides by 4
x = 48
Now
<P = 2(48)
<P = 96
Now
<N = 2(48)-12
<N = 96-12
<N = 84
What is the mixed number3 3/8 as a fraction
Answer: Mixed Number to Fraction
Mixed Numbers to Improper Fraction
Mixed Numbers Improper Fraction
3 3/4 15/4
3 3/8 27/8
3 8/9 35/9
Hope this helps!!
Find the coordinates of the other endpoint of the segment, given its midpoint M and one
endpoint Q.
M(c,n), Q(h,s)
The second endpoint is P
Answer:
P(2c - h, 2n - s )
Step-by-step explanation:
If there are two points (x1,y1) and (x2,y2) on the coordinate plane
then midpoint is given by (x1+x2)/2 , (y1+y2)/2
_________________________________________________
in the problem midpoint is m(c,n)
one point is Q(h,s)
let other point be P(x,y)
By using midpoint formula given above
for point P(x,y) and Q(h,s)
midpoint = (x+h)/2, (y+s)/2
also midpoint is m(c,n)
comparing m(c,n) with (x+h)/2, (y+s)/2
c = x+h/2
=> 2c = x+h
=> 2c - h = x
n = (y+s)/2
=> 2n = y+s
=> 2n - s = y
Thus, second endpoint is P(x,y) = P(2c - h, 2n - s )
Two positive numbers have a difference of 8. The larger number is three more than twice the smaller. Find the two numbers.
Answer:
5 and 13
Step-by-step explanation:
Let x represent the smaller number. Then the larger number is 2x+3, and the difference is ...
(2x+3) -(x) = 8
x = 5
The two numbers are 5 and 13.
_____
Check
Twice the smaller number is 10. 3 more than that is 13, the larger number. Their difference is 13 -5 = 8.
Help me solve the equivalent expression (4x+2)-3x+5
Answer:
X+7
Step-by-step explanation:
Remove the parentheses:
4x+2-3x+5
Collect like terms:
4x-3x=x
2+5=7
Solution:
X+7
Hey there!
(4x + 2) - 3x + 5
= 4x + 2 - 3x + 5
COMBINE the LIKE TERMS
= (4x - 3x) + (2 + 5)
= 4x - 3x + 2 + 5
= 1x + 7
= x + 7
Therefore, your answer is: x + 7
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
Find the linearization L(x,y,z) at P_0. Then find the upper bound for the magnitude of the error E in the approximation f(x,y,z) = L(x,y,z) over the region R.
The linearization of f(x,y,z) at Po is L(xyz)=_______
Answer:
L(xyz) = ( 1 , 3 , -7 )
L = x + 3y - 7z -3
Step-by-step explanation:
f (x,y,z) = xy + 2yz - 3xz
f (3,1,0) = (3) (1) + 2 (1) (0) - 3 (3) (0)
f (3,1,0) = 3
fx = y - 3z
f (3,1,0) = (1) - 3 (0)
fx = 1
fy = x + 2z
f (3,1,0) = (3) - 2 (0)
fy = 3
fz = 2y - 3x
f (3,1,0) = 2 (1) - 3 (3)
fz = -7
There is a bag with only milk and dark chocolates.
The probability of randomly choosing a dark chocolate is
2/9.
There are 24 dark chocolates in the bag and each is equally likely to be chosen.
Work out how many milk chocolates there must be.
Answer:
80 milk chocolates
Step-by-step explanation:
Probability of choosing a dark chocolate= number of dark
chocolate/number of total
chocolate
But the probability of choosing dark chocolate= 2/9
The number of dark chocolate= 24
Total chocolate= number of dark
chocolate/probability
of choosing dark
chocolate
Total chocolate= 24/(2/9)
Total chocolate=( 24*9)/2
Total chocolate= 108
Number of milk chocolate= total- dark
Number of milk chocolate
= 108-28
= 80
Help needed please!!!!!!!!
Olivia recorded the prices of 10 paperback books and 10 hard cover books. Her data is shown.
Paperback: $6.99, $7.49, $12.99, $9.99, $5.99, $8.99, $9.99, $10.00, $3.99, $4.99
Mean: 8.14
Hard cover: $9.99, $12.99, $34.99, $16.99, $15.00, $19.99, $9.99, $10.99, $18.99, $24.99
Mean: 17.49
Which statement is true given the data?
Answer:
C
Step-by-step explanation:
Suppose that a storm front is traveling at 33 mph. When the storm is 13 miles away a storm chasing van starts pursuing an average speed of 54 mph. How long does it take for the van to catch up with the storm? How far have they driven? (Hint: we can let our two variables be x= distance and t= time. Additionally, [speed x time= distance]. Won’t the van catch up when the distances are equal?
Please make it easy to understand your answer :)
Answer:
Time = X = 37.14 minutes
Distance they covered= 33.42 miles.
Step-by-step explanation:
Distance= speed * time
And the distance traveled by the two need to be equal.
Speed of storm = 33 mph
Speed of van = 54 mph
But storm is 13 miles away from van.
So
54*x = 33*x+ 13
54x-33x = 13
21x = 13
X= 0.62 hours
X = 37.14 minutes
54 *0.62= 33.42 miles.
Describe the rule for the sequence 2, 1, 2/3, 1/2, 2/5, 1/3, 1/7,...
Multiply 2 by 1/2 to get 1.
Multiply 1 by 2/3 to get 2/3.
Multiply 2/3 by 3/4 to get 6/12 = 1/2.
Multiply 1/2 by 4/5 to get 4/10 = 2/5.
Multiply 2/5 by 5/6 to get 10/30 = 1/3.
Multiply 1/3 by 6/7 to get 6/21 = 2/7. (I suspect there's a typo in the question.)
And so on, so that the nth term in the sequence is multiplied by n/(n + 1) to get the (n + 1)th term.
Recursively, the sequence is given by
[tex]\begin{cases}a_1=2\\a_n=\dfrac{n-1}na_{n-1}&\text{for }n>1\end{cases}[/tex]
We can solve this exactly by iterating:
[tex]a_n=\dfrac{n-1}na_{n-1}=\dfrac{n-1}n\dfrac{n-2}na_{n-1}=\dfrac{n-1}n\dfrac{n-2}{n-1}\dfrac{n-3}{n-2}a_{n-3}=\cdots[/tex]
and so on down to
[tex]a_n=\dfrac{(n-1)\cdot(n-2)\cdot(n-3)\cdot\cdots\cdot3\cdot2\cdot1}{n\cdot(n-1)\cdot(n-2)\cdot\cdots\cdot4\cdot3\cdot2}a_1[/tex]
or
[tex]a_n=\dfrac{(n-1)!}{n!}a_1[/tex]
and with lots of cancellation, we end up with
[tex]a_n=\dfrac{a_1}n=\boxed{\dfrac2n}[/tex]
Answer:
Divide 2 by n.
Step-by-step explanation:
What are the factors of this quadratic function?
Answer:
A. x-1 and x-5
Step-by-step explanation:
zeros are 1 and 5
so the factors are:
x-1 and x-5
Option A is correct
Solve the inequality for y.
-4y ≤ -12
Divide both sides by -4:
y ≤ 3
Because both sides were divided by a negative value you need to reverse the inequality sign:
y ≥ 3
Answer:
y = 3
Step-by-step explanation:
it says -4y ≤ -12 sooooooo 4 x 3 = 12!!!! so y = 3
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 452 cm3. The cost of the material for the base is 0.4 cents per square centimeter, and the cost of the material for the sides is 0.6 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost
Answer:
The box has sides of 11.07 cm and height of 3.69 cm.
The cost (minimum) is 147 cents per box.
Step-by-step explanation:
We have a box with open top, with a volume of 452 cm^3.
Let x: base side of the box, in cm, and y: height of the box, in cm.
Then, the volume can be expressed as:
[tex]V=x^2\cdot y=452\\\\y=452x^{-2}[/tex]
This box has 4 sides and 1 base. The material cost is 0.4 cents/cm^2 for the base and 0.6 cents/cm^2 for the sides.
Then, we can write the cost as:
[tex]C=0.4\cdot 1\cdot (x^2)+0.6\cdot 4\cdot (xy)\\\\\\xy=x\cdot(452x^{-2})=452x^{-1}\\\\\\C=0.4x^2+2.4(452x^{-1})\\\\\\C=0.4x^2+1084.8x^{-1}[/tex]
The value for x that gives a minimum cost can be found deriving the function C and equal to 0:
[tex]\dfrac{dC}{dx}=0.4(2x)+1084.8(-1\cdot x^{-2})=0\\\\\\0.8x-1084.8x^{-2}=0\\\\0.8x=1084.8x^{-2}\\\\0.8x^{1+2}=1084.8\\\\x^3=1084.8/0.8=1356\\\\x=\sqrt[3]{1356}\\\\x=11.07[/tex]
The height can be calculated with the equation:
[tex]y=452x^{-2}=452(11.07^{-2})=452\cdot 0.00816 =3.69[/tex]
The minimum cost can be calculated as:
[tex]C=0.4x^2+1084.8x^{-1}\\\\C(11.07)=0.4(11.07)^2+1084.8(11.07)^{-1}\\\\C(11.07)=0.4\cdot 122.51+1084.8\cdot0.09\\\\C(11.07)=49+98\\\\C(11.07)=147[/tex]
A random sample of 150 mortgages in the state of Florida was randomly selected. From this sample, 17 were found to be delinquent on their current payment. The 98% confidence interval for the proportion based on this sample is ________.
Answer:
The 98% confidence interval for the proportion based on this sample is (0.0531, 0.1735).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 150, \pi = \frac{17}{150} = 0.1133[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1133 - 2.327\sqrt{\frac{0.1133*0.8867}{150}} = 0.0531[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.1133 + 2.327\sqrt{\frac{0.1133*0.8867}{150}} = 0.1735[/tex]
The 98% confidence interval for the proportion based on this sample is (0.0531, 0.1735).
Alex has a bag of stuffed animals containing nine bears, six lions, and three monkeys. The probability that Alex will randomly pull out a bear and then a lion is . Using this probability, determine if the event of pulling out a bear and the event of pulling out a lion was independent, dependent, both, or neither.
Answer:
P = 0.1764
The events are dependent
Step-by-step explanation:
We have a total of 9 + 6 + 3 = 18 stuffed animals.
The probability of the first animal pulled being a bear is:
P(bear) = N(bear) / N(total)
P(bear) = 9 / 18 = 0.5
Then, for the second animal, we now have only 17 stuffed animals in total.
So the probability of the second animal pulled being a lion, given the first animal was a bear, is:
P(lion | bear) = N(lion) / N(total)
P(lion | bear) = 6 / 17 = 0.3529
So the final probability is the product of these probabilities:
P = P(bear) * P(lion | bear) = 0.5 * 0.3529 = 0.1764
To find if the events are dependent or independent, let's find the probability of the first pick being a lion:
P(lion) = N(lion) / N(total)
P(lion) = 6 / 18 = 0.3333
The probability of picking a lion is different from the probability of picking a lion given we already picked a bear, so the events are dependent.
Three added to the product of -4 and a number X is less than 5 added to the product of -3 and the number. What is the number?
Answer:
x=-2
Step-by-step explanation:
3 + -4x = 5+ -3x
-4x = 2 - 3x
-x = 2
x = -2
3. (05.01)
A pair of linear equations is shown below:
y = -x + 1
y = 2x + 4
Which of the following statements best explains the steps to solve the pair of equations graphically? (4 points)
On a graph, plot the line y = -x + 1, which has y-intercept = -1 and slope = 1, and y = 2x + 4, which has y-intercept = 2 and slope = 4, and write the coordinates of the point of
Intersection of the two lines as the solution.
On a graph, plot the line y = -x + 1, which has y-intercept - 1 and slope = 1, and y = 2x + 4, which has y-intercept = 1 and slope = 4, and write the coordinates of the point of
intersection of the two lines as the solution.
On a graph, plot the line y = -x + 1, which has y-intercept = 1 and slope = -1, and y = 2x + 4, which has y-intercept = -2 and slope = 2, and write the coordinates of the point
of intersection of the two lines as the solution.
On a graph, plot the line y = -x + 1, which has y-intercept = 1 and slope = -1, and y = 2x + 4, which has y-intercept = 4 and slope = 2, and write the coordinates of the point of
intersection of the two lines as the solution.
Answer:
On a graph, plot the line y = -x + 1, which has y-intercept = 1 and slope = -1, and y = 2x + 4, which has y-intercept = 4 and slope = 2, and write the coordinates of the point of intersection of the two lines as the solution.
Step-by-step explanation:
Each equation is in slope-intercept form:
y = mx + b . . . . . where m is the slope, and b is the y-intercept
The first equation is ...
y = -x +1
so the slope is -1, and the y-intercept is +1.
__
The second equation is ...
y = 2x +4
so the slope is 2, and the y-intercept is 4.
__
The slopes and intercepts are properly described in the last selection.
It is thought that prehistoric Indians did not take their best tools, pottery, and household items when they visited higher elevations for their summer camps. It is hypothesized that archaeological sites tend to lose their cultural identity and specific cultural affiliation as the elevation of the site increases. Let x be the elevation (in thousands of feet) of an archaeological site in the southwestern United States. Let y be the percentage of unidentified artifacts (no specific cultural affiliation) at a given elevation. The following data were obtained for a collection of archaeological sites in New Mexico. x = 5.22 5.69 6.25 6.75 7.25 y 17 12 33 37 62What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? a. 95.7% b. 0.7% c. 8.4% d. 91.6% e. 4.3%
Answer:
(B) 0.7%
Step-by-step explanation:
X = Land Elevation (in ,000 feet)
Y = Unidentified Artifacts (in %)
The hypothetical theory says that:
The higher the elevation, the higher the percentage of unidentified artifacts in the location.
To find the percentage of variation in Y that can be explained by variations in X, we find the slope of the graph of X on Y.
Transforming X to thousand feets, we have 5220, 5690, 6250, 6750, 7250. This is in the attachment, plotted against 17, 12, 33, 37 and 62 respectively.
Further calculations, along with the graph, are in the attachment below. The answer therein is (B) 0.7%
An HP laser printer is advertised to print text documents at a speed of 18 ppm (pages per minute). The manufacturer tells you that the printing speed is actually a Normal random variable with a mean of 17.35 ppm and a standard deviation of 3.25 ppm. Suppose that you draw a random sample of 10 printers.
Required:
a. Using the information about the distribution of the printing speeds given by the manufacturer, find the probability that the mean printing speed of the sample is greater than 17.55 ppm.
b. Use normal approximation to find the probability that more than 48.6% of the sampled printers operate at the advertised speed (i.e. the printing speed is equal to or greater than 18 ppm)
Answer:
a) The probability that the mean printing speed of the sample is greater than 17.55 ppm = 0.4247
b) The probability that more than 48.6% of the sampled printers operate at the advertised speed = 0.4197
Step-by-step explanation:
The central limit theorem explains that for an independent random sample, the mean of the sampling distribution is approximately equal to the population mean and the standard deviation of the distribution of sample is given as
σₓ = (σ/√n)
where σ = population standard deviation
n = sample size
So,
Mean of the distribution of samples = population mean
μₓ = μ = 17.35 ppm
σₓ = (σ/√n) = (3.25/√10) = 1.028 ppm
a) The probability that the mean printing speed of the sample is greater than 17.55 ppm.
P(x > 17 55)
We first normalize 17.55 ppm
The standardized score for any value is the value minus the mean then divided by the standard deviation.
z = (x - μ)/σ = (17.55 - 17.35)/1.028 = 0.19
To determine the required probability
P(x > 17.55) = P(z > 0.19)
We'll use data from the normal probability table for these probabilities
P(x > 17.55) = P(z > 0.19) = 1 - P(z ≤ 0.19)
= 1 - 0.57535 = 0.42465 = 0.4247
b) The probability that more than 48.6% of the sampled printers operate at the advertised speed
We first find the probability that one randomly selected printer operates at the advertised speed.
Mean = 17.35 ppm
Standard deviation = 3.25 ppm
Advertised speed = 18 ppm
Required probability = P(x ≥ 18)
We standardize 18 ppm
z = (x - μ)/σ = (18 - 17.35)/3.25 = 0.20
To determine the required probability
P(x ≥ 18) = P(z ≥ 0.20)
We'll use data from the normal probability table for these probabilities
P(x ≥ 18) = P(z ≥ 0.20) = 1 - P(z < 0.20)
= 1 - 0.57926 = 0.42074
48.6% of the sample = 48.6% × 10 = 4.86
Greater than 4.86 printers out of 10 includes 5 upwards.
Probability that one printer operates at advertised speed = 0.42074
Probability that one printer does not operate at advertised speed = 1 - 0.42074 = 0.57926
probability that more than 48.6% of the sampled printers operate at the advertised speed will be obtained using binomial distribution formula since a binomial experiment is one in which the probability of success doesn't change with every run or number of trials. It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure. The outcome of each trial/run of a binomial experiment is independent of one another.
Binomial distribution function is represented by
P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ
n = total number of sample spaces = 10
x = Number of successes required = greater than 4.86, that is, 5, 6, 7, 8, 9 and 10
p = probability of success = 0.42074
q = probability of failure = 0.57926
P(X > 4.86) = P(X ≥ 5) = P(X=5) + P(X=6) + P(X=7) + P(X=8) + P(X=9) + P(X=10) = 0.4196798909 = 0.4197
Hope this Helps!!!
Please answer this correctly
Answer:
514 square meters
Step-by-step explanation:
Consider the length of p;
[tex]11 * p * 3 = 528,\\33 * p = 528,\\p = 528 / 33 = 16 meters[/tex]
11, 3, and p act as the length, width, and height of this rectangular prism. We can apply the volume formula length * width * height, and thus made 11 * p * 3 equivalent to the volume 528. Now let us determine the surface area;
[tex]Area of Side 1 = 16 * 11 = 176 square meters,\\Area of Side 2 = 3 * 16 = 48 square meters,\\Area of Side 3 = 11 * 3 = 33 square meters,\\\\Surface Area = 2 * ( 176 ) + 2 * ( 48 ) + 2 * ( 33 ) = 352 + 96 + 66 = 514 square meters[/tex]
Hope that helps!
Answer:
514 square meters
Step-by-step explanation:
Since the volume of a rectangular prism is the product of the width, length, and height, 11*3*p=528. Therefore, p=528/(11*3)=16. Now, you can find the surface area. The surface of a rectangular prism is made up of 3 pairs of rectangles. One pair has dimensions of 11 by 3, one pair has dimensions of 16 by 3, and the last pair has dimensions of 16 by 11. The surface area of this figure is therefore:
[tex]2(11\cdot 3)+2(16\cdot 3) + 2(16\cdot 11)=66+96+352=514 m^2[/tex]
Hope this helps!
What is the slope of the line that passes through the points (-3, -3) and
(-18, -23)? Write your answer in simplest form.
Answer:
work is shown and pictured
What is the square root of -1?
uhh there is no such thing because -1 isn't a perfect square.