Answer:
Step-by-step explanation:
x^2
--------------------------------------------------
2x + 1 / 2x^3 - x^2 + x + 1
2x^3 + x^2
-----------------------
0 + x + 1
x + 1
The quotient is x^2 + ------------
2x + 1
What value of c makes x2 + 6x + c a perfect square trinomial?
Answer:
9
Step-by-step explanation:
x^2 + 6x + c
Take the coefficient of x
6
Divide by 2
6/2 = 3
Square it
3^2 = 9
That is the value of c required
Answer:
C. 9
Step-by-step explanation:
c = 9
x² + 6x + 9
= (x+3)(x+3)
= (x + 3)²
it is a perfect square trinomial when c is equal to 9
Find the balance at the end of 4 years if $10000 is deposited at a rate of 1.5% simple interest
Answer:
$9400
Step-by-step explanation:
1.5x4=6%
100-6=94
0.94x10000=9400
A multiple-choice standard test contains total of 25 questions, each with four answers. Assume that a student just guesses on each question and all questions are answered independently. (a) What is the probability that the student answers more than 20 questions correctly
Answer:
[tex]P(x>20)=9.67*10^{-10}[/tex]
Step-by-step explanation:
If we call x the number of correct answers, we can said that P(x) follows a Binomial distribution, because we have 25 questions that are identical and independent events with a probability of 1/4 to success and a probability of 3/4 to fail.
So, the probability can be calculated as:
[tex]P(x)=nCx*p^{x}*q^{n-x}=25Cx*0.25^{x}*0.75^{25-x}[/tex]
Where n is 25 questions, p is the probability to success or 0.25 and q is the probability to fail or 0.75.
Additionally, [tex]25Cx=\frac{25!}{x!(25-x)!}[/tex]
So, the probability that the student answers more than 20 questions correctly is equal to:
[tex]P(x>20)=P(21)+P(22)+P(23)+P(24)+P(25)[/tex]
Where, for example, P(21) is equal to:
[tex]P(21)=25C21*0.25^{21}*0.75^{25-21}=9.1*10^{-10}[/tex]
Finally, P(x>20) is equal to:
[tex]P(x>20)=9.67*10^{-10}[/tex]
What is the result of adding these two equations? 2x+3y=-5 5x-y=-12
Answer:
[tex]x = \frac{-41}{17} , y = \frac{-1}{17}[/tex]
Step-by-step explanation:
Step(i):-
Given equations are 2 x+3 y=-5 ...(i)
5 x-y=-12 ...(ii)
Multiply equation (ii) by '3'
2 x + 3 y = -5
15 x - 3 y = - 36
17 x = - 41
[tex]x = \frac{-41}{17}[/tex]
Step(ii):-
Substitute [tex]x = \frac{-41}{17}[/tex] in equation (i)
2 ([tex]\frac{-41}{17}[/tex]+3 y=-5
3 y = - 5 + [tex]\frac{82}{17}[/tex]
[tex]3 y = \frac{-85 + 82}{17} = \frac{-3}{17}[/tex]
[tex]y = \frac{-1}{17}[/tex]
The solution of the two equations
( x, y ) = [tex](\frac{-41}{17} , \frac{-1}{17})[/tex]
Round 8326 to the nearest hundred
Answer:
The answer is 8300.
Step-by-step explanation:
1) We round the number up to the nearest hundred, if the last two digits in the number are 50 or above.
2) We round the number down to the nearest 100 if the last two digits in the number are 49 or below.
3) If the last two digits are 00, then we do not have to do any rounding because it is already to the hundred.
Isaac is a professional swimmer who trains, in part, by running. She would like to
estimate the average number of miles she runs in each week. For a random sample
of 20 weeks, the mean is
x
= 17.5 miles with standard deviation s = 3.8 miles. Find
a 99% confidence interval for the population mean number of weekly miles Isaac runs.
(a) 15.01 to 19.99 miles (b) 15.07 to 19.93 miles
(c) 15.34 to 19.66 miles (d) 15.31 to 19.69 miles
(e) 15.08 to 19.92 miles
Answer: (b) 15.07 to 19.93 miles
Step-by-step explanation:
Confidence interval is written in the form,
(Sample mean - margin of error, sample mean + margin of error)
The sample mean, x is the point estimate for the population mean.
Margin of error = z × s/√n
Where
s = sample standard deviation = 3.8
n = number of samples = 20
From the information given, the population standard deviation is unknown and the sample size is small, hence, we would use the t distribution to find the z score
In order to use the t distribution, we would determine the degree of freedom, df for the sample.
df = n - 1 = 20 - 1 = 19
Since confidence level = 99% = 0.99, α = 1 - CL = 1 – 0.99 = 0.01
α/2 = 0.02/2 = 0.005
the area to the right of z0.005 is 0.025 and the area to the left of z0.025 is 1 - 0.005 = 0.995
Looking at the t distribution table,
z = 2.861
Margin of error = 2.861 × 3.8/√20
= 2.43
the lower limit of this confidence interval is
17.5 - 2.43 = 15.07 miles
the upper limit of this confidence interval is
17.5 + 2.43 = 19.93 miles
A study seeks to answer the question, "Does Vitamin C level in the breast milk of new mothers reduce the risk of allergies in their breastfed infants?" The study concluded that high levels of vitamin C (measured in mg) were associated with a 30 percent lower risk of allergies in the infants. In this scenario, "levels of vitamin C (measured in milligrams)" is what type of variable?
Answer:
Quantitative variable
Step-by-step explanation:
The objective in this study is to find the of variable used to conduct the study. The type of variable used to conduct this study is Qualitative variable.
There are majorly two types of variable. These are:
Categorical VariableQuantitative variableCategorical variables are types of variables that are grouped based on some similar characteristics. The nominal scale and the ordinal scale falls under this group of variable.
The nominal scale is an act of giving name to a particular object or concept in order to identify or classify that particular thing.
On the other hand, The ordinal scale possess all the characteristics of nominal scale but here the variables can be ordered. It can be used to determine whether the item is greater or less. It express the indication of order and magnitude.
In Qualitative variables; variables are measured on a numeric scale. From the given question , This type of variable is used to measure the high levels of vitamin C (measured in mg) which were associated with a 30 percent lower risk of allergies in the infants.
The levels of vitamin C could range from 0 mg to certain mg therefore we can measure vitamin C in numerical values of measurement (Quantitative variable).
An item is regularly priced at 40$. It is. On sale for 30% off the regular price. How much (in dollars) is discounted from the regular price?
Answer:
Step-by-step explanation:
12$
The blood platelet counts of a group of women have a bell-shaped distribution with a mean of 258.7 and a standard deviation of 63.5. (All units are 1000 cells/muL.) Using the empirical rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 3 standard deviations of the mean, or between 68.2 and 449.2? b. What is the approximate percentage of women with platelet counts between 195.2 and 322.2?
Answer:
a) [tex]P( \mu -3\sigma <X< \mu +3\sigma)[/tex]
And from the empirical rule we know that this probability is 0.997 or 99.7%
b)[tex] P(195.2 <X<322.2)[/tex]
Using the z score we have:
[tex] z = \frac{322.2 -258.7}{63.5}= 1[/tex]
[tex] z = \frac{195.2 -258.7}{63.5}= -1[/tex]
And within one deviation from the mean we have 68% of the values
Step-by-step explanation:
For this case we defien the random variable of interest X as "blood platelet counts" and we know the following parameters:
[tex] \mu = 258.7, \sigma =63.5[/tex]
Part a
We can use the z score formula given by:
[tex] z =\frac{\bar X -\mu}{\sigma}[/tex]
And we want this probability:
[tex]P( \mu -3\sigma <X< \mu +3\sigma)[/tex]
And from the empirical rule we know that this probability is 0.997 or 99.7%
Part b
For this case we want this probability:
[tex] P(195.2 <X<322.2)[/tex]
Using the z score we have:
[tex] z = \frac{322.2 -258.7}{63.5}= 1[/tex]
[tex] z = \frac{195.2 -258.7}{63.5}= -1[/tex]
And within one deviation from the mean we have 68% of the values
Can someone help me please
Answer:
the triangles are not similar.
Find values of a. b. and c (if possible) such that the system of linear equations has a unique solution, no solution, and infinitely many solutions. (If not possible, enter IMPOSSIBLE.)
X + y = 6
y + z = 6
x + z = 6
ax + by + cz = 0
a) a unique solution (a. b .c)=([])
b) no solution (a. b .c)=([])
c) infinitely many solutions (a. b, c) = ([])
Answer:
Step-by-step explanation:
The given equations are
x + y = 6- - - - - - - - -1
y + z = 6- - - - - - - -2
x + z = 6- - - - - - - - - 3
From equation 2, y = 6 - z
Substituting y = 6 - z into equation 1, it becomes
x + 6 - z = 6
x - z = 6 - 6
x - z = 0
x = z
Substituting x = z into equation 3, it becomes
z + z = 6
2z = 6
z = 6/2
z = 3
x = 3
Substituting x = 3 into equation 1, it becomes
3 + y = 6
y = 6 - 3
y = 3
ax + by + cz = 0
3a + 3b + 3c = 0
3(a + b + c) = 0
Therefore, it is impossible
A fuel oil tank is an upright cylinder, buried so that its circular top is 8 feet beneath ground level. The tank has a radius of 6 feet and is 18 feet high, although the current oil level is only 12 feet deep. Calculate the work required to pump all of the oil to the surface. Oil weighs 50\, \hbox{lb/ft}^3.
Answer:
1.504×10⁶ ft·lb
Step-by-step explanation:
We understand the top of the oil in the tank is 12 ft below ground level, and the bottom of the tank is 8+18=26 ft below ground level. Then the average depth of the oil is (12+26)/2 = 19 ft below ground level.
The height of the oil in the tank is 26-12=14 ft, so the volume of it is ...
V = πr²h = π(6 ft)²(14 ft) = 504π ft³ ≈ 1583.36 ft³
__
So, the work required to raise that volume of oil to the surface is ...
(1538.36 ft³)(50 lb/ft³)(19 ft) = 1.504×10⁶ ft·lb
Over which interval is the graph of fx =-x2 + 3x + 8 increasing
Answer:
Step-by-step explanation:
it is increasing in [tex]]-\infty;3/2][/tex]
because this is like
[tex]f(x)=ax^2+bx+c[/tex]
where a > 0
and -b/a=3/2
Solve for m:
-3(1 – 5m) = — 38 + 8m
Answer:
m = - 5
Step-by-step Explanation:
[tex]-3(1-5m)=-38+8m \\ \\ - 3 + 15m = - 38 + 8m \\ \\ 15m - 8m = 3 - 38 \\ \\ 7m = - 35 \\ \\ m = \frac{ - 35}{7} \\ \\ \huge \purple{ \boxed{m = - 5}}[/tex]
Answer:
-5
Step-by-step explanation:
Pls help me with this
Answer:
x = 1.5
Step-by-step explanation:
Given
[tex]\frac{x}{2} \geq 0.75[/tex]
[tex]\frac{x}{2} < 2.5[/tex]
Required
Find the value of x.
First, the inequalities need to be rewritten and merged;
if [tex]\frac{x}{2} \geq 0.75[/tex], then
[tex]0.75 \leq \frac{x}{2}[/tex]
Multiply both sides by 2
[tex]2 * 0.75 \leq \frac{x}{2} * 2[/tex]
[tex]1.5 \leq x[/tex]
Similarly;
[tex]\frac{x}{2} < 2.5[/tex]
Multiply both sides by 2
[tex]2 * \frac{x}{2} < 2.5 * 2[/tex]
[tex]x < 5[/tex]
Merging these results together; to give
[tex]1.5 \leq x < 5[/tex]
This means that the range of values of x is from 1.5 to 4.9999....
From the question, x is the smallest rational number; from the range above ([tex]1.5 \leq x < 5[/tex]), the minimum value of x is 1.5 and 1.5 is a rational number;
Hence, x = 1.5
The U.S. Department of Housing and Urban Development publishes data on the fair market monthly rent for existing one-bedroom housing by metropolitan area (The Federal Register, April 30 1997). The standard deviation for the monthly rent is about $80. Assume that a sample of metropolitan areas will be selected in order to estimate the population mean of the monthly rent for existing one-bedroom housing. Use 95% confidence. a. How large should the sample be if the desired margin of error is $25?
Answer:
[tex]n=(\frac{1.960(80)}{25})^2 =246.73 \approx 247[/tex]
So the answer for this case would be n=247 rounded up to the nearest integer
Step-by-step explanation:
We know that the standard deviation is :
[tex]\sigma = 80[/tex] represent the deviation
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex] (b)
The critical value for 95% of confidence interval now can be founded using the normal distribution and the critical value would be [tex]z_{\alpha/2}=1.960[/tex], replacing into formula (b) we got:
[tex]n=(\frac{1.960(80)}{25})^2 =246.73 \approx 247[/tex]
So the answer for this case would be n=247 rounded up to the nearest integer
Distance between (-6,8) and (-3,9)
Answer:
[tex]\sqrt{10}[/tex]
Step-by-step explanation:
Using the distance formula: [tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
substitute
[tex]d = \sqrt{((-3) - (-6))^2 + ((9)-(8))^2}[/tex]
[tex]\sqrt{10}[/tex]
You are given the following data, where X1 (final percentage in history class) and X2 (number of absences) are used to predict Y (standardized history test score in third grade):
Y X1 X2
465 92 2
415 95 2
345 70 3
410 72 3
370 75 4
400 82 0
390 80 1
480 98 0
420 80 2
485 99 0
485 92 6
375 92 6
310 61 5
Determine the following multiple regression values.
Report intercept and slopes for regression equation accurate to 3 decimal places
Intercept: a =
Partial slope X1: b1 =
Partial slope X2: b2 =
Report sum of squares accurate to 3 decimal places:
SSreg = SS
Total =
Test the significance of the overall regression model (report F-ratio accurate to 3 decimal places and P-value accurate to 4 decimal places):
F-ratio =
P-value =
Report the variance of the residuals accurate to 3 decimal places.
Report the results for the hypothesis test for the significance of the partial slope for number of absences
Answer:
Step-by-step explanation:
Hello!
Given the variables
Y: standardized history test score in third grade.
X₁: final percentage in history class.
X₂: number of absences per student.
Determine the following multiple regression values.
I've estimated the multiple regression equation using statistics software:
^Y= a + b₁X₁ + b₂X₂
a= 118.68
b₁= 3.61
b₂= -3.61
^Y= 118.68 + 3.61X₁ - 3.61X₂
ANOVA Regression model:
Sum of Square:
SS regression: 25653.86
SS Total: 36819.23
F-ratio: 11.49
p-value: 0.0026
Se²= MMError= 1116.54
Hypothesis for the number of absences:
H₀: β₂=0
H₁: β₂≠0
Assuming α:0.05
p-value: 0.4645
The p-value is greater than the significance level, the decision is to not reject the null hypothesis. Then at 5% significance level, there is no evidence to reject the null hypothesis. You can conclude that there is no modification of the test score every time the number of absences increases one unit.
I hope this helps!
A report on the nightly news broadcast stated that 10 out of 129 households with pet dogs were burglarized and 23 out of 197 without pet dogs were burglarized. Assume that you plan to test the claim that p1=p2. Find the test statistic for the hypothesis test. (Let the houses with the dogs be the first population.)
Answer:
The test statistic for the hypothesis test is -1.202.
Step-by-step explanation:
We are given that a report on the nightly news broadcast stated that 10 out of 129 households with pet dogs were burglarized and 23 out of 197 without pet dogs were burglarized.
Let [tex]p_1[/tex] = population proportion of households with pet dogs who were burglarized.
[tex]p_2[/tex] = population proportion of households without pet dogs who were burglarized.
SO, Null Hypothesis, [tex]H_0[/tex] : [tex]p_1=p_2[/tex] {means that both population proportions are equal}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]p_1\neq p_2[/tex] {means that both population proportions are not equal}
The test statistics that would be used here Two-sample z-test for proportions;
T.S. = [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ~ N(0,1)
where, [tex]\hat p_1[/tex] = sample proportion of households with pet dogs who were burglarized = [tex]\frac{10}{129}[/tex] = 0.08
[tex]\hat p_2[/tex] = sample proportion of households without pet dogs who were burglarized = [tex]\frac{23}{197}[/tex] = 0.12
[tex]n_1[/tex] = sample of households with pet dogs = 129
[tex]n_2[/tex] = sample of households without pet dogs = 197
So, the test statistics = [tex]\frac{(0.08-0.12)-(0)}{\sqrt{\frac{0.08(1-0.08)}{129}+\frac{0.12(1-0.12)}{197} } }[/tex]
= -1.202
The value of z test statistics is -1.202.
Arun’s restaurant bill is $58, and he wants to leave the waiter an 18 percent tip. What will Arun’s total bill be? $10.44 $47.56 $68.44 $76.00
Answer:
The Answer is 68.44. I wish it helpsAnswer:
68.44$
Step-by-step explanation:
x=18*58/100=10.44 $(the tip)
58+10.44=68.44 ( the bill )
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
c
Step-by-step explanation:
when the absolute value of slope gets smaller, the graph of line gets less steeper.
Which of the following is true regarding the solution to the logarithmic equation below? log Subscript 2 Baseline (x + 11) = 4. x + 11 = 2 Superscript 4. x + 11 = 16. x = 5. x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 2 x = 5 is not a true solution because log Subscript 5 Baseline (16) not-equals 4 x = 5 is a true solution because log Subscript 2 Baseline (16) = 4 x = 5 is a true solution because log Subscript 4 Baseline (16) = 2
Answer:
Option C.
Step-by-step explanation:
The given logarithmic equation is
[tex]\log_2(x+11)=4[/tex]
It can be written as
[tex](x+11)=2^4[/tex] [tex][\because log_ax=y\Leftrightarrow x=a^y][/tex]
[tex]x+11=16[/tex]
[tex]x=5[/tex]
Now, to check whether [tex]x=5[/tex] is a true solution or not. Substitute [tex]x=5[/tex] in the LHS of given equation.
[tex]LHS=\log_2(5+11)[/tex]
[tex]LHS=\log_2(16)[/tex]
[tex]LHS=\log_22^4[/tex]
[tex]LHS=4[/tex] [tex][\because log_aa^x=x][/tex]
[tex]LHS=RHS[/tex]
Hence, [tex]x=5[/tex] is a true solution because [tex]\log_2(16)=4[/tex].
Therefore, the correct option is C.
Answer:
C on edge2021
Step-by-step explanation:
1. Determine the value of 'p' in the equation 4p = 48
2. Simplify the fraction 60/144
3. What is the surface area of a cube with side lengths of 3cm?
1) sorry i don't know =(
2)- 5/12 is the simplified fraction for 60/144.
3)A=54cm²
if you start with (2,6) and move 2 units right and 3 units down what will you end up with?
For (2,6) the 2 is the x value which is the left/right position and 6 is the y value which is the up/down position.
Moving 2 units to the right, you would add 2 to the x value. Moving 3 units down you would subtract 3 from the y value.
The answer would be (4,3)
On day two of a study on body temperatures, 106 temperatures were taken. Suppose that we only have the first 10 temperatures to work with. The mean and standard deviation of these 10 temperatures were 98.44oF and 0.30oF, respectively. Construct a 95% confidence interval for the mean of all body temperatures.
Answer:
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.2622
The margin of error is:
M = T*s = 2.2622*0.3 = 0.68
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 98.44 - 0.68 = 97.76 ºF
The upper end of the interval is the sample mean added to M. So it is 98.44 + 0.68 = 99.12 ºF
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
Look at the Picture. Look at the Picture.
Answer:
325 square inches
Step-by-step explanation:
Consider the attachment below for further reference. Ideally we would split this figure into parts, and solve as demonstrated by the attachment. I have labeled each rectangle as rectangle 1, rectangle 2, rectangle 3 etc. ;
[tex]Rectangle 1 Area = 17 in * 5 in = 85 square in\\Rectangle 2 Area = ( 17 in - 5 in ) * 14 in = 168 square in,\\Rectangle 3 Area = ( 12 in - 3 in ) * 8 in = 72 square in\\\\Total Area = 85 + 168 + 72 = 325 square inches[/tex]
Hope that helps!
Answer: The answer is 325 inches.
Step-by-step explanation: You can divide the rectangle into multiple parts and find the areas of those parts and add all the areas together at the end
Determine the next term in the sequence.
14,33,55,83,114....
Answer:
You can't find the next solution without more information.
Step-by-step explanation:
a)i.Write the the absolute value function y=|2x+5|+3|x-1| as a piece-wise function.
ii)What is the range?
Answer:
Step-by-step explanation:
for |2x+5|=
[tex]\left \{ {{2x+5}~~~~if~~~~2x+5 > 0 ~~or ~~~~x>\frac{-5}{2}~~(case 1) \\ \atop {-2x-5}} ~~~~~if~~~2x+5 <0 ~~~~or~~~x<\frac{-5}{2}~~(case 2)[/tex]
for |x-1| = [tex]\left \{ {{x-1 } ~~~~if~~~x-1>0 ~~~or~~~x>1 ~~(case 3)\atop {1-x}} ~~~~if ~~~~x-1<0 ~~~~or~~~x<1 \right. (case 4)[/tex]
Factories fully 4ab + 8ac
Answer:
Hello!
I believe your answer is:
4a(b+2c)
Step-by-step explanation:
I hope this worked for you! Good luck!
Which graph represents the solution set for
-X2 + 8x - 12 > 0?
Answer:
B
Step-by-step explanation: