Answer:
(C) 10
Step-by-step explanation:
x+y−z=8
Subtract y from both sides
x-z= -y+8
Add z to both sides
x= -y+z+8
Subtract 8 from both sides
x-8= -y+z
x−y+z=12
Add y to both sides
x+z=12+y
Subtract z from both sides
x=y-z+12
Subtract 12 from both sides
x-12=y-z
Multiply both sides by -1
-x+12= -y+z
Combine equations:
x-8= -x+12
Add x to both sides
2x-8+12
Add 8 to both sides
2x=20
Divide both sides by 2
x=10
The answer is (C) 10.
What’s the correct answer for this question?
Answer:
A: 97π/18 m
Step-by-step explanation:
Central Angle = 97°
In radians:
97° = 97π/180
Now
S = r∅
S = (10)(97π/180)
S = 97π/18 m
Answer:
The answer is option 1.
Step-by-step explanation:
Given that the formula for length of Arc is Arc = θ/360×2×π×r when r represents the radius of circle. Then, you have to substitute the following values into the formula :
[tex]arc = \frac{θ}{360} \times 2 \times \pi \times r[/tex]
Let θ = ∠VCW = 97°,
Let r = 10m,
[tex]arc = \frac{97}{360} \times 2 \times \pi \times 10[/tex]
[tex]arc = \frac{97}{360} \times 20 \times \pi[/tex]
[tex]arc = \frac{97}{18} \pi \: m[/tex]
The math SAT is scaled so that the mean score is 500 and the standard deviation is 100. Assuming scores are normally distributed, find the probability that a randomly selected student scores
Answer:
a. P(X>695)=0.026
b. P(X<485)=0.44
Step-by-step explanation:
The question is incomplete:
a. higher than 695 on the test.
b. at most 485 on the test.
We have a normal distribution with mean 500 and standard deviation of 100 for the test scores. We will use the z-scores to calculate the probabilties with the standard normal distribution table.
a. We want to calculate the probability that a randomly selected student scores higher than 695.
We calculate the z-score and then we calculate the probability:
[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{695-500}{100}=\dfrac{195}{100}=1.95\\\\\\P(X>695)=P(z>1.95)=0.026[/tex]
a. We want to calculate the probability that a randomly selected student scores at most 485.
We calculate the z-score and then we calculate the probability:
[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{485-500}{100}=\dfrac{-15}{100}=-0.15\\\\\\P(X<485)=P(z<-0.15)=0.44[/tex]
Please help!! Which of the following is equal to the rational expression when x ≠ 2 or -4? 5(x-2)/(x-2)(x+4)
Answer:
5 / (x+4) x ≠2 x≠-4
Step-by-step explanation:
5(x-2)/(x-2)(x+4)
The denominator cannot be zero so x ≠2 x≠-4
Cancel like terms in the numerator and denominator
5 / (x+4) x ≠2 x≠-4
Which expression and diagram represent “Renee biked four times as far this month as last month”? 4 x right-arrow 4 boxes with x and 4 boxes with minus signs 4 x right-arrow 4 boxes with x 4 + x right-arrow 4 boxes with x and 3 boxes with plus signs x + 4 right-arrow 4 boxes with plus signs
Answer:
yall the answer is B for 2020 edge
Step-by-step explanation:
I took the test
Answer:
I do agree its B.
Step-by-step explanation:
Why i think this is because my average grade was a 100%
An equilateral triangle have always _________ vertex and _______ lines of symmetry.
a) (3 , 1)
b) ( 4, 0)
c) (3 , 3 )
d) (3, 2 )
Answer:
hey mate,
here is your answer. Hope it helps you.
C-(3,3)
Step-by-step explanation:
An equilateral triangle, which has three equal sides, has three lines of symmetry. This is because you can fold an equilateral triangle in three halves and the are equal. Hence an equilataral triangle has three vertices and 3 lines of symmetry.
Please help
Convert 200 cm to cm
Answer:
to cm it's still 200 if you mean to metre 2m
Step-by-step explanation:
Answer:
It would still be 200
Step-by-step explanation:
Solve the system of equations.
3x + 3y + 6z = 6
3x + 2y + 4z = 5
7x + 3y + 32 = 7
a. (x = 2, y = -2, z = 0)
b. (x = 3, y=-3, z = 3)
c. (x = 1, y = - 1,2= 1)
d. (x = 0, y = 0, z = 2)
Answer:
The answer is option c
x = 1 y = - 1 z = 1
Hope this helps.
Which statement describes the graph of the system of equations?
Answer:
Are there any choices?..
The correct statement the describes the equation is The lines intersect at (1, 0) and the lines are parallel.
x - y = 1.............equation 1
y - x = 1.............equation 2
Add equations (1) and (2):
(x - y) + (y - x) = 1 + 1
Simplifying
0 = 2
Since 0 = 2, the system is inconsistent, meaning there is no solution. The lines represented by the equations are parallel and will never intersect.
The system of equations has no solution, as the lines represented by the equations are parallel and will never intersect.
learn more about parallel here
brainly.com/question/17405097
#SPJ2
The complete question is- Which statement describes the graph of the system of equations?
[x-y=1
Ly- X= 1
The lines are parallel.
The lines are coinciding.
The lines intersect at(1, 0).
The lines intersect at (-1,0).
Problem 3.3.9 • (a) Starting on day 1, you buy one lottery ticket each day. Each ticket is a winner with probability 0.1. Find the PMF of K, the number of tickets you buy up to and including your fifth winning ticket. (b) L is the number of flips of a fair coin up to and including the 33rd occurrence of tails. What is the PMF of L? (c) Starting on day 1, you buy one lottery ticket each day. Each ticket is a winner with probability 0.01. Let M equal the number of tickets you buy up to and including your first winning ticket. What is the PMF of M?
Answer:
a) The probability mass function of K = [tex]P(K=k) = \binom{k-1}{4}0.1^{4}*0.9^{k-5} ; k =5,6,...[/tex]
b)
c)
Step-by-step explanation:
a) Let p be the probability of winning each ticket be = 0.1
Then q which is the probability of failing each ticket = 1 - p = 1 - 0.1 = 0.9
Assume X represents the number of failure preceding the 5th success in x + 5 trials.
The last trial must be success whose probability is p = 0.1 and in the remaining (x + r- 1) ( x+ 4 ) trials we must have have (4) successes whose probability is given by:
[tex]\binom{x+r-1}{r-1}*p^{r-1}*q^{x} = \binom{x+4}{4}0.1^{4}*0.9^{x} ; x =0, 1, .........[/tex]
Then, the probability distribution of random variable X is
[tex]P(X=x) = \binom{x+4}{4}0.1^{4}*0.9^{x} ; x =0, 1, .........[/tex]
where;
X represents the negative binomial random variable.
K= X + 5 = number of ticket buy up to and including fifth winning ticket.
Since K =X+5 this signifies that X = K-5
as X takes value 0, 1 ,2,...
K takes value 5, 6 ,...
Therefore:
The probability mass function of K = [tex]P(K=k) = \binom{k-1}{4}0.1^{4}*0.9^{k-5} ; k =5,6,...[/tex]
b)
Let p represent the probability of getting a tail on a flip of the coin
Thus p = 0.5 since it is a fair coin
where L = number of flips of the coin including 33rd occurrence of tails
Thus; the negative binomial distribution of L can be illustrated as:
[tex]P(X=x) = \binom{x-1}{r-1}(1-p)^{x-r}p^r[/tex]
where
X= L
r = 33 &
p = 0.5
Since we are looking at the 33rd success; L is likely to be : L = 33,34,35...
Thus; the PMF of L = [tex]P(L=l) = \binom{l-1}{33-1}(1-0.5)^{l}(0.5)^{33} \\ \\ \\ \mathbf{P(L=l) = \binom{l-1}{33-1}(0.5)^{l} }[/tex]
c)
Given that:
Let M be the random variable which represents the number of tickets need to be bought to get the first success,
also success probability is 0.01.
Therefore, M ~ Geo(0.01).
Thus, the PMF of M is given by:
[tex]P(M = m) = (1-0.01)^{m-1} * 0.01 , \ \ \ since \ \ \ (m = 1,2,3,4,....)[/tex]
[tex]P(M=m) = (0.99)^{m-1} * 0.01 , m = 1,2,3,4,....[/tex]
Graph: y = 3/4 x + 5
Answer: The graph is
The graph is plotted and attached.
What is a Function?A function is a law that relates a dependent and an independent variable.
The function is y = 3/4 x + 5
The slope of the line is (3/4)
and the y intercept is 5.
The graph is plotted and attached with the answer.
To know more about Function
https://brainly.com/question/12431044
#SPJ2
Please answer this correctly
Answer:
Car: 60%
Motorcycle: 30%
Truck: 10%
Step-by-step explanation:
Car: [tex]\frac{12}{12+6+2} =\frac{12}{20} =\frac{60}{100}[/tex] or 60%
Motorcycle: [tex]\frac{6}{12+6+2} =\frac{6}{20} =\frac{30}{100}[/tex] or 30%
Truck: [tex]\frac{2}{12+6+2} =\frac{2}{20} =\frac{10}{100}[/tex] or 10%
. A certain coin is a circle with diameter 18 mm. What is the exact area of either face of the coin in terms of p?
Answer:
[tex] r =\frac{D}{2}=\frac{18mm}{2}= 9mm[/tex]
The area is given by:
[tex]A= \pi r^2[/tex]
And replacing we got:
[tex] A=\pi (9mm)^2 =81\pi mm^2[/tex]
So then we can conclude that the area of the coin is [tex] 81\pi[/tex] mm^2
Step-by-step explanation:
For this case we know that we have a coin with a diamter of [tex] D =18mm[/tex], and by definition the radius is given by:
[tex] r =\frac{D}{2}=\frac{18mm}{2}= 9mm[/tex]
The area is given by:
[tex]A= \pi r^2[/tex]
And replacing we got:
[tex] A=\pi (9mm)^2 =81\pi mm^2[/tex]
So then we can conclude that the area of the coin is [tex] 81\pi[/tex] mm^2
Sean tossed a coin off a bridge into the stream below. The path of the coin can be represented by the equation h = -16t2 + 72t + 100. what is the height of the bridge
Answer:
100
Step-by-step explanation:
When t=0 (no time has passed), the coin is at height 100. This means the bridge must be 100 units high for this to be possible.
Answer:
100
Step-by-step explanation:
:3
In a recent survey, 10 percent of the participants rated Pepsi as being "concerned with my health." PepsiCo's response included a new "Smart Spot" symbol on its products that meet certain nutrition criteria, to help consumers who seek more healthful eating options. Suppose a follow-up survey shows that 18 of 100 persons now rate Pepsi as being "concerned with my health". Calculate the z statistic. (Round your answer to 2 decimal places.) zcalc At α = .05, would a follow-up survey showing that 18 of 100 persons now rate Pepsi as being "concerned with my health" provide sufficient evidence that the percentage has increased? Yes No
Answer: What what my you explain shorter please
Step-by-step explanation:
According to 2013 report from Population Reference Bureau, the mean travel time to work of workers ages 16 and older who did not work at home was 30.7 minutes for NJ State with a standard deviation of 23 minutes. Assume the population is normally distributed.
Required:
a. If a worker is selected at random, what is the probability that his travel time to work is less than 30 minutes?
b. Specify the mean and the standard deviation of the sampling distribution of the sample means, for samples of size 36.
c. What is the probability that in a random sample of 36 NJ workers commuting to work, the mean travel time to work is above 35 minutes?
Answer:
a) 48.80% probability that his travel time to work is less than 30 minutes
b) The mean is 30.7 minutes and the standard deviation is of 3.83 minutes.
c) 13.13% probability that in a random sample of 36 NJ workers commuting to work, the mean travel time to work is above 35 minutes
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 30.7, \sigma = 23[/tex]
a. If a worker is selected at random, what is the probability that his travel time to work is less than 30 minutes?
This is the pvlaue of Z when X = 30. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{30 - 30.7}{23}[/tex]
[tex]Z = -0.03[/tex]
[tex]Z = -0.03[/tex] has a pvalue of 0.4880.
48.80% probability that his travel time to work is less than 30 minutes
b. Specify the mean and the standard deviation of the sampling distribution of the sample means, for samples of size 36.
[tex]n = 36[/tex]
Applying the Central Limit Theorem, the mean is 30.7 minutes and the standard deviation is [tex]s = \frac{23}{\sqrt{36}} = 3.83[/tex]
c. What is the probability that in a random sample of 36 NJ workers commuting to work, the mean travel time to work is above 35 minutes?
This is 1 subtracted by the pvalue of Z when X = 35. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{35 - 30.7}{3.83}[/tex]
[tex]Z = 1.12[/tex]
[tex]Z = 1.12[/tex] has a pvalue of 0.8687
1 - 0.8687 = 0.1313
13.13% probability that in a random sample of 36 NJ workers commuting to work, the mean travel time to work is above 35 minutes
Alex and Bryan are giving an exam. The probability Alex gets an A is 0.9, the probability Bryan gets an A is 0.8 and the probability Alex gets an A and Bryan doesn't get an A is 0.1. What is the probability that either Alex or Bryan get an A.
Answer:
The probability that either Alex or Bryan get an A is 0.9
Step-by-step explanation:
Before we proceed to answer, we shall be making some important notation;
Let A = event of Alex getting an A
Let B = event of Bryan getting an A
From the question, P(A) = 0.9, P(B) = 0.8 and P(A ∩ [tex]B^{c}[/tex] ) = 0.1
We are to calculate the probability that either Alex or Bryan get an A which can be represented as P(A ∪ B)
We can use the addition theorem here;
P(A ∪ B) = P(A) + P(B) - P(A ∩ B) .......................(i)
Also,
P(A) = P(A ∩ [tex]B^{c}[/tex] ) + P(A ∩ B) .........................(ii)
We can insert ii into i and we have;
P(A ∪ B) = P(A ∩ [tex]B^{c}[/tex] ) + P(A ∩ B) + P(B) - P(A ∩ B) = P(A ∩ [tex]B^{c}[/tex] ) + P(B) = 0.1 + 0.8 = 0.9
Can someone please help me I’m stuck I don’t know
Answer:
140
Step-by-step explanation:
Because the lines are parallel:
[tex]\dfrac{DE}{35}=\dfrac{60}{15} \\\\DE=4\cdot 35=140[/tex]
Hope this helps!
4 lines are shown. A line with points A, F, D intersects with a line with points B, F, E at point F. A line extends from point F to point G between angle E F D. Another line extends from point F to point D in between angle B F D. In the diagram, which angle is part of a linear pair and part of a vertical pair? AngleBFC AngleCFG AngleGFD AngleEFA
Based on the above, the angle that is said to be a part of a linear pair and part of a vertical pair is Angle EFA.
What are linear pair and part of a vertical pair?If two angles is said to create a linear pair, the angles are then regarded as supplementary and it is said that their measures often add up to 180°.
Note that Vertical angles are said to be pair of nonadjacent angles created by the crossing or the intersection of any two straight lines.
Since vertical angles are seen if "X" created by two straight lines then when you look at the image attached, you can see that the angle that can from this is Angle EFA.
Therefore, Based on the above, the angle that is said to be a part of a linear pair and part of a vertical pair is Angle EFA.
Learn more about vertical pair from
https://brainly.com/question/14362353
#SPJ9
The mass of the Eiffel Tower is about 9.16 ⋅ 10^6 kilograms. The mass of the Golden Gate Bridge is 8.05 ⋅ 10^8 kilograms. Approximately how many more kilograms is the mass of the Golden Gate Bridge than the mass of the Eiffel Tower? Show your work and write your answer in scientific notation.
Answer:
[tex]7.9584 \times 10^8[/tex]
Step-by-step explanation:
[tex]8.05 \times 10^8 - 9.16 \times 10^6[/tex]
[tex]805000000-9160000[/tex]
[tex]=795840000[/tex]
What’s the correct answer for this question?
Answer:
Height = 12 inches
Step-by-step explanation:
Volume = Area × Height
1080 = 90 × H
H = 1080/90
H = 12 inches
The sum of two consecutive odd integers is 156. Which is an equation that can be used to solve for x? Please
Answer:
x+(x+2) = 156
Step-by-step explanation:
Let x = 1st odd integer
x+2 = next odd integer
x+(x+2) = 156
2x+2 =156
Subtract 2
2x= 154
Divide by 2
x = 77
x+2 = 79
Alex is paid $30/hr at full rate, and $20/hr at a reduced rate. The hours of work are paid at a ratio of 2:1, full rate : reduced rate. For example, if he worked 3 hours, he would be paid 2 hours at full rate and 1 hour at reduced rate. Calculate his pay for 4 hours of work
Answer:
His pay for 4 hours of work is $106.67.
Step-by-step explanation:
2:1, full rate : reduced rate.
This means that for each 2+1 = 3 hours that he works, 2 he has full pay and 1 he has reduced pay.
4 hours
How much are full pay?
For each 3, 2 are full pay. For four?
3 hours - 2 full pay
4 hours - x full pay
[tex]3x = 8[/tex]
[tex]x = \frac{8}{3}[/tex]
So for [tex]\frac{8}{3}[/tex] hours he makes the full pay($30) and for [tex]4 - \frac{8}{3} = \frac{12}{3} - \frac{8}{3} = \frac{4}{3}[/tex] he makes reduced pay($20).
Calculate his pay for 4 hours of work
[tex]30*\frac{8}{3} + 20*\frac{4}{3} = 106.67[/tex]
His pay for 4 hours of work is $106.67.
.
A students received a score of 50 on his history test. The test had a mean of 69 and a standard deviation of 10. Find the z score and assess whether his score is considered unusual.
1.90; unusual
–1.90; not unusual
–1.90; unusual
1.90; not unusual
Answer:
c) The Z-score = - 1.90 unusual
Step-by-step explanation:
Explanation:-
Let 'X' be the random variable in normal distribution
Given student received a score X = 50
Mean of the Population x⁻ = 69
standard deviation of the Population 'σ' = 10
now
[tex]Z = \frac{x^{-}-mean }{S.D}[/tex]
[tex]Z = \frac{x^{-}-mean }{S.D} = \frac{50 -69}{10} = - 1.90[/tex]
The Z-score = - 1.90
Conclusion:-
The Z-score = - 1.90 unusual
Answer: The Z-score = - 1.90 unusual
Step-by-step explanation:
Please help. I’ll mark you as brainliest if correct!!!!
Answer:
a= 2/5
b= -3/5
Step-by-step explanation:
We need to multiply the numerator and denominator by -i (conjugate) to cancel out i in the denominator
[tex]\frac{(3+2i)(-i)}{5i(-i)}[/tex]
This simplifies to:
[tex]\frac{-3i+-2i^{2} }{-5i^{2} }[/tex]
This further simplifies to:
[tex]\frac{-3i +2}{5}[/tex]
Can be rewritten as:
[tex]\frac{2}{5} +-\frac{3}{5} i[/tex]
a = 2/5
b = -3/5
A standardized exam's scores are normally distributed. In a recent year, the mean test score was 1521 and the standard deviation was 314. The test scores of four students selected at random are 1920, 1290, 2220, and 1420. Find the z-scores that correspond to each value and determine whether any of the values are unusual
Answer:
A score of 1920 has a z-score of 1.27.
A score of 1290 has a z-score of -0.74.
A score of 2220 has a z-score of 2.23.
A score of 1420 has a z-score of -0.32.
The score of 2220 is more than two standard deviations from the mean, so it is unusual.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
If X is 2 or more standard deviations from the mean, it is considered unusual.
In this question, we have that:
[tex]\mu = 1521, \sigma = 314[/tex]
Score of 1920:
X = 1920. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1920 - 1521}{314}[/tex]
[tex]Z = 1.27[/tex]
A score of 1920 has a z-score of 1.27.
Score of 1290:
X = 1290. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1290 - 1521}{314}[/tex]
[tex]Z = -0.74[/tex]
A score of 1290 has a z-score of -0.74.
Score of 2220:
X = 1290. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2220 - 1521}{314}[/tex]
[tex]Z = 2.23[/tex]
A score of 2220 has a z-score of 2.23.
Since it is more than 2 standard deviations of the mean, the score of 2220 is unusual.
Score of 1420:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1420 - 1521}{314}[/tex]
[tex]Z = -0.32[/tex]
A score of 1420 has a z-score of -0.32.
URGENT!! EASY IM DUMB MY LAST 2 QUESTION WILL FOREVER BE GRATEFUL PLS HELP WILL GIVE BRANLIEST!! AT LEAST TAKE A LOOK!!!! PLS I AM BEGGING!!!
16. Which sentence would be a good counterexample to this statement?
A line can exist in only one plane.
A) A line intersects one plane and then another.
B) A line that is coplanar exists in more than one plane.
C) A line is the intersection of two planes.
D) A line is parallel to one plane at a time.
17. Which statement is needed to complete this syllogism?
If the angles of a triangle are all equal, then the sides of a triangle are all equal.
If the sides of a triangle are all equal, then the triangle is equilateral.
Therefore, if the angles of a triangle are all equal,then________________________.
A) the sides of a triangle are all equal
B) the angles of a triangle are all equal
C) the triangle is equiangular
D) the triangle is equilateral
Answer:
16. A
17. D
Step-by-step explanation:
16. By saying that a line intersects one plane and then another, you are saying that a line is existing on two planes. This is a direct contradiction to the statement.
17. The triangle is equilateral because syllogism is basically connecting the dots. If the angles in the triangle are all equal, it has all equal sides, and if it has all equal sides, then it is equilateral, therefore, it is D, not C.
8,36 : 1,6
pleaseeeeeeeeee
Answer:
209 : 40 or 5.225 : 1
Step-by-step explanation:
Your calculator can tell you the ratio 8.36/1.60 is 5.225. Writing that decimal as a fraction, you can factor out 25 to get ...
8.36 : 1.6 = 5.225 : 1 = 5225 : 1000 = (25)(209) : (25)(40) = 209 : 40
Lesson 10 congruent triangles unit test
Answer:
Step-by-step explanation:
Wheres the question??
Car engine needs ______________ to avoid friction.
a) water
b) smooth surface
c) oil
d) air
Answer:
Oil
Step-by-step explanation:
Car engine needs oil to avoid friction.
Answer:
[tex]oil \\ [/tex]
Answer C is correct
Step-by-step explanation:
car engine needs oil to avoid the friction .
hope this helps
brainliest appreciated
good luck! have a nice day!
82
R5
6
,92 5
4 8
12
12
0
Answer:
see below
Step-by-step explanation:
The first subtraction has a zero result (blue) from the thousands digit, so we know the dividend has 4 in that place. The 5 in the 1s place of the dividend is brought down to fill the space on the bottom line. 6 goes into that number 0 times, so the final quotient digit is 0.
4,925 = 6×820 +5
or
4,925 ÷ 6 = 820 r5