Find the derivative.
y = x sinhâ¹(x/3) â â(9 + x²)

Answers

Answer 1

The derivative of the function y = x sinh(x/3) - (9 + x²) is ln((x + √(x² + 9))/3) + (x/(3√(x² + 9))) - 2x.

To find the derivative of y = x sinh⁻¹(x/3) - (9 + x²), we will use the chain rule and the power rule of differentiation.

First, we can simplify the expression by using the identity sinh⁻¹(x) = ln(x + √(x² + 1)), so we have:

y = x ln(x/3 + √((x/3)² + 1)) - (9 + x²)

Now we can differentiate term by term, using the chain rule for the first term:

y' = ln(x/3 + √((x/3)² + 1)) + x(1/(x/3 + √((x/3)² + 1))) (1/3) - 2x

Simplifying the first term and combining like terms in the second term, we get:

y' = ln((x + √(x² + 9))/3) + (x/(3√(x² + 9))) - 2x

This is the final answer for the derivative of y.

Learn more about the derivative at

https://brainly.com/question/25324584

#SPJ4

The question is -

Find the derivative of the function y = x sinh(x/3) - (9 + x²).


Related Questions

Find the total differential. 5x + y W= 6z - 10y dw

Answers

The differentiation with respect to x is dW/dx = (6z-10y)(-5)/(5x+y)².

Given that, W=(6z-10y)/(5x+y)

The total differential of W=(6z-10y)/(5x+y) is

dW = (6dz - 10dy)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Let's break this down. First, we need to calculate the partial derivatives of W with respect to each of the variables, x, y, and z.

Partial derivative of W with respect to x:

dW/dx = (6z-10y)(-5)/(5x+y)²

Partial derivative of W with respect to y:

dW/dy = (6z-10y)(-1)/(5x+y)² - (6z-10y)(5dx + dy)/(5x+y)²

Partial derivative of W with respect to z:

dW/dz = (6)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Now, we can combine the partial derivatives to get the total differential of W.

dW = (6dz - 10dy)/(5x+y) - (6z-10y)(5dx + dy)/(5x+y)²

Hence, the differentiation with respect to x is dW/dx = (6z-10y)(-5)/(5x+y)².

To learn more about the differentiation of an equations visit:

https://brainly.com/question/25731911.

#SPJ4

Developer mode is a school assignment explain how to find the area of a triangle whose base is 2.5 inches and the height is 2 inches

Answers

Answer:

Step-by-step explanation:

A=hbb

2=2·2.5

2=2.5in²

john drove 5 1/2 miles to work each day for 5 days the next 5 days he drove 7 2/3 miles each day to work using an alternate route what is the total distance in miles that john drove to work over the 10 days?

Answers

The total distance John drove to work in 10days is 50.5 miles

What is word problem?

A word problem in math is a math question written as one sentence or more. This statement is interpreted into mathematical equation or expression.

For the first five days, John drove 5½ miles

The total distance for the 5 days = 5 × 11/2 = 55/2 miles

For the second five days, he drove 7 2/3 miles each day.

The total distance he drove = 23/3 × 5 = 115/5

= 23miles

Therefore the total distance he drove for the 10 days = 55/2 + 23

= 27.5 +23

= 50.5 miles

learn more about word problem from

https://brainly.com/question/21405634

#SPJ1

Find the value of x.

Answers

Answer:

[tex] \frac{6}{x + 1} = \frac{4}{x} [/tex]

[tex]6x = 4(x + 1)[/tex]

[tex]6x = 4x + 4[/tex]

[tex]2x = 4[/tex]

[tex]x = 2[/tex]

Puzzle #2,
Domain and range someone HELP!!

Answers

Answer:

1. G

2. F

3. B

4. F

Step-by-step explanation:

1. There is no restriction on x-values (sqrt or n/0 form). so it can take all real values.

2. Let y=f(x)

On expressing x in terms of y, we obtain:

[tex]x=\sqrt{2(y+4)}+2[/tex]

Now, the expression in the root ( 2(y+4) ) must be greater than or equal to 0

Algebraically, 2(y+4) ≥ 0

=> y ≥ -4

3. The x-values (domain/inputs/pre-images) extend from (-4) to +ve infinity or x ≥ -4

4. The y-values (range/outputs/images) extend from (-4) to +ve infinity or y ≥ -4

Give a recursive formula that has n as an input and the output is (n!)^2

Answers

Here's a recursive formula that has n as an input and the output is (n!)^2, using the terms "recursive f" and "input":

Define the recursive function f(n) as follows: 1. Base case: f(0) = f(1) = 1 2. Recursive case:

[tex]f(n) = n^2 * f(n-1) for n > 1[/tex]

The input for this recursive function is n, and the output is (n!)^2.

The recursive formula that has n as an input and the output is

[tex](n!)^2[/tex]

can be defined as follows:

recursive_f(n) =


- if n = 0 or n = 1, return 1


- otherwise, return n^2 * recursive_f(n-1)

Here, recursive_f is the name of the recursive function, and n is the input. The base case of the recursion is when n is 0 or 1, which returns 1. For all other values of n, the formula multiplies n^2 with the output of the recursive call to the same function with n-1 as the input. This continues until the base case is reached and the recursion stops.

So, for example, if you input n=5 into this formula, it would calculate (5!)^2 = 14400 using the recursive function:

recursive_f(5) = 5^2 * recursive_f(4)
              = 25 * (4^2 * recursive_f(3))
              = 25 * 16 * (3^2 * recursive_f(2))
              = 25 * 16 * 9 * (2^2 * recursive_f(1))
              = 25 * 16 * 9 * 4 * 1
              = 14400

Learn more about recursive here:

https://brainly.com/question/30027987

#SPJ11

A nurse at a local hospital is interested in estimating the birth weight of infants. How large a sample must she select if she desires to be 90% confident that the true mean is within 4 ounces of the sample mean? The standard deviation of the birth weights is known to be 6 ounces.

Answers

The nurse need select a sample of at least 7 infants to be 90% confident that the true mean birth weight is within 4 ounces of the sample mean.

To estimate the sample size needed for the nurse at the local hospital to be 90% confident that the true mean birth weight of infants is within 4 ounces of the sample mean, we need to use the following formula for sample size:
n = [tex]([/tex]Z * σ [tex]/[/tex]Z[tex])^2[/tex]
where n is the sample size, Z is the z-score corresponding to the desired confidence level, σ is the known standard deviation of the population, and E is the margin of error (the difference between the true mean and the sample mean).

In this case, we are given:
- 90% confidence level, which corresponds to a z-score of 1.645
- Standard deviation (σ) = 6 ounces
- Margin of error (E) = 4 ounces

Now, we can plug these values into the formula:
[tex]n = (1.645 * 6 / 4)^2[/tex]
[tex]n = (9.87 / 4)^2[/tex]
[tex]n = (2.4675)^2[/tex]
n ≈ 6.08

Since we cannot have a fraction of a sample, we round up to the nearest whole number. Therefore, the nurse must select a sample of at least 7 infants to be 90% confident that the true mean is within 4 ounces of the sample mean.

Know more about mean here:

https://brainly.com/question/1136789

#SPJ11

A spinner with 4 equal sections is spun 20 times. The frequency of spinning each color is recorded in the table below.


Outcome Frequency
Pink 6
White 3
Blue 7
Orange 4

What statement best compares the theoretical and experimental probability of landing on pink?
The theoretical probability of landing on pink is one fifth, and the experimental probability is 50%.
The theoretical probability of landing on pink is one fourth, and the experimental probability is 50%.
The theoretical probability of landing on pink is one fifth, and the experimental probability is 30%.
The theoretical probability of landing on pink is one fourth, and the experimental probability is 30%.

Answers

The theoretical probability of landing on pink is one fourth, and the experimental probability is 30%.

What is a probability?

When we talk about probability, all our minds should go the fact that event may occur or may not occur as in this case.

Since the 4 sections are equal, we have that:

p = 1/4 = 0.25 = 25%.

The experimental probability is calculated considering previous experiments.

For the  20 trials, 6 resulted in pink, we can show this as:

p = 6/20 = 0.3 = 30%.

Thus the statement that we can regard as correct or proper is:

The theoretical probability of landing on pink is one fourth, and the experimental probability is 30%.

Learn more about theoretical probability on https://brainly.com/question/31264350

#SPJ1

One angle of a triangle has a measure of 66°. The measure of the third angle is 57° more
than I the measure of the second angle. The sum of the angle measures of a triangle is 180°.
What is the measure of the second angle? What is the measure of the third angle?

Answers

Answer:

Second angle= 28.5°

Third angle= 85.5°

Step-by-step explanation:

Let x=second angle

Let x+57°=Third angle

Therefore 66°+x+(x+57°)=180°

66°+2x+57°=180°

123°+2x=180°

2x=180°-123°

2x=57°

2x/2=47°/2

x=28.5°

78) the first derivative of the function f is defined by f'(x)= sin(x^3-x) for 0

Answers

The first derivative of the function f(x) = sin(x³ - x) is f'(x) = cos(x³ - x) times (3x² - 1).

The first derivative of a function is defined as the rate at which the function changes with respect to its input variable. In other words, it tells us how fast the output of the function is changing as we move along its domain. The derivative is usually denoted by f'(x), which is read as "f prime of x".

In this case, we are given the function f(x) = sin(x³ - x), and we are asked to find its first derivative. To do this, we simply need to apply the derivative formula to the given function. The derivative of sin(x) is cos(x), and the chain rule tells us that the derivative of sin(u) is cos(u) times the derivative of u. Therefore, we have:

f'(x) = cos(x³ - x) times the derivative of (x³ - x)

To find the derivative of (x³ - x), we use the power rule and the constant multiple rule of differentiation. The power rule tells us that the derivative of xⁿ is n times xⁿ⁻¹ and the constant multiple rule tells us that the derivative of k times f(x) is k times the derivative of f(x). Therefore, we have:

f'(x) = cos(x³ - x) times (3x² - 1)

To know more about function here

https://brainly.com/question/28193995

#SPJ4

We draw 20 cards without replacement from a shuffled, standard deck of 52 cards. What is the conditional probability P(the 12th card is a heart given that the 4th card is a club, and the 20th card is a heart)?

Hint: This is the same as P(the 3rd card is a heart given that the 1st card is a club, and the 2nd card is a heart).

Answers

The conditional probability that the 12th card is a heart given that the 4th card is a club and the 20th card is a heart is 11/13.

The conditional probability can be calculated using Bayes' theorem, which states that:

P(A|B and C) = P(B and C|A) * P(A) / P(B and C)

where A is the event that the 12th card is a heart, B is the event that the 4th card is a club, and C is the event that the 20th card is a heart.

To calculate the probability of B and C given A, we can use the multiplication rule:

P(B and C|A) = P(C|A and B) * P(B|A)

where P(C|A and B) is the probability that the 20th card is a heart given that the 12th card is a heart and the 4th card is a club, and P(B|A) is the probability that the 4th card is a club given that the 12th card is a heart.

Since we know that the 12th card is a heart, there are only 51 cards left in the deck and 12 of them are hearts. Therefore, the probability that the 20th card is a heart given that the 12th card is a heart and the 4th card is a club is 11/51.

To calculate the probability that the 4th card is a club given that the 12th card is a heart, we need to consider the remaining cards in the deck. There are 51 cards left after the 11 hearts and the 12th card have been drawn, and 12 of them are clubs. Therefore, the probability that the 4th card is a club given that the 12th card is a heart is 12/51.

Finally, to calculate the probability of B and C, we can again use the multiplication rule:

P(B and C) = P(C|B) * P(B)

where P(C|B) is the probability that the 20th card is a heart given that the 4th card is a club, and P(B) is the probability that the 4th card is a club.

Since there are 51 cards left after the 4th card is drawn, 13 of them are hearts and 12 of them are clubs. Therefore, the probability that the 20th card is a heart given that the 4th card is a club is 13/51.

Putting it all together, we get:

P(A|B and C) = P(C|A and B) * P(B|A) * P(A) / P(C|B) * P(B)
              = (11/51) * (12/51) * (12/51) / (13/51) * (12/51)
              = 11/13

Know more about conditional probability here:

https://brainly.com/question/30034780

#SPJ11

Find the exact length of the curve. x = 4 +6t^2, y = 2 + 4t^3 0 ≤ t ≤ 3

Answers

The exact length of the curve x = 4 + 6t², y = 2 + 4t³ from t = 0 to t = 3 is approximately 255.67 units.

To find the exact length of the curve, follow these steps:
1. Find the derivatives of x and y with respect to t: dx/dt = 12t and dy/dt = 12t².
2. Calculate the square of each derivative: (dx/dt)² = 144t² and (dy/dt)² = 144t⁴.
3. Add the squared derivatives: 144t² + 144t⁴.
4. Take the square root of the sum: √(144t² + 144t⁴).
5. Integrate the result with respect to t over the interval [0, 3]: ∫(√(144t² + 144t⁴)) dt from 0 to 3.
6. Calculate the definite integral to obtain the exact length: ≈ 255.67 units.

To know more about derivatives click on below link:

https://brainly.com/question/25324584#

#SPJ11

A researcher was interested in whether the cranial capacity of one species of primates was larger than the cranial capacity of another species. She collected 8 random skulls from species 1 and 9 random skulls from species 2. These were the cranial capacities of the skulls in mm2: species1 <- c(92.0, 157.2, 104.0, 99.8, 102.8, 176.2, 64.0, 113.4) species2 <- c(40.9, 127.3, 101.8, 147.2, 50.5, 75.7, 71.8, 121.5, 86.8) . What are the degrees of freedom [ Select ] What is the observed t-value? What is the lower bound of the 95% Confidence Interval for the difference in means? [ Select] What is the p-value? (Select] Does this test suggest that the population mean of cranial capacities in species A is larger than species B? [Select]

Answers

a) The degrees of freedom for this t-test are 15.

b) The observed t-value is 1.89.

c) The lower bound of the 95% confidence interval for the difference in means is 12.9.

d) The p-value for a one-tailed t-test with 15 degrees of freedom and a t-value of 1.89 can be found using a t-distribution table or a statistical software.

e) The p-value of 0.04 suggests that there is a 4% chance of obtaining a difference in means as extreme or more extreme than the observed difference, assuming that the null hypothesis is true.

The degrees of freedom are the number of independent observations in a statistical analysis that can vary freely. In this scenario, the degrees of freedom for the t-test can be calculated using the following formula:

df = n1 + n2 - 2

where n1 is the sample size of species 1 (8) and n2 is the sample size of species 2 (9).

df = 8 + 9 - 2 = 15

The observed t-value is a measure of how different the sample means are from each other in standard error units. It can be calculated using the following formula:

t = (x1 - x2) / SE

where x1 is the sample mean of species 1 (121.1), x2 is the sample mean of species 2 (89.1), and SE is the standard error of the difference in means. The formula for the standard error is:

SE = √[(s1² / n1) + (s2² / n2)]

where s1 is the sample standard deviation of species 1 (37.9), s2 is the sample standard deviation of species 2 (30.7), n1 is the sample size of species 1 (8), and n2 is the sample size of species 2 (9).

SE = √[(37.9² / 8) + (30.7² / 9)] = 16.9

Substituting these values into the formula for t:

t = (121.1 - 89.1) / 16.9 = 1.89

The 95% confidence interval is a range of values within which we can be 95% confident that the true population mean lies. The lower bound of the 95% confidence interval can be calculated using the following formula:

Lower bound = (x1 - x2) - t(alpha/2) * SE

where x1 is the sample mean of species 1 (121.1), x2 is the sample mean of species 2 (89.1), t(alpha/2) is the t-value for the given alpha level (0.025 for a two-tailed test at 95% confidence), and SE is the standard error of the difference in means calculated above.

Lower bound = (121.1 - 89.1) - 2.131 * 16.9 = 12.9

The t-value for the null hypothesis can be calculated using the same formula as before, but with the difference in means set to zero:

t_null = (x1 - x2 - 0) / SE = (121.1 - 89.1) / 16.9 = 1.89

The p-value is the probability of getting a t-value as extreme or more extreme than 1.89 under the null hypothesis. From a t-distribution table, we can see that the p-value is approximately 0.04 for a one-tailed test.

Since the p-value is less than the conventional significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that the population mean cranial capacity of species 1 is larger than that of species 2.

To know more about p-value here

https://brainly.com/question/14790912

#SPJ4

Find the amount of money that will be accumulated in a savings account if 59350 s invested at 7.0 % for 5 years and the interest is compounded continuously, Round your answer to two decimal places.

Answers

After 5 years, the amount of money accumulated in the savings account will be $84,297.87.

To find the amount of money that will be accumulated in the savings account, we need to use the formula for continuous compound interest:
[tex]A = P * e^{rt}[/tex]
where:
A = the accumulated amount after t years
P = the principal amount (initial investment)
r = the annual interest rate (in decimal form)
t = the number of years
e = the base of the natural logarithm (approximately 2.71828)
Now, let's plug in the given values:
P = 59,350
r = 7.0% = 0.07
t = 5
[tex]A = 59350 * e^{0.07 * 5}[/tex]
Using a calculator, we find that:
[tex]A = 59350 * e^{0.35}[/tex]
A = 59350 * 1.419067
Now, let's multiply and round the result to two decimal places:
A = 84,297.87

For similar question on  savings account.

https://brainly.com/question/30566208

#SPJ11

A company has tested a new cellular battery. The mean number of hours that a newly charged battery remains charged is 42 ​hours, with a standard deviation of 4 hours.
What is the percent of batteries that will remain charged more than 34 ​hours? ____ %. (Round to one decimal place as needed.)

Answers

For a company which tested a new cellular battery, the percent of batteries that will remain charged more than 34 hours is equals to the 47.7%.

A company has tested a new cellular battery. Mean number of hours that a newly charged battery = 42 hours

Standard deviations = 4 hours

We have to determine the percent of batteries that will remain charged more than 34 hours. The first step is calculate the z-score that is associated with a charge of 34 hours. The calculation is:

[tex]z = \frac{X - \mu}{\sigma}[/tex]

where µ --> the mean value, and

σ --> the standard deviation. Here, x = 34, the z-score is [tex]z = \frac{34 - 42}{4}[/tex] = -2.

Now you need the area under the normal distribution curve to the left of z = -2. The area is equal to 0.477. Now, to convert this to a percentage, simply multiply by 100% , Percentage = (0.477)(100%)

= 47.7%

Hence, required percent value 47.7% of the batteries will remain.

For more information about percentage, visit :

https://brainly.com/question/24339661

#SPJ4

Omar wants to cross a river that is 220 meters wide. The river flows at 5 m/s and Omar's destination is located at S 60 W from his starting position. If Omar can paddle at 4 m/s in still water. (Hint: Sketch the diagram to find the expressions). a) In which direction (angle) should Omar paddle to reach his destination? b) How long will the trip take to reach his destination?

Answers

Answer: it will take Omar 62.0 seconds to reach his destination.

Step-by-step explanation:

a) We can break down Omar's motion into two components: the motion due to the river's current and the motion due to Omar's paddling. Let's call the angle between Omar's paddling direction and the direction perpendicular to the river's current the "paddling angle" (θ).

The velocity of the river's current (v_r) is 5 m/s to the right (i.e., in the positive x-direction). Omar can paddle at a speed of 4 m/s in still water.

Let's assume that Omar paddles at an angle of θ degrees to the right of the perpendicular to the river's current (i.e., in the positive x-direction). Then, the horizontal component of Omar's velocity (v_x) will be:

scss

Copy code

v_x = 4 cos(θ)

The vertical component of Omar's velocity (v_y) will be:

scss

Copy code

v_y = -4 sin(θ)

Note that the negative sign is there because the positive y-direction is opposite to the direction of Omar's motion.

The total velocity of Omar relative to the river (v_omar) will be the vector sum of the velocities due to paddling and due to the river's current:

scss

Copy code

v_omar = (4 cos(θ) - 5) i - 4 sin(θ) j

where i and j are unit vectors in the x and y directions, respectively.

Omar's destination is located at an angle of 150 degrees (S 60 W) from his starting position. Let's call the angle between the direction of Omar's velocity relative to the river and the direction to his destination the "steering angle" (φ).

The steering angle φ can be found by taking the arctan of the y-component of the displacement vector divided by the x-component of the displacement vector:

scss

Copy code

φ = arctan((220 sin(150)) / (220 cos(150)))

 = arctan(-tan(30))

 = -30 degrees

The negative sign is there because the positive x-direction is opposite to the direction to Omar's destination.

Therefore, the angle at which Omar should paddle (θ) can be found by adding the paddling angle (θ) and the steering angle (φ):

scss

Copy code

θ = -30 degrees + arccos(5/4)

 = 98.7 degrees

So, Omar should paddle at an angle of 98.7 degrees to the right of the perpendicular to the river's current to reach his destination.

b) How long will the trip take to reach his destination?

The distance that Omar needs to travel is the hypotenuse of a right triangle with legs of 220 meters (the width of the river) and 220 sin(30) = 110 meters (the distance to his destination along the river). Therefore, the distance that Omar needs to travel is:

scss

Copy code

d = sqrt((220)^2 + (220 sin(30))^2)

 = 246.9 meters

The time that it will take Omar to travel this distance can be found by dividing the distance by his speed:

arduino

Copy code

t = d / (4 cos(θ) - 5)

 = 62.0 seconds

Therefore, it will take Omar 62.0 seconds to reach his destination.

To learn more about vector, refer below:

https://brainly.com/question/29740341

#SPJ11

QUESTION 4 [CLO-3) Find the derivative of the logarithmic functions VIA(2x). Find dy ds Let y 1 PvIn(2x) x In (x) O Vin(x) x In (x) o 1 2x Vin(2x) QUESTION 5 [CLO-4JUse L'Hospital's Rule to evaluate each of the following limits. x204 Lim 02

Answers

The limit is equal to 0.

To find the derivative of a logarithmic function, we use the formula:

d/dx ln(u) = 1/u * du/dx

where u is the argument of the logarithm.

In this case, we are asked to find the derivative of ln(2x), so u = 2x and du/dx = 2.

Therefore, d/dx ln(2x) = 1/(2x) * 2 = 1/x.

For dy/ds:

y = (1/P) * ln(2x) - x * ln(x) + ln(Vin(x)) - (1/2x) * ln(2x)

We can simplify this expression by using the logarithmic rules:

y = (1/P) * ln(2x) - x * ln(x) + ln(Vin(x)) - ln((2x)^(1/2x))

y = (1/P) * ln(2x) - x * ln(x) + ln(Vin(x)) - ln(e^(ln(2x)/(2x)))

y = (1/P) * ln(2x) - x * ln(x) + ln(Vin(x)) - ln(e^(1/2 * ln(2x)/x))

y = (1/P) * ln(2x) - x * ln(x) + ln(Vin(x)) - ln((2x)^(1/2x))

Now, we can find the derivative of y with respect to s:

dy/ds = (1/P) * d/ds ln(2x) - ln(x) - x * d/ds ln(x) + d/ds ln(Vin(x)) - d/ds ln((2x)^(1/2x))

Using the previous result, we have:

dy/ds = (1/P) * (1/x) - ln(x) - x * (1/x) + (1/Vin(x)) * d/ds Vin(x) - d/ds (1/2x) * ln(2x)

We need to use the chain rule to find d/ds Vin(x):

d/ds Vin(x) = dVin/dx * dx/ds

But we don't have the expression for dVin/dx, so we cannot simplify this further.


To use L'Hospital's Rule, we need to take the derivative of both the numerator and denominator of the limit separately, and then evaluate the limit again.

In this case, we have:

lim x^2 / (e^(1/x) - 1)

Taking the derivative of the numerator gives:

d/dx (x^2) = 2x

Taking the derivative of the denominator gives:

d/dx (e^(1/x) - 1) = -(1/x^2) * e^(1/x)

Now, we can evaluate the limit again:

lim x^2 / (e^(1/x) - 1) = lim (2x) / (-(1/x^2) * e^(1/x))

We can simplify this expression by multiplying both the numerator and denominator by x^2:

lim (2x) / (-(1/x^2) * e^(1/x)) = lim (2) / (-(1/x) * e^(1/x)) = 0

Know more about logarithm here:

https://brainly.com/question/30085872

#SPJ11

please do this asap ​

Answers

we calculate xz right

Answer:

[tex]\huge\boxed{\sf XZ = 13.17\ cm}[/tex]

Step-by-step explanation:

Since the triangle is a right-angled triangle, we can use Pythagoras Theorem to solve for XZ.

In the triangle,

XZ = Hypotenuse

Base = XY = 12.7 cm

Perpendicular = YZ = 3.5 cm

Pythagoras Theorem:

[tex](Hypotenuse)^2=(Base)^2+(Perp)^2[/tex]

Put the given data

(XZ)² = (12.7)² + (3.5)²

XZ² = 161.29 + 12.25

XZ² = 173.54

Take square root on both sides

√XZ² = √173.54

XZ = 13.17 cm

[tex]\rule[225]{225}{2}[/tex]

Can anyone find the perimeter of these

Answers

The perimeter of the triangles are 12m and 16.2m.

What is the perimeter?

Perimeter is a term used in geometry to refer to the total distance around the outside of a two-dimensional shape. It is the sum of the lengths of all the sides of the shape. The perimeter is commonly used to describe the "outer boundary" or "circumference" of a shape

According to the given information:

In the first triangle ABC, given that AB=5m and ∠B=53°.

By using trigonometric function,

sin 53° = [tex]\frac{opp}{hyp}[/tex]

0.7986 = [tex]\frac{AC}{5}[/tex]

AC = 3.993 ≈ 4

Cos 53° = [tex]\frac{adj}{hyp}[/tex]

0.601 = [tex]\frac{CB}{5}[/tex]

CB = 3.005 ≈ 3

Perimeter = 3+4+5 = 12m

In the second triangle ABC, given that AC=4.5m and ∠B=42°.

By using trigonometric function,

sin 42° = [tex]\frac{opp}{hyp}[/tex]

0.6691 = [tex]\frac{4.5}{AB}[/tex]

AB = 6.725 ≈ 6.7

cos 42° = [tex]\frac{BC}{AB}[/tex]

0.7431 = [tex]\frac{BC}{6.7}[/tex]

BC = 4.97 ≈ 5

Perimeter = 5+6.7+4.5 ≈ 16.2

The perimeter of the two triangles are 12m and 16.2m

To know more about perimeter visit: https://brainly.com/question/6465134

#SPJ1

Write the infinite series using sigma notation. infinity 8 + 8/2 + 8/4 + 8/8 + 8/16 + .... = _____The form of your answer will depend on your choice of the lower limit of summation.

Answers

The infinite series 8 + 8/2 + 8/4 + 8/8 + 8/16 + .... using sigma notation is [tex]\sum\limits_{n=0}^{\infty}[/tex]  8/2ⁿ = 16.

The given infinite series can be written using sigma notation as follows:

[tex]\sum\limits_{n=0}^{\infty}[/tex] 8/2ⁿ

Here, the lower limit of summation is 0 since the first term of the series corresponds to n=0. The variable n represents the index of summation and takes integer values starting from 0 and increasing by 1 until infinity. The expression 8/2ⁿ represents each term of the series.

The term 8/2ⁿ can be simplified as [tex]2^{3-n}[/tex], which indicates that each term is obtained by dividing 8 by a power of 2, with the power decreasing by 1 in each successive term.

Therefore, the given series can be expressed as an infinite geometric series with first term a=8 and common ratio r=1/2. The formula for the sum of an infinite geometric series can be used to find the sum of the given series as:

sum = a/(1-r) = 8/(1-1/2) = 16

To learn more about series click on,

https://brainly.com/question/23742399

#SPJ4

What are the slope and y-intercept of the line?

A scatterplot with age of dog on the X axis and Weight in pounds on the Y axis. There are several dots plotted close together that follow a fairly diagonal path that rises from left to right, along with the line Y equals 1. 33 X plus 2 plotted through the approximate center of the points. The slope is 3 and the y-intercept is 2. The slope is 1. 33 and the y-intercept is 2. The slope is 2 and the y-intercept is 3. The slope is 2 and the y-intercept is 1. 33

Answers

The slope and y-intercept of the line is equal to 1.33 and 2 respectively..

The equation is equal to,

Y = 1.33X + 2,

Age of the dog represented by x-axis

Weight in pounds represented by y-axis.

Standard form of the equation with slope 'm' and y-intercept 'c' is written as,

y = mx + c

Compare both the equations we get,

The number next to X is 1.33 is the slope of the line.

That represents how much the Y variable that is weight changes for each unit increase in the X variable age.

Here, the slope of 1.33 indicates that for each additional year in age,

The weight of the dog increases by an average of 1.33 pounds.

The number that is added to the slope = 2.

It is the y-intercept of the line, the value of Y when X is equal to 0.

It means that when the dog is born age = 0.

Its weight is estimated to be 2 pounds.

Therefore, the slope of the line is 1.33 and the y-intercept is 2.

learn more about slope here

brainly.com/question/13176163

#SPJ4

After measuring students’ perceptions, the following dataset wasfound:X: 3 4 1 5 3 1 2 3 4 2The frequently occurring score of the distribution is ______

Answers

After measuring students’ perceptions, the following dataset was found 3 4 1 5 3 1 2 3 4 2. The frequently occurring score of the distribution is 3.

The mode of the given data is the data that is repeated with the most frequency in the given set of data.

The frequency of 1 in the data is 2

The frequency of 2 in the data is 2

The frequency of 3 in the data is 3

The frequency of 4 in the data is 2

The frequency of 5 in the data is 1.

Thus the most frequent data in the given set and the mode of the data is 3.

Learn more about Mode;

https://brainly.com/question/30090975

#SPJ4

A farmer plants 50 orange trees. How could the farmer select a sample of 5 trees that is likely to be representative of the population of 50 trees?

Answers

Answer:

To select a sample of 5 trees that is likely to be representative of the population of 50 trees, the farmer could use simple random sampling. This means that each tree in the population has an equal chance of being selected for the sample.

One way to do this is to assign a number to each tree and then use a random number generator to select 5 numbers between 1 and 50. The trees corresponding to those numbers would be selected for the sample.

Another way is to use a table of random numbers or a computer program that generates random numbers.

Step-by-step explanation:

A square has diagonal length 13cm. What is the side length of the square

Answers

Check the picture below.

[tex]\begin{array}{llll} \textit{using the pythagorean theorem} \\\\ c^2=a^2+o^2 \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{13}\\ a=\stackrel{adjacent}{s}\\ o=\stackrel{opposite}{s} \end{cases} \\\\\\ (13)^2= (s)^2 + (s)^2\implies 13^2=2s^2\implies \cfrac{13^2}{2}=s^2 \\\\\\ \sqrt{\cfrac{13^2}{2}}=s\implies \cfrac{\sqrt{13^2}}{\sqrt{2}}=s\implies \cfrac{13}{\sqrt{2}}=s[/tex]

Answer:

[tex]\frac{13 \sqrt{2} }{2}[/tex]  OR 9.19

Step-by-step explanation:

hypotenuse =[tex]\sqrt{2}[/tex] * leg

13 = [tex]\sqrt{2}[/tex] * s

[tex]\frac{13 \sqrt{2} }{2}[/tex]

OR (using pythagorean theorem)

[tex]13^{2}[/tex] = 169

169 / 2 = 84.5

[tex]\sqrt{84.5}[/tex] = 9.19

Find the absolute maximum and absolute minimum values of fon the given interval. rx) = x3-6x2 + 9x + 7, [-1,4] absolute minimum absolute maximum Talk to a Tutor 20. 、0/2 points Previous Answers SBioCalc 14.1046. Find the absolute minimum and absolute maximum values of f on the given interval. fx) (x2-1)3, I-1, 5) absolute minimum l absolute maximum Need Help? RTalk to a Tutor

Answers

Absolute minimum value of f(x) on the interval [-1,5] is -1, which occurs at x = 0 and absolute maximum value of f(x) on the interval is 256, which occurs at x = 5.

How we determine Absolute minimum value and maximum value?

To find the absolute minimum and absolute maximum values of f(x) = x3-6x2 + 9x + 7 on the interval [-1,4], we can start by finding the critical points of the function, which are the points where the derivative is equal to zero or undefined.

Taking the derivative of f(x), we get:

f'(x) = 3x2 - 12x + 9

Setting f'(x) = 0, we can solve for the critical points:

3x2 - 12x + 9 = 0

x2 - 4x + 3 = 0

(x - 1)(x - 3) = 0

So the critical points are x = 1 and x = 3. We also need to check the endpoints of the interval, x = -1 and x = 4.

Plugging these values into f(x), we get:

f(-1) = 13

f(1) = 11

f(3) = 25

f(4) = 23

So the absolute minimum value of f(x) on the interval [-1,4] is 11, which occurs at x = 1. The absolute maximum value of f(x) on the interval is 25, which occurs at x = 3.

Now, let's find the absolute minimum and absolute maximum values of f(x) = (x2-1)3 on the interval [-1,5].

Taking the derivative of f(x), we get:

f'(x) = 6x(x2-1)2

Setting f'(x) = 0, we can solve for the critical points:

x = 0 or x = ±1

We also need to check the endpoints of the interval, x = -1 and x = 5.

Plugging these values into f(x), we get:

f(-1) = 0

f(1) = 0

f(5) = 256

f(0) = -1

So the absolute minimum value of f(x) on the interval [-1,5] is -1, which occurs at x = 0. The absolute maximum value of f(x) on the interval is 256, which occurs at x = 5.

Learn more about Interval

https://brainly.com/question/30486507?referrer=searchResults

#SPJ11

On a map, two cities are 2.8 inches apart. The map has a scale of 1 inch to 25 miles. How
far apart, in inches, would the same two cities be on a map that has a scale of 1 inch to
40 miles?

A 1.20
B 1.60
C 1.75
D 1.80

Answers

Answer: C. 1.75

Step-by-step explanation:

Scale 1: 1 inch = 25 miles

2.8 x 25 = 70

2.8 inches = 70 miles

Scale 2: 1 inch = 40 miles

1.75 inches x 40 = 70

When mating two heterozygotes for alleles in which one is dominant to the other, if the usual Mendelian segregation process is occurring, the ratio of the offspring phenotypes produced should be 3:1. The dominant phenotype would be more common than the recessive one. Imagine a situation in which two heterozygotes are mated and among their 200 offspring, 160 show the dominant phenotype while 40 show the recessive phenotype. What is the P-value of a two-sided binomial test using the normal distribution to approximate the binomial a.0,015 b.0.060 c. 0,031 d.0.121

Answers

The P-value of a two-sided binomial test using the normal distribution to approximate the binomial 0.015 (option a)

To calculate the P-value of the binomial test, we need to use the normal approximation to the binomial distribution. This is appropriate when the sample size is large and the probability of success is not too close to 0 or 1.

Using this approximation, we can calculate the z-score of the observed outcome:

z = (160 - 150)/√(1500.250.75) ≈ 3.20

where we have used the expected value of 150 for the number of dominant offspring, assuming a 3:1 ratio.

We can then use a standard normal distribution table or calculator to find the probability of getting a z-score of 3.20 or higher:

P(z ≥ 3.20) ≈ 0.0007

This is the two-tailed P-value, since we are interested in the probability of getting a deviation from the expected ratio in either direction. To get the one-tailed P-value, we can divide this by 2:

P(z ≥ 3.20)/2 ≈ 0.015

Therefore, the answer is (a) 0.015, which is the closest choice to our calculated P-value.

To know more about binomial here

https://brainly.com/question/13870395

#SPJ4

The Fibonacci sequence was among others used to model the growth of a rabbit population. It is defined recursively as: Fo = 0, F1 = 1 and Fn+2 = Fn+1 + Fn • Find the solutions of: x2 = 1+1. Let's denote them by o the greater of the two.

Answers

The solution of the Fibonacci sequence are L = 1 + √5 / 2.

Suppose L be the limit of Xn when n goes to infinity. We will use the recursive formula for the Fibonacci numbers to find L, we need to guarantee that our operations with the formula.

Notice that Fibonacci sequence was among others used to model the growth of a rabbit population Fn >0 for all n≥0. Then Fn+2 = Fn+1 + Fn > Fn+1.

Hence, dividing by Fn+1, Xn+1= Fn+2/Fn+1 > 1 for all n≥0, that is, Xn>1 for all n≥1.

Then Taking the limit on both sides of the inequality, L≥1

Thus 1/L exists and equal the limit of the sequence 1/Xn=Fn/Fn+1 (by laws of limits).

To find L divide by Fn+1 in Fn+2 = Fn + Fn+1 to get

Fn+2/Fn+1 = Fn/Fn+1 +1.

This equation can be written as Xn+1= 1/Xn +1.

Now Take the limit in both sides to get L=1/L +1. Then L²=1+L, and L²-L-1=0,

Solve for L with the quadratic formula to get:

L = 1 + √5 / 2

L = 1 - √5 / 2

We discard the second solution because it is negative, and we proved above that L>0. Hence

L = 1 + √5 / 2

Learn more about the Fibonacci sequence;

https://brainly.com/question/14788451

#SPJ4

Question 2: Poisson distribution (30 Points] A transmitter requires reparation on average once every four months. Every reparation costs the company 250 KD. Suppose that the number of transmitter repairing follows a Poisson distribution. a) What is the probability that a transmitter will need repairing three times in four months? [5 points) b) What is the probability that a transmitter will need repairing three times in one year? [5 points) c) What is the probability that a transmitter will need repairing at least three times in one year? [5 points) d) What is the expected number of reparations in one year? [5 points) e) What is the expected yearly cost to the company for transmitter repairing? (10 points)

Answers

a) The probability that a transmitter will need repairing three times in four months is approximately 0.0613.

b) The probability that a transmitter will need repairing three times in one year is approximately 0.224.

c) The probability that a transmitter will need repairing at least three times in one year is approximately 0.5716.

d) Therefore, the expected number of reparations in one year is 9.

e) Expected yearly cost = 9 * 250 KD = 2250 KD

a) To calculate the probability that a transmitter will need repairing three times in four months, we can use the Poisson distribution formula:

[tex]P(X = k) = (\lambda^k * e^{-\lambda}) / k![/tex]

where λ is the average number of repairs per four months, and k is the number of repairs we're interested in.

In this case, λ = 1 (since the transmitter requires repair on average once every four months), and k = 3.

Plugging these values into the formula, we get:

[tex]P(X = 3) = (1^3 * e^{-1}) / 3![/tex]

≈ 0.0613

Therefore, the probability that a transmitter will need repairing three times in four months is approximately 0.0613.

b) To calculate the probability that a transmitter will need repairing three times in one year, we need to first convert the average number of repairs per four months to the average number of repairs per year.

Since there are three four-month periods in a year, the average number of repairs per year is:

λ = 3 * 1 = 3

We can then use the Poisson distribution formula with λ = 3 and k = 3:

[tex]P(X = 3) = (3^3 * e^{-3}) / 3![/tex]

≈ 0.224

Therefore, the probability that a transmitter will need repairing three times in one year is approximately 0.224.

c) To calculate the probability that a transmitter will need repairing at least three times in one year, we can use the complementary probability:

P(X ≥ 3) = 1 - P(X < 3)

where P(X < 3) is the probability that the transmitter will need repairing less than three times in one year. Using the Poisson distribution with λ = 3 and k = 0, 1, or 2, we get:

P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)

[tex]= (3^0 * e^{-3}) / 0! + (3^1 * e^{-3}) / 1! + (3^2 * e^{-3}) / 2![/tex]

≈ 0.0504 + 0.1512 + 0.2268

≈ 0.4284

So, P(X ≥ 3) = 1 - 0.4284 ≈ 0.5716

Therefore, the probability that a transmitter will need repairing at least three times in one year is approximately 0.5716.

d) The expected number of reparations in one year can be found by multiplying the average number of reparations per four months by the number of four-month periods in a year:

λ = 3 * 3 = 9

Therefore, the expected number of reparations in one year is 9.

e) The expected yearly cost to the company for transmitter repairing can be found by multiplying the expected number of reparations in one year by the cost of each reparation:

Expected yearly cost = 9 * 250 KD = 2250 KD.

For similar question on probability.

https://brainly.com/question/31147888

#SPJ11

Jacob would like to purchase a coat and hat for a ski trip. The coat is $62.75, and the hat is $14.25. If the sales tax rate is 8%, then what will be the amount of tax on Jacob’s purchase?
*
1 point
A. $6.16
B. $6.88
C. $7.02
D. $7.44

Answers

Answer:

A. $6.16

Step-by-step explanation:

To calculate the amount of tax on Jacob's purchase, we first need to find the total cost of the coat and hat, and then apply the sales tax rate of 8% to that amount.

The cost of the coat is $62.75, and the cost of the hat is $14.25, so the total cost before tax is:

[tex]\implies \sf \$62.75 + \$14.25 = \$77.00[/tex]

To calculate the amount of tax, we need to multiply the total cost by the tax rate of 8%:

[tex]\begin{aligned}\implies \sf \$77.00 \times\: 8\%&=\sf \$77.00 \times \dfrac{8}{100}\\&=\sf \$77.0 \times 0.08\\&=\sf \$6.16\end{aligned}[/tex]

Therefore, the amount of tax on Jacob's purchase is $6.16.

Other Questions
We have a dataset measuring the average weight of apples in Walmart. We randomly weighed 200 apples among all of them, 120 apples have weight larger than 100 grams. Wal- mart want to perform a null hypothesis that the true proportion of apple weights larger than 100 grams is 0.5. And the alternative hypothesis is that the proportion is larger than 0.5. Find the p-value of the hypothesis testing. What device forwards data and operates at layer three of the Transmission Control Protocol/Internet Protocol (TCP/IP) model?ClientSwitchRouterHub a healthy client presents to the clinic for a routine examination. when auscultating the client's lower lung lobes, the nurse should expect to hear which type of breath sound? what structure can you damage during PDA ligation? an unknown vapor had a mass of 0.846g the volume was 354 cm3, pressure 752 torr and temp 100 degrees c. calculate the molar mass of the unknown vapor Which personality theory is criticized for having an unrealistically optimistic view of human nature? you are treating a 15-year-old with an autism spectrum disorder. while you try to complete your assessment he repeatedly stands up and walks over to a desk where several pens are neatly organized. how might you direct him to sit down? What was it about the funerals among the poor of NYC that Riis disapproved? List 4 possible causes of a newborn with a decreased level of function A closed cylindrical can is to hold I cubic meter of liquid. Assuming there is no waste or overlap, how should we choose the height and radius to minimize the amount of material needed to manufacture the can? (Assume that both dimensions do not exceed 1 meter.) In the eye, would a low number of receptors converging onto one ganglion cell result in high or low sensitivity? ____ occurs when the candidate gives responses that are believed to be socially acceptable rather than factual.ManipulationPrevaricationCultural noiseFirst impression bias What does Title VII not prohibit employers from doing? Segregating employees Discriminating against individuals in terms of compensation Basing employment decisions on valid tests Hiring individuals based on race the process by which people earn a living in society by performing a specific non-agricultural task is referred to as: when instructing a client about the proper use of condoms for pregnancy prevention, the nurse should include which instructions to ensure maximum effectiveness? Why do lungs have tendency to collapse? PART B: Which quote from the text bestsupports the answer to Part A?A. "persons of Japanese ancestry inwestern Washington State"(Paragraph 5)B. "four or five families with their sparsecollections of clothing andpossessions" (Paragraph 6)C. "Persons who became troublesome"(Paragraph 6)D. d. "a combat unit of JapaneseAmericans" (Paragraph 7) You are given 10% hydrochloric acid, 10% sodium bicarbonate, and/or 10% sodium hydroxide solutions to separate a mixture of the following two components. Both substances are soluble in ether. -What is the physical state of your starting mixture? Would you consider father olan, God, and the Rain as a story of man against god? Find a potential function for F and G where F(x,y) = (y cos(xy) + 1) i + x cos(xy); G(x, y, z) = yz i + xz j + xy k ) Calculate (1) F. dr (0.0) r(1,1,1) G. dr (0.0.0)