Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
[tex]A=\frac{(b_1+b_2)h}{2}[/tex], where [tex]b_1[/tex] and [tex]b_2[/tex] are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:
[tex]A=\frac{(b_1+b_2)h}{2}[/tex]
[tex]A=\frac{(0.9+2.3)*1.4}{2}=2.2[/tex]
The answer is thus 2.2 metres squared.
~ an aesthetics lover
g It is known that 20% of products on a production line are defective. Products are inspected until first defective is encountered. a) What is the probability that the experimenter must inspect six products
Question:
It is known that 20% of products on a production line are defective. Products are inspected until first defective is encountered. a) What is the probability that the experimenter must inspect six products to find a defective product?
Answer:
P(x = 6) = 0.0655
P(x = 6) = 6.55%
Step-by-step explanation:
It is given that 20% of products on a production line are defective.
p = 0.20
Then
q = 1 - p = 1 - 0.20 = 0.80
Which means that 80% of products on the production line are not defective.
We want to find out the probability that the experimenter must inspect six products to find a defective product.
Let x is the number of inspections to get a defective product.
P(x = 6) = ?
If out of 6 inspections 1 is defective then it means 5 are not defective
so the probability is
P(x = 6) = p¹ × q⁵
P(x = 6) = 0.20¹ × 0.80⁵
P(x = 6) = 0.20 × 0.32768
P(x = 6) = 0.0655
P(x = 6) = 6.55%
Therefore, there is 6.55% chance that the experimenter finds a defetive product in 6 inspections.
{(1,3),(2,5)(3,-4),(4-3),(5,1)} a function or not a function
Answer:
yes the above is a function.
A mail carrier can deliver mail to 36 houses in 30 minutes. Mark wants to determine how many houses the carrier can deliver mail to in 7.5 minutes at this rate. He thinks that to find the answer, he should do the following.
1. First divide 36 houses by 30 minutes to find a unit rate of 1.2 houses per minute.
2. Then multiply 1.2 houses per minute by 7.5 minutes to get 9 houses.
Which statement is correct?
-Mark’s method is wrong, because it is impossible to deliver mail to 1.2 houses in a minute. The carrier can only deliver to a whole number of houses.
-Mark’s method is wrong, because it is impossible to deliver mail for 7.5 minutes. The carrier can only deliver mail for a whole number of minutes.
-Mark’s method is correct, because even though it is impossible to deliver mail to 1.2 houses in a minute, 1.2 represents the unit rate of houses per minute.
-Mark’s method is correct, because it is possible to deliver mail for 7.5 minutes; 7.5 represents the unit rate of 7.5 minutes per house.
The correct answer is C. Mark’s method is correct because even though it is impossible to deliver mail to 1.2 houses in a minute, 1.2 represents the unit rate of houses per minute.
Explanation:
To begin Mark should determine the rate of delivery (number of houses the carrier can deliver in 1 minute). This can be found by dividing the houses by the minutes (36 / 30 = 1.2 houses per minute). This means the 1.2 rate found by Mark is correct; also, in this case, it is important to clarify, the carrier will not deliver to 1.2 houses at the same time, but this is the delivery rate or number used to understand the relationship between the number of houses, and the time.
Moreover, you can use this rate, and multiply it by 7.5 and this will show you how many houses the carrier can deliver in this time (7.5 (minutes) x 1.2 (delivery rate) = 9 houses). Thus, the method is correct, and in it, 1.2 represents the unit rate, this is why even when it is not possible to deliver to 1.2 houses all the process is correct.
Answer:
c
Step-by-step explanation:
i took the test
find the perimeter of this figure to the nearest hundredth use 3.14 to approximate pi P=?ft
Answer:
105.13ft^2
Step-by-step explanation:
[tex]A=lw\\=10*8\\=80ft^2[/tex]
Rectangle
[tex]A=\frac{1}{2} \pi r^2\\=\frac{1}{2\pi } 4^2\\=25.13[/tex]
Add both together
80+25.13
=105.13
Answer : 105.13
Step-by-step explanation:
Shape 1 and shape 2 are plotted on a coordinate plane. Which rigid transformation can you perform on shape 2 to show that shape 2 is congruent to shape 1?
Can someone plz help me solved this problem I need help ASAP plz help me! Will mark you as brainiest!
Answer:
8
Step-by-step explanation:
y²+by+16= (y+4)²
y²+by+16= y²+2*4*y+4²
y²+by+16= y²+8y+16
by=8y
b=8
I don’t know this one
Answer:
C
Step-by-step explanation:
2/3x - 5>3
Add 5 to each side
2/3x - 5+5>3+5
2/3x > 8
Multiply each side by 3/2
3/2 *2/3x > 8*3/2
x > 12
There is an open circle at 12 and the lines goes to the right
The base of a rectangular prism has an area of 24 square millimeters. The volume of the prism is 144 cubic millimeters. The shape is a cube. What is the height of the prism?
Answer:
height = 6 mm
Step-by-step explanation:
The prism is a rectangular prism. The base area of the prism is 24 mm². The volume of the prism is given as 144 mm³.
The height of the prism can be solved as follows.
Volume of the rectangular prism = Bh
where
B = base area
h = height
Volume = 144 mm³
B = 24 mm²
volume = Bh
144 = 24 × h
144 = 24h
divide both sides by 24
h = 144/24
h = 6 mm
Answer:
c
Step-by-step explanation:
edg 2022
Which of the following gives all of the sets that contain sqare root 9
1 the set of all irrational numbers
2.the set of all natural numbers, the set of all whole numbers, and the set of all integers
3. the set of all integers, the set of all rational numbers, and the set of all real numbers
4. the set of all natural numbers, the set of all whole numbers, the set of all integers, the set of all rational numbers, and the set of all real numbers
Answer:
4. the set of all natural numbers, the set of all whole numbers, the set of all integers, the set of all rational numbers, and the set of all real numbers
Step-by-step explanation:
√9 = 3
3 is every kind of number except irrational. It belongs to the sets of ...
natural numberswhole numbersintegersrational numbersreal numbersTiffany is 140 miles away from Maggie. They are traveling towards each other. If Maggie travels 5 mph faster than Tiffany and they meet after 4 hours how fast was each traveling
Answer: Tiffany 15mph, Maggie 20mph
Step-by-step explanation:
Set up the equation 4((x+5) + x) = 140. x+5 represents how many miles Maggie covered in one hour. x represents how much Tiffany traveled in one hour. 140 is the number of miles in total. 4 is the number of hours in total.
Simplify the equation.
(x+5) + x = 35 Divide both sides by 4
2x+5 = 35 Combine like terms
2x = 30 Subtract 5 from both sides
x = 15 Divide both sides by 2
Tiffany traveled 15mph, while Maggie traveled 15+5=20mph.
Assume that SAT scores are normally distributed with mean mu equals 1518 and standard deviation sigma equals 325. If 1 SAT score is randomly selected, find the probability that it is greater than 1600. If 81 SAT scores are randomly selected, find the probability that they have a mean greater than 1600.
Answer:
[tex]P(X>1600)=P(\frac{X-\mu}{\sigma}>\frac{1600-\mu}{\sigma})=P(Z>\frac{1600-1518}{325})=P(z>0.252)[/tex]
And we can find this probability using the z score formula and the complement rule and we got:
[tex]P(z>0.252)=1-P(z<0.252) =1-0.599= 0.401 [/tex]
[tex] z =\frac{1600-1518}{\frac{325}{\sqrt{81}}}= 2.27[/tex]
And we can find this probability using the z score formula and the complement rule and we got:
[tex]P(z>2.27)=1-P(z<2.27) =1-0.988=0.012[/tex]
Step-by-step explanation:
Let X the random variable that represent the SAT scores of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(1518,325)[/tex]
Where [tex]\mu=1518[/tex] and [tex]\sigma=325[/tex]
We want to find this probability:
[tex]P(X>1600)[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(X>1600)=P(\frac{X-\mu}{\sigma}>\frac{1600-\mu}{\sigma})=P(Z>\frac{1600-1518}{325})=P(z>0.252)[/tex]
And we can find this probability using the z score formula and the complement rule and we got:
[tex]P(z>0.252)=1-P(z<0.252) =1-0.599= 0.401 [/tex]
For the other part we need to take in count that the distribution for the sampel mean if the sample size is large (n>30) is given by:
[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\frac{sigma}{\sqrt{n}}}[/tex]
And replacing we got:
[tex] z =\frac{1600-1518}{\frac{325}{\sqrt{81}}}= 2.27[/tex]
And we can find this probability using the z score formula and the complement rule and we got:
[tex]P(z>2.27)=1-P(z<2.27) =1-0.988=0.012[/tex]
What is equivalent to
16x-12-24x+4
Answer:
-8x - 8
Step-by-step explanation:
You have to combine like term.
So you add 16x + -24x = -8x
And you add -12 + 4 = -8
Your answer would be -8x - 8
I hope this helps!
Lesson 9: Problem Solving When the Percent Changes
Exit Ticket
Tamia and Laniece were selling magazines for a charity. In the
first week, Tamia sold 30% more than Laniece. In the second
week, Tamia sold 12 magazines, but Laniece did not sell any. If
Tamia sold 50% more than Laniece by the end of the second
week, how many magazines did Laniece sell? Choose any
model to solve the problem. Show your work to justify your
answer.
Answer:
Laniece had 60 magazines
Step-by-step explanation:
Given: In the first week, Tamia sold 30% more than Laniece. In the second week, Tamia sold 12 magazines, but Laniece did not sell any. Tamia sold 50% more than Laniece by the end of the second week
To find: Number of magazines sold by Laniece
Solution:
Let number of magazines sold by Laniece in the first week be x.
Number of magazines sold by Tamia in the first week = [tex]x+\frac{30}{100} x=\frac{130x}{100} =\frac{13x}{10}[/tex]
Number of magazines sold by Tamia in the second week = 12
Total number of magazines sold by Tamia at the end of the second week = [tex]\frac{13x}{10}+12[/tex]
Total number of magazines sold by Laniece at the end of the second week = x
According to question,
[tex]\frac{13x}{10}+12=x+\frac{50x}{100}=x+\frac{x}{2}\\\frac{13x}{10}+12=\frac{3x}{2}\\\frac{3x}{2}-\frac{13x}{10} =12\\\frac{15x-13x}{10}=12\\\frac{2x}{10}=12\\\frac{x}{5}=12\\x=60[/tex]
Which geometric series converges?
Answer:
B
Step-by-step explanation:
Geometric series converge if |r| < 1.
A) r = 3
B) r = 1/2
C) r = -4
D) r = 2
Only B has |r| < 1.
The converging sequence of geometric progression is given by the relation A = 1 + 1/2 + 1/4 + 1/8 ... where the common ratio r = 1/2
What is Geometric Progression?A geometric progression is a sequence in which each term is derived by multiplying or dividing the preceding term by a fixed number called the common ratio.
The nth term of a GP is aₙ = arⁿ⁻¹
The general form of a GP is a, ar, ar2, ar3 and so on
Sum of first n terms of a GP is Sₙ = a(rⁿ-1) / ( r - 1 )
Given data ,
Let the geometric progression be represented as A
Now , the value of A is
A = 1 + 1/2 + 1/4 + 1/8 ...
Now , the common ratio r of the GP is
r = second term / first term
On simplifying , we get
r = ( 1/2 ) / 1
r = 1/2
So , when | r | < 1 , the GP is a converging series
Hence , the GP is converging series
To learn more about geometric progression click :
https://brainly.com/question/1522572
#SPJ7
Sidney made $35 less than four times Casey’s weekly salary. If x represents Casey’s weekly salary, write an expression for Sidney’s weekly salary.
Answer: [tex]y=4x-35[/tex]
y = Sidney’s weekly salary
x = Casey’s weekly salary
Answer: y=4x-35
x is Casey's salary
Y is Sidney's salary
Step-by-step explanation:
Sidney makes a quarter of Casey,
y=4x,
Then it also states that he makes 35 less than the first equation.
Therefore,
Y=4x-35
Which transformations could be performed to show that
AABC is similar to AA"B"C"?
10
8
B
4
VX
2
A
-10 -3 -6 -4 -21 14
B"
4
8 10
X
O a reflection over the x-axis, then a dilation by a scale
factor of 3
O a reflection over the x-axis, then a dilation by a scale
factor of
O a 180° rotation about the origin, then a dilation by a
scale factor of 3
O a 180° rotation about the origin, then a dilation by a
scale factor of
6
8
-10
Save and Exit
Next
Submit
Mark this and return
Triangle ABC was rotated 180° about the origin, then a by a scale factor of 1/3 was done to form triangle A'B'C'.
What is mean by Transformation?Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.
Given that;
Triangle ABC is similar to A"B"C".
Now, If a point A(x, y) is rotated clockwise by 180 degrees, the new point is at A'(y, -x)
Hence, Triangle ABC was rotated 180° about the origin, then a by a scale factor of 1/3 was done to form triangle A'B'C'.
Learn more on transformation at:
brainly.com/question/1548871
#SPJ7
What’s the correct answer for this?
Answer:
57°
Step-by-step explanation:
According to theorem, "any two angles in the same segment of the circle are equal"
So,
m<BED = 57°
We are planning on introducing a new internet device that should drastically reduce the amount of viruses on personal computers. We think the price should be $39.99, but are not sure on the percentage of people that would buy it. We do some research and find the following information; Studies from the 1930’s indicate that percentage should be between 30% and 40% Similar products were launched recently at a price of $4,000 and nobody bought it. A nationwide poll on this type of product and price was run earlier this year, with percentages running from 75% to 80%. We are going to conduct an additional focus group before we launch the product. What should the sample size be if we want a 95% CI to be within 5% of the actual value?
Answer:
The sample size required is 289.
Step-by-step explanation:
Let p be population proportion of people that would buy the product.
It is provided that the nationwide poll on this type of product and price was run earlier this year, with percentages running from 75% to 80%.
Assume that the sample proportion of people that would buy the product is, [tex]\hat p=0.75[/tex].
A 95% Confidence Interval is to be constructed with a margin of error of 5%.
We need to determine the sample size required for the 95% Confidence Interval to be within 5% of the actual value.
The formula to compute the margin of error for a (1 - α)% confidence interval of population proportion is:
[tex]MOE=z_{\alpha/2}\times\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The critical value of z for 95% confidence interval is,
z = 1.96.
Compute the sample size required as follows:
[tex]MOE=z_{\alpha/2}\times\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]n=[\frac{z_{\alpha/2}\ \sqrt{\hat p(1-\hat p)} }{MOE}]^{2}[/tex]
[tex]=[\frac{1.96\cdot \sqrt{0.75(1-0.75)} }{0.05}]^{2}\\\\=(16.9741)^{2}\\\\=288.12007081\\\\\approx 289[/tex]
Thus, the sample size required is 289.
The table shows the daily sales (in $1000) of shopping mall for some randomly selected days Sales 1.1-1.5 1.6-2.0 2.1-2.5 2.6-3.0 3.1-3.5 3.6-4.0 4.1-4.5 Days 18 27 31 40 56 55 23 Use it to answer questions 13 and 14. 13. What is the approximate value for the modal daily sales? A. $3,129.41 B. $2,629.41 C. $3,079.41 14. The approximate median daily sales is ... A. $3,130.36 B. $2,680.36 C. $3,180.36 D. $3,123.53 D. $2,664.29
Answer:
Step-by-step explanation:
From the question; we are given the following inclusive frequency distribution information
Class Frequency f
1.1-1.5 18
1.6-2.0 27
2.1-2.5 31
2.6-3.0 40
3.1-3.5 56
3.6-4.0 55
4.1-4.5 23
Convert the above inclusive frequency distribution to exclusive frequency distribution with respect of the upper and lower class limit ; we have:
Class Frequency f
1.05 - 1.55 18
1.55 - 2.05 27
2.05 - 2.55 31
2.55 - 3.05 40
3.05 - 3.55 56
3.55 - 4.05 55
4.05 - 4.55 23
Class Frequency f cf
1.05 - 1.55 18 18
1.55 - 2.05 27 45
2.05 - 2.55 31 76
2.55 - 3.05 40 116
3.05 - 3.55 56 172
3.55 - 4.05 55 227
4.05 - 4.55 23 250
n = 250
To determine the daily sales; we can derive that from estimated Mode by using the relation :
Estimated Mode = L + fm − fm-1(fm − fm-1) + (fm − fm+1) × w
here:
L = the lower class boundary of the modal group
fm-1 = the frequency of the group before the modal group
fm = the frequency of the modal group
fm+1 = the frequency of the group after the modal group
w = the group width
However;
It is easier now to determine the modal group (i.e the group with the highest frequency), which is 3.05 -3.55
L = 3.05
fm-1 =40
fm =56
fm+1 = 55
w = 0.5
∴[tex]mode = 3.05 + \dfrac{56 - 40 }{(56 - 40) + (56 -55)} * 0.5 \\ \\ mode = 3.05 + 0.4705 \\ \\ mode = 3.5205[/tex]
To find Median Class ; we use the formula;
Median Class = value of (n / 2)th observation
Median Class = value of (250 / 2)th observation
Median Class = value of 125th observation
From the column of cumulative frequency cf,
we will see that the 125th observation lies in the class 3.05-3.55.
∴ The median class is 3.05-3.55.
Thus;,
L=lower boundary point of median class =3.05
n=Total frequency =250
cf=Cumulative frequency of the class preceding the median class =116
f=Frequency of the median class =56
c=class length of median class =0.5
[tex]Median M=L+n2-cff- c \\ \\ =3.05+125-11656⋅0.5 \\ \\=3.05+0.08036 \\ \\ =3.13036[/tex]
hence median sales = $3130.36
if this net were to be folded into a cube which number would be opposite of the number 1?
Answer:
6
Step-by-step explanation:
When the cube is folded, 6 is the opposite of 1.
2 is the opposite of 4 and 5 is the opposite of 3.
When the given net is folded into a cube, the number that we will find opposite 1 is 6.
What number will be opposite 1?When the net is folded, two will be folded left and up with 3 being the base. 4 will be folded right with 5 being the top of the cube.
We will then observe the following pairs opposite each other:
5 and 3.4 and 2.1 and 6.This means that the number that we will see opposite 1 will be the number 6.
Find out more on folding nets at https://brainly.com/question/16670460.
#SPJ9
Solve 2cos3x=0.9.
Pls help me with this trigonometric equations
Step-by-step explanation:
Simplifying
f(x) = 2cos(3x)
Multiply f * x
fx = 2cos(3x)
Remove parenthesis around (3x)
fx = 2cos * 3x
Reorder the terms for easier multiplication:
fx = 2 * 3cos * x
Multiply 2 * 3
fx = 6cos * x
Multiply cos * x
fx = 6cosx
Solving
fx = 6cosx
Solving for variable 'f'.
Move all terms containing f to the left, all other terms to the right.
Divide each side by 'x'.
f = 6cos
Simplifying
f = 6cos
Length of a rod: Engineers on the Bay Bridge are measuring tower rods to find out if any rods have been corroded from salt water. There are rods on the east and west sides of the bridge span. One engineer plans to measure the length of an eastern rod 25 times and then calculate the average of the 25 measurements to estimate the true length of the eastern rod. A different engineer plans to measure the length of a western rod 20 times and then calculate the average of the 20 measurements to estimate the true length of the western rod.
Answer:
b. The engineer who weighed the rod 25 times.
Step-by-step explanation:
Hello!
Full text:
Length of a rod: Engineers on the Bay Bridge are measuring tower rods to find out if any rods have been corroded from salt water. There are rods on the east and west sides of the bridge span. One engineer plans to measure the length of an eastern rod 25 times and then calculate the average of the 25 measurements to estimate the true length of the eastern rod. A different engineer plans to measure the length of a western rod 20 times and then calculate the average of the 20 measurements to estimate the true length of the western rod.
Suppose the engineers construct a 90% confidence interval for the true length of their rods. Whose interval do you expect to be more precise (narrower)?
a. Both confidence intervals would be equally precise.
b. The engineer who weighed the rod 25 times.
c. The engineer who weighed the rod 20 times.
X₁: Length of an eastern rod of the Bay Bridge
n₁= 25
X₂: Length of a western rod of the Bay Bridge
n₂= 20
Both Engineers will use their samples to estimate the population average length of the rods using a 90% CI.
Assuming the standard normal distribution, the confidence interval will be centered in the estimated mean.
X[bar] ± [tex]Z_{1-\alpha /2}[/tex]*(σ/√n)
And the width is determined by the semi amplitude:
↓d= [tex]Z_{1-\alpha /2}[/tex]*(σ/√↑n)
As you can see the sample size has an indirect relationship with the semi amplitude of the interval. This means, when the sample size increases, the semi amplitude decreases, and if the sample size decreases, the semi amplitude increases. Naturally this is leaving all other elements of the equation constant, this means, using the same confidence level and the same population standard deviation.
Since the first engineer took the larger sample, he's confidence interval will be narrower and more accurate.
Hope this helps!
Given that a = 5 , b = − 2 and c = − 2 work out 2 b − 3 a c
Answer:
26Step-by-step explanation:
[tex]a = 5 ,\\b = - 2 \\ c = - 2 \\ 2b - 3ac=?\\2(-2) -3(5)(-2)\\-4 +30\\= 26[/tex]
Answer:
-34
Step-by-step explanation:
2x-2-3(4)(-2)
which is -34
Find the absolute maximum and absolute minimum of the function f(x,y)=2x2−4x+y2−4y+1 on the closed triangular plate bounded by the lines x=0,y=2,y=2xin the first quadrant.
First check for the critical points of f by checking where the first-order derivatives vanish.
[tex]\dfrac{\partial f}{\partial x}=4x-4=0\implies x=1[/tex]
[tex]\dfrac{\partial f}{\partial y}=2y-4=0\implies y=2[/tex]
Notice how the point (1, 2) lies on the line y = 2x ; at this point, we get a value of f(1, 2) = -5 (MIN).
Next, check the points where the boundary lines intersect, which occurs at the points (0, 0), (0, 2), and (1, 2). We already checked the last one. We find f(0, 0) = 1 (MAX) and f(0, 2) = -3.
Now check on the boundary lines themselves. If x = 0, then
[tex]f(0,y)=y^2-4y+1=(y-2)^2-3[/tex]
which has a maximum value of -3 when y = 2 (so we get the same critical point as before).
If y = 2, then
[tex]f(x, 2)=2x^2-4x-3=2(x-1)^2-5[/tex]
with a maximum of -5 when x = 1.
If y = 2x, then
[tex]f(x,2x)=6x^2-12x+1=6(x-1)^2-5[/tex]
with the same maximum of -5 when x = 1.
This question is based on the absolute maximum and absolute minimum.
We get this by differentiating the terms.
Given:
f(x,y) = [tex]2x^{2} - 4x + y^2 - 4y +1[/tex], bounded by the lines x=0,y=2,y=2x in the first quadrant,bounded by the lines x=0,y=2,y=2x in the first quadrant.
We need to determined the absolute maximum and absolute minimum of the function.
Now, partial differentiating wrt x and y.
[tex]\dfrac{\partial f}{ \partial x} = 4x -4 = 0 \Rightarrow x= 1 \\\dfrac{\partial f}{ \partial y} = 2y - 4 = 0 \Rightarrow y = 2[/tex]
Now, point (1, 2) lies on the line y = 2x ; at this point, we get a value of
f(1, 2) = -5 (MIN).
Next, check the points where the boundary lines intersect, which occurs at the points (0, 0), (0, 2), and (1, 2).
Now, find f(0, 0) = 1 (MAX) and f(0, 2) = -3.
Now check on the boundary lines themselves.
If x = 0, then we get,
[tex]f(0,y) = y^2 - 4y +1 = ( y-2)^2 -3\\[/tex]
which has a maximum value of -3 when y = 2 (so we get the same critical point as before).
If y = 2, then we get,
f(x,2) = [tex]2x^2-4x -3 = 2(x-1)^2 -5[/tex] with a maximum of -5 when x = 1.
If y = 2x, then we get,
f(x,2x) = [tex]6x^2 -12x +1 = 6(x-1)^2 -5[/tex] with the same maximum of -5 when x = 1.
For more details, prefer this link:
https://brainly.com/question/13774780
A Biology test contains 10 multiple choice questions each with 5 choices and one correct answer. If a law school student just randomly guesses on each of the 10 questions, i.e., the probability of getting a correct answer on any given question is 0.2. Assume that all questions are answered independently. (a) What is the probability that the student answers at least 9 questions correctly
Answer:
0.0004% probability that the student answers at least 9 questions correctly
Step-by-step explanation:
For each question, there are only two possible outcomes. Either the student guesses the correct answer, or he does not. All questions are answered independently. This means that we use the binomial distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
In this question, we have that:
[tex]n = 10, p = 0.2[/tex]
What is the probability that the student answers at least 9 questions correctly
[tex]P(X \geq 9) = P(X = 9) + P(X = 10)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{10,9}.(0.2)^{9}.(0.8)^{1} = 0.000004[/tex]
[tex]P(X = 10) = C_{10,10}.(0.2)^{10}.(0.8)^{0} \approx 0 [/tex]
[tex]P(X \geq 9) = P(X = 9) + P(X = 10) = 0.000004 + 0 = 0.000004[/tex]
0.0004% probability that the student answers at least 9 questions correctly
Can someone plz help me solved this problem I need help plz help me! Will mark you as brainiest!
Answer:
Step-by-step explanation:
let s note a and b
x = ap+b
we can write two equations
(1) 300=3a+b
(2) 450=1.5a+b
multiply by 2 the (2) we got
900 =3a+2b
minus (1) it gives
900 - 300 = 3a+2b-3a-b = b
so b = 600
and from (1) it gives 3a = 300-600 = -300
so a = -100
then
x=-100p+600
thanks
Find the nth term and the 150th term of the following sequence 7,11,15,19,23,...
Answer:
for the 9th it is 39 for the 150th it is 607
1. Is (6,7) a solution to the inequality y> 2x - 5?
2. Mathematically prove that it is or isn't below.
Answer:
[tex]\fbox{\begin{minipage}{8em}Not a solution\end{minipage}}[/tex]
Step-by-step explanation:
Step 1: Consider the assumption:
Generally, [tex](6, 7)[/tex]) is supposed to be the pair of 2 components, in which, the first component is x-component (domain), the second component is y-component (range).
Hence, [tex]x = 6, y = 7[/tex]
Step 2: Substitute [tex]x[/tex] and [tex]y[/tex] into the inequality
[tex]y > 2x - 5[/tex]
<=> [tex]7 > 2*6 - 5[/tex]
Step 3: Simplify
<=> [tex]7> 12 - 5[/tex]
<=> [tex]7 > 7[/tex]
Step 4: Evaluate
Invalid
Reason: [tex]7 = 7[/tex]
Step 5: Conclude
[tex](6, 7)[/tex] is not a solution to the inequality [tex]y > 2x - 5[/tex]
Hope this helps!
:)
The Toylot company makes an electric train with a motor that it claims will draw an average of only 0.8 ampere (A) under a normal load. A sample of nine motors was tested, and it was found that the mean current was x= 1.22 A, with a sample standard deviation of s = 0.44 A. Do the data indicate that the Toylot claim of 0.8 A is too low? (Use a 1% level of significance.)
1. What are we testing in this problem?
a. single proportion
b. single mean
2. What is the level of significance?
3. State the null and alternate hypotheses.
4. What sampling distribution will you use? What assumptions are you making?
a. The Student's t, since we assume that x has a normal distribution with known σ
b. The standard normal, since we assume that x has a normal distribution with known σ.
c. The standard normal, since we assume that x has a normal distribution with unknown σ.
d. The Student's t, since we assume that x has a normal distribution with unknown σ.
Answer:
1. B
Step-by-step explanation:
1. We are testing against the null hypothesis which is a single mean that sauce the average load is 0.8A
2. The level of significance is 1% (99% confidence interval)
3. The null hypothesis: u = 0.8
Alternative hypothesis: u =/ 0.8
4. a. The Student's t, since we assume that x has a normal distribution with known σ
5. Using the formula t = (x - u) / σ√n
Where x = 1.22 u = 0.8 σ = 0.44 n = 9
t = (1.22-0.8) / 0.44√9
t = 0.42/(0.44x3)
t = 0.42/1.32
t = 0.318
P value for 0.318 at 1% level of significance at 8 degree of freedom is 0.7586. Since our p value here is greater than 0.01, we can convince that there is not enough statistical evidence that indicate that the Toylot claim of 0.8 A is too low.
A triangle has two sides of length 10 and 19. What is the smallest possible whole-number length for the third side?
Answer:
answer for the question is 130 length