Answer:
It will lose electrical potential energy.
Explanation:
A photon held at rest in a uniform electrical field will lose electrical potential energy when it is released this is because the electrical potential energy is the energy posses by the photon at rest or by virtue of the position is converted to kinetic energy which is energy posses by a body in motion.
Since the photon is released and set in motion , it now has kinetic energy and has lost the potential energy because it is set in motion.
HOW CAN I SOLVE THIS QUESTION? PLEASE HELP The movement of a locomotive piston in the cylinder is limited to 0.76 m. Assume that the piston makes a simple harmonic movement that makes 180 revolutions per minute, and find its maximum speed.
Answer:
7.2 m/s
Explanation:
The maximum speed is the amplitude times the frequency.
v = Aω
v = (0.76 m / 2) (180 rev × 2π rad/rev / 60 s)
v = 7.2 m/s
Two workers are sliding 330 kg crate across the floor. One worker pushes forward on the crate with a force of 430 N while the other pulls in the same direction with a force of 330 N using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor?
Answer:
Coefficient of kinetic friction = 0.235
Explanation:
Given:
Mass of crate = 330 kg
1st force = 430 N
2nd force = 330 N
Find:
Coefficient of kinetic friction.
Computation:
We know that, velocity is constant.
So, acceleration (a) = 0
So, net force (f) = 430 N + 330 N
Net force (f) = 760 N
F = μmg
μ = f / mg [∵ g = 9.8]
μ = 760 / [330 × 9.8]
μ = 760 / [3,234]
μ = 0.235
Coefficient of kinetic friction = 0.235
Jason takes off from rest across level water on his jet-powered skis. The combined mass of Jason and his skis is 75 kg (the mass of the fuel is negligible). The skis have a thrust of 200 N and a coefficient of kinetic friction on water of 0.10. Unfortunately, the skis run out of fuel after only 75 s. What is Jason's top speed?
Answer:
v = 126 m / s
Explanation:
Let's analyze this exercise a little, they give us the thrust that is the applied force and the time that it lasts, and they ask us for the final speed, so we can use the Impulse ratio and the variation of the amount of movement
I = F t = Dp
F t = pf -p₀
Now let's use Newton's second law to find the net thrust
F = E - fr
the friction force has the formula
fr = μ N
let's write Newton's second law on the y-axis
N-W = 0
N = W
we substitute
fr = μ mg
we look for the net out
F = 200 - μ mg
With the skater starting from rest, the initial speed is zero (vo = 0)
we substitute
(200 - very m g) t = m v
v = (200 µm - very g) t
let's calculate
v = (200/75 - 0.10 9.8) 75
v = 126 m / s
9. How do air masses move?
Answer:
Air masses move with the global pattern of winds. In most of the United States, air masses generally move from west to east. They may move along with the jet stream in more complex and changing patterns.
Two very large parallel sheets a distance d apart have their centers directly opposite each other. The sheets carry equal but opposite uniform surface charge densities. A point charge that is placed near the middle of the sheets a distance d/2 from each of them feels an electrical force F due to the sheets. If this charge is now moved closer to one of the sheets so that it is a distance d/4 from that sheet, what force will feel
Answer:
the force we will feel is F
Explanation:
According to the Gauss law, electric field due to very large sheet of charge is as follows.
[tex]E = \frac{\sigma}{2 \times \epsilon_{o}}[/tex]
where,
[tex]\sigma[/tex] = charge per unit area
Since, it is given that there are two sheets of equal and opposite charge. Therefore, electric field between the plates will be as follows. [tex]E = \frac{\sigma}{2 \times \epsilon_{o}} + \frac{\sigma}{2 \times \epsilon_{o}}[/tex]
Also, we know that relation between force and electric field is as follows.
F = qE
Hence, force felt by the charge present inside the plates will be as follows.
[tex]F = q \times \frac{\sigma}{2 \times \epsilon_{o}}[/tex]
This depicts that force is not dependent on the distance and the charge is kept from one of the plate. Therefore, force F felt by the charge is same when it is placed at a distance d/2 and at a distance d/4 from one of the plate.
In a circuit, a 100.-ohm resistor and a 200.-ohm resistor are connected in parallel to a 10.0-volt battery.
Calculate the equivalent resistance of the circuit. [Show all work, including the equation and substitution with units.]
Answer:
Explanation:
The equivalent resistance of resistor connected parallel in the circuit is [tex]66.66 ohm[/tex]
What is equivalent resistance?The equivalent resistance is the total resistance measured in a parallel or series circuit. If several resistors are connected together and connected to a battery, the current supplied by the battery depends on the equivalent resistance of the circuit.
What is equivalent resistance in series?Resistors are in series whenever the current flows through the resistors sequentially. It is given by
[tex]R_{eq} = R_{1} + R_{2} + ....[/tex]
What is equivalent resistance in parallel?Resistors are in parallel when one end of all the resistors are connected by a continuous wire and the other end of all the resistors are also connected to one another through a continuous wire.
The equivalent resistance is the total resistance measured in a parallel. It is given by
[tex]\frac{1}{R_{eq} } = \frac{1}{R_{1} } + \frac{1}{R_{2} }+ ....[/tex]
Given:
Resistor, [tex]R_{1} = 100 ohm[/tex]
Resistor, [tex]R_{2} = 200 ohm[/tex]
Voltage, [tex]V = 10 Volt[/tex]
Since, resistors are connected in parallel, the equivalent resistor is given by,
[tex]\frac{1}{R_{eq} } = \frac{1}{R_{1} } + \frac{1}{R_{2} }[/tex]
[tex]\frac{1}{R_{eq} } = \frac{1}{100 } + \frac{1}{200 }[/tex]
[tex]R_{eq} = \frac{100*200}{100+200} \\R_{eq} = 66.66 ohm[/tex]
Hence, the equivalent resistor is [tex]66.66 ohm[/tex].
To learn more about equivalent resistor here
https://brainly.com/question/113987
#SPJ2
A boy and a girl are on a spinning merry-go-round. The boy is at a radial distance of 1.2 m from the central axis; the girl is at a radial distance of 1.8 m from the central axis. Which is true?A- Boy and girl have zero tangential and angular accelerations.B- The girl has a larger angular acceleration than the boy.C- The boy has a larger tangential acceleration than the girl.D- The boy has a larger angular acceleration than the girl.E- The girl has a larger tangential acceleration than the boy.
Answer:
E) True. The girl has a larger tangential acceleration than the boy.
Explanation:
In this exercise they do not ask us to say which statement is correct, for this we propose the solution to the problem.
Angular and linear quantities are related
v = w r
a = α r
the boy's radius is r₁ = 1.2m the girl's radius is r₂ = 1.8m
as the merry-go-round rotates at a constant angular velocity this is the same for both, but the tangential velocity is different
v₁ = w 1,2 (boy)
v₂ = w 1.8 (girl)
whereby
v₂> v₁
reviewing the claims we have
a₁ = α 1,2
a₂ = α 1.8
a₂> a₁
A) False. Tangential velocity is different from zero
B) False angular acceleration is the same for both
C) False. It is the opposite, according to the previous analysis
D) False. Angular acceleration is equal
E) True. You agree with the analysis above,
4. Mrs. Parker was married to her husband for
30 years. They lived together with their two
children,
(A) Single-parent family
(B) Nuclear family
(C) Blended family
(D) Extended family
I think it’sd
Explanation:
The answer is B because Nuclear family mean a family with two kids and Mrs. Parker have two kids
An electron and a positron collide head on, annihilate, and create two 0.804 MeV photons traveling in opposite directions. What was the initial kinetic energy of an electron? What was the initial kinetic energy of a positron?
Answer:
Ke- = Ke+ = 0.294MeV
Explanation:
To fins the kinetic energy of both electron and positron you use the following formula, for the case of annihilation of one electron an positron:
2[tex]E_p=2E_o+K_{e^-}+K_{e^+}[/tex] (1)
Ep: photon energy = 0.804MeV
Eo: rest energy of one electron (and positron) = 0.51MeV
Ke-: kinetic energy of electron
Ke+: kinetic energy of positron
You replace the values of Ep and Eo in the equation (1):
[tex]K_{e^-}+K_{e^+}=2E_p-2E_o=2(0.804MeV-0.51MeV)=0.588MeV[/tex]
Iy you assume both positron and electron have the same speed, then, the kinetic energy of them are equal, and the kinetic energy of each one is:
[tex]K_{e^-}=K_{e^+}=\frac{0.588MeV}{2}=0.294MeV[/tex]
Which statement best describes one way that the molecules differ from atoms? a. A molecule can contain a nucleus about which its electrons orbit b. A molecule can contain two atoms of the same element. C. Only a molecule can be the smallest particle of a certain element. d. Only a molecule can be broken down into two or more different elements.
B and D are both true statements. I'm not comfortable saying that either one is better than the other one.
The statement that best describes one way that molecules differ from atoms is a molecule can contain two atoms of the same element, and only a molecule can be broken down into two or more different elements. The correct options are b and d.
What are atoms and molecules?According to science, an atom is the smallest component of an element that can exist freely or not. A molecule, on the other hand, is the smallest component of a chemical and is made up of a group of atoms linked together by a bond.
A molecule is the smallest component of a substance that has the chemical properties of the compound.
The term "independent molecule" is not commonly used to refer to atoms and complexes linked by non-covalent interactions such as hydrogen or ionic bonds. Molecules are common constituents of matter.
Therefore, the correct options are b and d.
To learn more about atoms, refer to the link:
https://brainly.com/question/25617532
#SPJ2
can a body be in equilibrium if only one external force act on its ? explain
Answer:
Explanation:
If there is only 1 force, the body can never be in equilibrium, providing that the force is not zero (and that would hardly be a force. Zero is possible in math and it means something. It is debatable in physics).
You cannot think of a condition where something is stationary on planet earth and there are not 2 forces or more forces involved.
Think of something like a block of wood sitting on a table. It is not moving, we'll say. Gravity is holding it down, but what is pushing up on it?
The table is. There are 2 forces and they are equal in magnitude, but opposite in direction. That matters.
The frequency of the applied RF signal used to excite spins is directly proportional to the magnitude of the static magnetic field used to align the spins, with proportionality constant 5 hz/T. If the strength of the applied field is known to be 20 T plus or minus 3 T, which of the following correctly describes the uncertainty in the INVERSE frequency (1/frequency)?
A. 3/2000s
B. 3/5s
C. 1/15s
D. 1/4
Complete Question
The complete question is shown on the first uploaded image
Answer:
The uncertainty in inverse frequency is [tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]
Explanation:
From the question we are told that
The value of the proportionality constant is [tex]k = 5 \frac{Hz }{T}[/tex]
The strength of the magnetic field is [tex]B = 20 \ T[/tex]
The change in this strength of magnetic field is [tex]\Delta B = 3 \ T[/tex]
The magnetic field is given as
[tex]B = \frac{k}{\frac{1}{w} }[/tex]
Where [tex]w[/tex] is frequency
The uncertainty or error of the field is given as
[tex]\Delta B = \frac{k }{[\frac{1}{w}^]^2 } \Delta [\frac{1}{w} ][/tex]
The uncertainty in inverse frequency is given as
[tex]\Delta [\frac{1}{w} ] = \frac{\Delta B}{k [\frac{1}{w^2} ]}[/tex]
[tex]\Delta [\frac{1}{w} ]= \frac{\Delta B}{k (B)^2 }[/tex]
substituting values
[tex]\Delta [\frac{1}{w} ]= \frac{3}{5 (20)^2 }[/tex]
[tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]
A bus travelling at a speed of 40 kmph reaches its destination in 8 minutes and 15 seconds. How far is the destination? a. 5.43 km b. 5.44 km c. 5.50 km d. 9.06 km
Answer:
c. 5.50 km
Explanation:
8 min * 1h/(60 min) = 8/60 = 2/15 h
15 sec* 1 min/60 sec = 1/4 min * 1h/(60 min) = 1/240 h
8 min 15 sec = (2/15+1/240)h
40 km/h *(2/15 +1/240)h =5.50 km
Answer: 5.50 km
Explanation:
Gas is contained in a piston-cylinder assembly and undergoes three processes. First, the gas is compressed at a constant pressure of 100 [kPa] from initial volume of 1.0 [m3] to a volume of 0.5 [m3]. Second, the gas pressure is increased by heating at constant volume up to 200 [kPa]. Third, the gas is returned to its initial pressure and volume by a process for which P ∀=constant. All pressures given are absolute. For the gas as a system, is the system best considered open, closed, or isolated? Why?
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct option is B
Explanation:
The system is best considered a closed system because looking at process we can see that there was no exchange of matter between the system and the surrounding,(as the was no escape of matter from the system to the surrounding )
Secondly we can deduce that there is a variation in the volume. from [tex]1.0 m^3[/tex] to [tex]0.5 m^3[/tex]