Explain use the tyndall effect to explain why it is more difficult to drive through
fog using high beams than using low beams.

Answers

Answer 1

The Tyndall effect is the scattering of light by colloidal particles or suspensions, causing the particles to become visible.

In fog, water droplets act as colloidal particles and scatter light, making it difficult to see clearly. High beams produce a greater amount of light, which causes more scattering and reflection in the fog, resulting in decreased visibility. This is because the water droplets in the fog are closer together and more concentrated in the path of the high beams, causing more light to be reflected back towards the driver's eyes.

Using low beams, on the other hand, produces less light and reduces the amount of scattering and reflection in the fog, resulting in better visibility. Therefore, it is recommended to use low beams when driving in foggy conditions to avoid glare and improve visibility.

To learn more about Tyndall effect, here

https://brainly.com/question/14431922

#SPJ4


Related Questions

The method used to find the volume of acid that reacts with a known volume of alkali is called

Answers

The method used to find the volume of acid that reacts with a known volume of alkali is called acid-base titration.

In this method, a solution of known concentration (the titrant) is slowly added to a solution of unknown concentration (the analyte) until the reaction between the two is complete.

The point at which the reaction is complete is determined using an indicator or by measuring the pH of the solution. The volume of titrant required to reach this point is used to calculate the concentration of the analyte solution.

The method is widely used in analytical chemistry to determine the concentration of acids, bases, and other reactive substances in solution.

To know more about titration refer to-

https://brainly.com/question/30046193

#SPJ11

What would happen to future island chains if volcanic eruptions stopped occurring on the seafloor?

Answers

If volcanic eruptions were to stop occurring on the seafloor, future island chains would no longer be formed.

This is because most island chains are formed by a geological process called plate tectonics, which involves the movement of tectonic plates and the formation of new crust at mid-ocean ridges through volcanic activity.

At mid-ocean ridges, magma rises from the mantle and solidifies to form new crust, pushing the existing crust away from the ridge.

Over time, this process can create a chain of volcanic islands as the tectonic plate moves across the hotspot, with the oldest islands being farthest from the hotspot and the youngest islands being closest.

Without volcanic eruptions on the seafloor, there would be no new crust formation and no movement of tectonic plates to create island chains.

Over time, the existing islands would be eroded and weathered by natural processes such as wind and water, and their size and shape would change.

However, it's worth noting that volcanic eruptions are not the only way that islands can form. For example, islands can also be formed through the uplift of existing land due to geological processes such as tectonic uplift or the rebound of land following the retreat of a glacier.

However, these processes typically occur over much longer time scales than volcanic island formation at mid-ocean ridges.

To know more about eruptions refer here

https://brainly.com/question/9175156#

#SPJ11

Three 3. 0 L sealed flasks , each at a pressure of 878 mmHg contain He, Ar, and Xe respectively. A) which of the flasks contain the greatest number of moles of gas? b) which of the flasks contain the greatest mass of gas? c) If He flask was heated and Ar flask was cooled, which of the three flasks would be at the highest pressure? d) If the temperature of the He was lowered while the Xe was raised, which of the three gases would have the greatest kinetic energy?

Answers

The total number of moles of gas present in the three 3.0 L sealed flasks containing helium, argon, and xenon respectively, if each flask is at a pressure of 878 mmHg, is 0.447 mol.

To calculate the total number of moles of gas present in the three flasks, we can use the ideal gas law:

PV = nRT

First, we need to convert pressure from millimeters of mercury to atmospheres.

1 atm = 760 mmHg

878 mmHg = 1.153 atm

We can calculate number of moles of gas:

For the helium flask:

[tex]n(He) = (1.153 atm) * (3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(He) = 0.149 mol[/tex]

For the argon flask:

[tex]n(Ar) = (1.153 atm) *(3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(Ar) = 0.149 mol[/tex]

For the xenon flask:

[tex]n(Xe) = (1.153 atm) * (3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(Xe) = 0.149 mol[/tex]

Finally, we can add up the number of moles of gas in each flask to find  total number of moles of gas:

[tex]n(total) = n(He) + n(Ar) + n(Xe) \\n(total) = 0.149 mol + 0.149 mol + 0.149 mol \\n(total) = 0.447 mol[/tex]

To know more about helium flask, here

brainly.com/question/10242192

#SPJ4

--The complete Question is, What is the total number of moles of gas present in the three 3.0 L sealed flasks containing helium (He), argon (Ar), and xenon (Xe) respectively if each flask is at a pressure of 878 mmHg?--

a solution contains 1.30×10-2 m silver nitrate and 6.45×10-3 m lead acetate. solid sodium iodide is added slowly to this mixture. a. what is the formula of the substance that precipitates first?

Answers

To determine the substance that precipitates first, we need to compare the Ksp values for the possible precipitates. The ionic equation for the reaction is:

AgNO3 + Pb(CH3COO)2 + 2NaI → AgI↓ + PbI2↓ + 2NaNO3 + 2CH3COONa

The Ksp expression for AgI is:

Ksp = [Ag+][I-]

The Ksp expression for PbI2 is:

Ksp = [Pb2+][I-]2

The solubility product constant (Ksp) for AgI is 8.5 × 10^-17 and the Ksp for PbI2 is 1.4 × 10^-8.

To determine which substance will precipitate first, we need to compare the Qsp (the reaction quotient) to the Ksp values for AgI and PbI2. At the point of precipitation, Qsp = Ksp.

For AgI:

Qsp = [Ag+][I-] = (1.30×10^-2)(2x) = 2.60x10^-2

For PbI2:

Qsp = [Pb2+][I-]2 = (6.45×10^-3)(2x)^2 = 2.58x10^-2

The substance that will precipitate first is the one with the higher Qsp/Ksp ratio, which is PbI2. Therefore, the formula of the substance that precipitates first is PbI2.

Visit here to learn more about solubility brainly.com/question/28170449

#SPJ11

A decomposition of hydrogen peroxide into water and oxygen gas is an exothermic reaction. If the temperature is initially 28˚ C, what would you expect to see happen to the final temperature? Explain what is happening in terms of energy of the system and the surroundings.

Answers

If the decomposition of hydrogen peroxide into water and oxygen gas is an exothermic reaction, we would expect the final temperature to be lower than the initial temperature of 28˚C.

This is due to the fact that energy is released from the system during an exothermic reaction in the form of heat into the surroundings. In other words, the energy of the reactants is more than that of the products, and the excess energy is released into the environment.

As a result, the environment's temperature will rise, while the system's temperature will fall. This indicates that the reaction's final temperature will be lower than its 28° C starting point.

To learn more about an exothermic reaction, follow the link:

https://brainly.com/question/10373907

#SPJ1

A sample of iron with a mass of 250.0 grams underwent a change in thermal energy of 5250
joules. Determine the change in temperature of the iron that occurred during this process.

Answers

250 joule to 333 c’ energy to be the temps

A 2. 50g sample of zinc is heated, then placed in a calorimeter containing 60. 0g of water. The temperature of water increases from 20. 00 degrees C. The specific heat of Zinc is 0. 390J/g Degree C. What was the initial temperature of the zinc metal sample?

Answers

We can use the equation:

q(zinc) = -q(water)

where q(zinc) is the heat lost by the zinc and q(water) is the heat gained by the water.

q(zinc) = m(zinc) × C(zinc) × ΔT

where m(zinc) is the mass of zinc, C(zinc) is the specific heat of zinc, and ΔT is the temperature change of the zinc.

The heat gained by the water :

q(water) = m(water) × C(water) × ΔT

where m(water) is the mass of water, C(water) is the specific heat of water, and ΔT is the temperature change of the water.

Since the calorimeter is assumed to be perfectly insulated, we can assume that the heat lost by the zinc is equal to the heat gained by the water:

m(zinc) × C(zinc) × ΔT = m(water) × C(water) × ΔT

m(zinc) × C(zinc) = m(water) × C(water)

2.50 g × 0.390 J/g°C = 60.0 g × 4.184 J/g°C

ΔT = q(water) / (m(water) × C(water))

= (2.50 g × 0.390 J/g°C) / (60.0 g × 4.184 J/g°C)

= 0.00916°C

Since we know the initial temperature of the water is 20.00°C, we can use the formula for temperature change:

ΔT = final temperature - initial temperature

Rearranging this formula, we get:

initial temperature = final temperature - ΔT

Substituting the given values, we get:

initial temperature = 20.00°C - 0.00916°C

= 19.99084°C

Therefore, the initial temperature of the zinc metal sample was approximately 19.99°C.

To know more about temperature change refer here:

https://brainly.com/question/28884653

#SPJ11

To determine experimentally if a reaction is exthermic a student should use a

Answers

To determine experimentally if a reaction is exothermic, a student should use a calorimeter. A calorimeter is a device used to measure the heat exchange during a chemical reaction, enabling the student to identify if the reaction is exothermic or endothermic. In an exothermic reaction, heat is released, causing the temperature of the surroundings to increase.

To perform the experiment, follow these steps:

1. Choose the appropriate chemical reaction to test.
2. Prepare the calorimeter by placing a known amount of water in the calorimeter's inner container.
3. Measure and record the initial temperature of the water.
4. Add the reactants (in their appropriate amounts) to the water, and quickly seal the calorimeter to minimize heat loss to the surroundings.
5. Stir the mixture gently to ensure proper mixing and heat distribution.
6. Monitor the temperature change of the water over time, recording the highest temperature reached.
7. Calculate the amount of heat released or absorbed by the reaction using the formula: q = mcΔT, where q is heat, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.
8. If the heat calculated is positive and the temperature increased, the reaction is exothermic; if negative and the temperature decreased, the reaction is endothermic.

In conclusion, a student should use a calorimeter to experimentally determine if a reaction is exothermic, as it allows for the accurate measurement of heat exchange and can indicate whether heat is released or absorbed during the reaction.

To know more about exothermic refer here

https://brainly.com/question/31214950#

#SPJ11

Any atom that has 13 protons is an aluminum atom. Which statement best describes what would happen if a proton were added to an aluminum atom?.

Answers

If a proton were added to an aluminum atom, it would result in the formation of a new atom with 14 protons, which is a Silicon atom.

The addition of a proton would increase the atomic number of the aluminum atom by one, changing it to 14, which is the atomic number of silicon. This would result in a change in the electronic configuration of the atom, leading to different chemical properties. The new atom would have one more electron than the original aluminum atom, which would occupy a new orbital. This would result in a change in the valence shell electronic configuration and reactivity of the atom.

To know more about Silicon atoms, here

brainly.com/question/13568870

#SPJ1

Part D


Press the yellow reset button at the bottom of the simulation screen. Under Constant Parameter, select Volume. Again,


pump the pump handle once to introduce 40 to 50 gas molecules. Record the pressure in the data table.


Use the heat control to heat the gas to each of the other temperatures in the data table, and record the new pressure.


Answer from Edmentum :)

Answers

The instruction is to use the PhET simulation to perform an experiment where the constant parameter is set to volume, and then to pump 40 to 50 gas molecules into the simulation.

The pressure of the gas is recorded in a data table. Next, the heat control is used to heat the gas to each of the other temperatures in the data table, and the corresponding new pressure values are recorded in the data table. This experiment demonstrates the relationship between pressure and temperature, which is known as the ideal gas law.

By holding the volume constant and changing the temperature, we can observe how the pressure of the gas changes. This experiment is useful in understanding real-world phenomena such as how temperature affects the pressure of gas inside a container, such as a tire or a balloon.

To know more about the Pressure, here

https://brainly.com/question/15813117

#SPJ4

Calculate the equilibrium constant at 25°C for the reaction of methane with water to form carbon dioxide and hydrogen. The data refer to


25°C.


CH4(9) + 2H20(9) = CO2(g) + 4H2(9)


Substance:


AH (kJ/mol)


AGf(kJ/mol)


S (J/K mol):


CH4(g)


-74. 87


-50. 81


186. 1


H2019)


-241. 8


-228. 6


188. 8


CO2(9)


-393. 5


-394. 4


213. 7


H219)


0


0


130. 7

Answers

The equilibrium constant (K) at 25°C for the reaction of methane with water to form carbon dioxide and hydrogen is 8.04×10⁻¹³. This indicates that the reaction strongly favors the reactants, and very little of the products will be formed at equilibrium.

To calculate the equilibrium constant at 25°C for the reaction of methane with water to form carbon dioxide and hydrogen, we use the formula:

[tex]Kc = \left(\frac{{[CO_2][H_2]^4}}{{[CH_4][H_2O]^2}}\right)[/tex]

where [ ] denotes concentration in moles per liter. We need to first determine the concentrations of the various species at equilibrium. For this, we use the Gibbs free energy change (ΔG) of the reaction, which is related to the equilibrium constant through the equation:

[tex]\Delta G^\circ = -RT \ln(Kc)[/tex]

where R is the gas constant (8.314 J/K mol), T is the temperature in Kelvin (25°C = 298 K), and ΔG° is the standard free energy change for the reaction, which can be calculated from the standard free energy of formation (ΔGf°) values of the reactants and products:

[tex]\Delta G^\circ = \sum n\Delta G_f^\circ(\text{products}) - \sum m\Delta G_f^\circ(\text{reactants})[/tex]

where n and m are the stoichiometric coefficients of the products and reactants, respectively. Using the given values, we get:

[tex]\Delta G^\circ = [1(-394.4) + 4(0)] - [1(-50.81) + 1(-241.8) + 2(0)][/tex]

ΔG° = -805.37 J/mol

Substituting this value and the other given values into the equation for ΔG°, we get:

[tex]Kc = e^(-ΔG°/RT)[/tex]

[tex]Kc = e^(-805.37/(8.314×298))[/tex]

Kc = 8.04×10⁻¹

Therefore, the equilibrium constant at 25°C for the reaction of methane with water to form carbon dioxide and hydrogen is 8.04×10⁻¹³.

To know more about the  equilibrium constant refer here :

https://brainly.com/question/19671384#

#SPJ11

If you started with 20. 0 g of a radioisotope and waited for 3 half-lives to pass, then how much would remain? 1. 25g
5. 00g
10. 0g
2. 50g​

Answers

Answer: The answer is 2.50g.

I hope this helps and have a great day!

How can you determine the specific heat capacity of 1. 0g of yam

Answers

Specific heat capacity is the amount of heat required to raise the temperature of a substance by one degree Celsius per unit of mass.

To determine the specific heat capacity of 1.0g of yam, we can use a simple equation:

q = m × c × ΔT

where q is the amount of heat required, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

To measure the specific heat capacity of yam, we would first need to heat the yam to a known temperature, and then measure the amount of heat required to raise its temperature by a certain amount.

For example, we could heat 1.0g of yam to 25°C and then place it in a known amount of water at a lower temperature, such as 20°C. We could then measure the change in temperature of the water and calculate the amount of heat required to heat the yam.

By rearranging the equation above, we can solve for c:

c = q / (m × ΔT)

We can then substitute in the values we measured and calculate the specific heat capacity of the yam. This process can be repeated several times to obtain an average value for the specific heat capacity of yam.

To know more about Specific heat capacity, visit:

https://brainly.com/question/29766819#

#SPJ11

Select the most ideal gas situation:

Hydrogen and steam.

Answers

When hydrogen and steam are both present in a gas at the same pressure and temperature, this is the ideal gas condition. This is so because according to the ideal gas law, an ideal gas's pressure, volume, and temperature are all precisely proportional to one another.

This indicates that when the two gases have the same temperature and pressure, the two gases will also have the same volume. As a result, the gases are in their ideal state, having the same volume and pressure but retaining their distinct chemical compositions.

This is perfect because it enables the two gases to interact with one another in a predictable way, allowing for the measurement and prediction of the gases' behaviour.

Learn more about  gases  at:

https://brainly.com/question/1369730

#SPJ1

If 450.5 calories of heat energy are added to a 89.6 gram sample of aluminium (specific heat of 0.215 calories per gram degree celsius) and the initial temperature of the sample is 25.7 degrees celsius then what is the final temperature in degrees celsius?​

Answers

The final temperature is 49.2 degrees Celsius.

To find the final temperature, we can use the formula:

Q = mcΔT

where Q represents the amount of heat energy measured in calories (450.5 calories), m represents the mass of the substance in grams (89.6 grams), c represents the specific heat capacity in calories per gram per degree Celsius (0.215 calories/gram degree Celsius), and ΔT represents the change in temperature.

First, we need to find the change in temperature (ΔT):

450.5 calories = (89.6 grams) * (0.215 calories/gram degree Celsius) * ΔT

Now, we can solve for ΔT:

ΔT = 450.5 calories / [(89.6 grams) * (0.215 calories/gram degree Celsius)] ≈ 23.5 degrees Celsius

Since we know the initial temperature (25.7 degrees Celsius), we can find the final temperature:

Final temperature = Initial temperature + ΔT = 25.7 degrees Celsius + 23.5 degrees Celsius ≈ 49.2 degrees Celsius

Know more about Heat Energy here:

https://brainly.com/question/25384702

#SPJ11




Find the mass of a sample of water if its temperature dropped 24. 8°C


when it lost 870 J of heat. Hint. Which formula are you going to use? See


interactive PPT. Don't forget the unit. Show your work.




How much heat is required to warm a 135g cup of water from 15 °C to


35°C? Hint: the water is in a cup so what state of matter and specific heat?


Show your work.

Answers

1.  The mass of the water sample is approximately 8.77 grams.

2. Approximately 11,322 Joules of heat are required to warm a 135g cup of water from 15°C to 35°C.


We're given the values:
Q = -870 J (lost heat, so negative value)
ΔT = -24.8°C (temperature dropped)
c = 4.18 J/(g°C) (specific heat capacity of water)

Rearrange the formula to solve for mass:
m = Q / (cΔT)

Plug in the values:
m = -870 / (4.18 × -24.8)
m ≈ 8.77 g


The mass of the water sample is 8.77 grams.


We're given the values:
m = 135 g
ΔT = 35°C - 15°C = 20°C
c = 4.18 J/(g°C) (specific heat capacity of water)

Now, use the formula Q = mcΔT to find the heat required:
Q = 135 × 4.18 × 20
Q ≈ 11322 J

Approximately 11,322 Joules of heat are required to warm a 135g cup of water from 15°C to 35°C.

To know more about specific heat capacity click on below link:

https://brainly.com/question/29766819#

#SPJ11

If the balloon was filled up to a volume of 2. 0 L at room temperature (25oC), what will the new volume be if the balloon is placed in the freezer for a few hours at -20oC?Gay-Lussac’s Law.

Answers

The new volume, by using Gay-Lussac's Law, of the balloon after being placed in the freezer would be 1.3 L.

Gay-Lussac’s Law, also known as the pressure-temperature law, states that the pressure and temperature of a gas are directly proportional to each other, provided that the volume and the amount of gas remain constant.

This law is represented mathematically as P1/T1 = P2/T2, where P1 and T1 represent the initial pressure and temperature, and P2 and T2 represent the final pressure and temperature.

In this case, we can use Gay-Lussac’s Law to determine the new volume of the balloon after being placed in the freezer. Since the amount of gas and the volume remain constant, we can rearrange the equation to solve for the new volume.

First, we need to convert the temperatures to Kelvin (K) since the equation requires absolute temperature. To do this, we add 273.15 to the given temperatures. Therefore, the initial temperature (25oC) is 298.15 K, and the final temperature (-20oC) is 253.15 K.

Using the equation P1/T1 = P2/T2, we can solve for the new pressure at the final temperature:

P2 = P1(T2/T1) = (1 atm)(253.15 K/298.15 K) = 0.85 atm

Now that we have the final pressure, we can use the ideal gas law to determine the new volume:

PV = nRT

V2 = (nRT2)/P2

Assuming that the amount of gas and the gas constant (R) remain constant, we can simplify the equation to:

V2/V1 = T2/T1(P2/P1)

Plugging in the given values, we get:

V2/2.0 L = (253.15 K)/(298.15 K)(0.85 atm)/(1 atm)

Simplifying this equation, we get:

V2 = 1.3 L

Therefore, the new volume of the balloon after being placed in the freezer would be 1.3 L.

To know more about Gay-Lussac's Law, visit:

https://brainly.com/question/1358307#

#SPJ11

Calcium Carbonate reacts with HCl to produce Calcium chloride, carbon dioxide and water.(I) calculate the number of moles of CO2 produced from 36.5g of HCl (ii) Calculate the amount of Calcium chloride produced (in g) when 3 moles of calcium Carbonate reacts with HCl

Answers

Answer:

i. 0.50 mol CO2

ii. 332.94g CaCl2

Explanation:

CaCO3 + 2HCl -> CaCl2 + CO2 + H2O

i. 36.5g HCl * 1 mol HCl/36.46g HCl * 1 mol CO2/2 mol HCl  = 0.50 mol CO2

ii. 3 mol CaCO3 * 1 mol CaCl2/1 mol CaCO3 * 110.98g CaCl2/1 mol CaCl2 = 332.94g CaCl2

NEED HELP ASAP
How would testing such as that done in this lab exercise be valuable in real-world situations?​

Answers

Testing done in lab exercises can be valuable in real-world situations by ensuring the safety, reliability, and efficiency of products and identifying potential flaws or weaknesses before they go to market.

Testing, such as that done in this lab exercise, can be incredibly valuable in real-world situations. For example, the lab exercise may involve testing the durability or strength of a particular material or product. This type of testing can be useful in real-world situations when designing and manufacturing new products. By testing the durability and strength of a material or product, designers and manufacturers can ensure that their products are safe and reliable for consumers to use. Additionally, testing can help identify potential flaws or weaknesses in a product before it goes to market, which can save companies time and money in the long run. Overall, testing is a crucial component of product development and can help ensure that products meet the needs and expectations of consumers.

Know more about Lab testing here:

https://brainly.com/question/27723597

#SPJ11

A solution is 0.010 m in ba2+ and 0.020 m in ca2+

required:
a. if sodium sulfate is used to selectively precipitate one of the cations while leaving the other cation in solution, which cation will precipitate first? what minimum concentration of na2so4 will trigger the precipitation of the cation that precipitates first?
b. what is the remaining concentration of the cation that precipitates first, when the other cation begins to precipitate?

Answers

a. In a solution that is 0.010 M in Ba²⁺ and 0.020 M in Ca²⁺, when sodium sulfate (Na₂SO₄) is used to selectively precipitate one of the cations, the cation that will precipitate first is Ba²⁺. The minimum concentration of Na₂SO₄ that trigger the precipitation of the cation that precipitates first is 5.5 x 10^-9 M Na₂SO₄.

b. The remaining concentration of the cation that precipitates first, when the other cation begins to precipitate is 2.0 x 10^-2 M.

Let us discuss this in detail.

a. To determine which cation will precipitate first, we need to compare the solubility product constants (Ksp) of their respective sulfates. The Ksp for BaSO₄ is 1.1 x 10^-10 and the Ksp for CaSO₄ is 2.4 x 10^-5. Since the Ksp for CaSO₄ is much larger, it means that CaSO₄ is more soluble than BaSO₄. Therefore, Ba²⁺ will precipitate first.

To calculate the minimum concentration of Na₂SO₄ needed to trigger the precipitation of Ba²⁺, we need to use the common ion effect. This means that we need to add enough sulfate ions to the solution to exceed the solubility product constant of BaSO₄. The equation for the dissociation of Na₂SO₄ is:

Na₂SO₄(s) → 2 Na⁺(aq) + SO₄²⁻(aq)

Since we have 0.010 M Ba²⁺ in the solution, we need to add enough SO₄²⁻ ions to exceed the Ksp of BaSO₄. This can be calculated using the equation:

Ksp = [Ba²⁺][SO₄²⁻]

1.1 x 10^-10 = (0.010 M)(x)

x = 1.1 x 10^-8 M

This means that we need to add at least 1.1 x 10^-8 M SO₄²⁻ ions to trigger the precipitation of Ba²⁺. Since Na₂SO₄ dissociates to give 2 SO₄²⁻ ions for every formula unit, we need to add:

(1.1 x 10^-8 M) / 2 = 5.5 x 10^-9 M Na₂SO₄

b. Once Ba²⁺ starts to precipitate, the concentration of Ba²⁺ ions in the solution will decrease until it reaches a new equilibrium. At this point, the concentration of Ca²⁺ will still be 0.020 M. To calculate the new concentration of Ba²⁺ at this equilibrium, we need to use the equation:

Ksp = [Ba²⁺][SO₄²⁻]
1.1 x 10^-10 = (x)(5.5 x 10^-9 M)

x = 2.0 x 10^-2 M

Therefore, the remaining concentration of Ba²⁺ at equilibrium will be 2.0 x 10^-2 M.

Learn more about cations at https://brainly.com/question/14309645

#SPJ11

Drag and drop the words that accurately complete the chart below. Example a lion and a cheetah mistletoe on a tree a coyote eating a rabbit a remora and a shark clownfish and anemone parasitism friendship competition Type of Symbiosis mutualism 1:10 predation relationship commensalism collaboration alliance​

Answers

Answer:

Lion and cheetah - Competition

Mistletoe on a tree - Parasitism

Coyote eating rabbit- Predatation

Remora and Shark - Mutualism

Clownfish and Anemone - Relationship

Explanation:

20. 0 g of Potassium reacts with water to produce Potassium hydroxide and hydrogen gas.


2 K + 2 H2O —> 2 KOH + H2


How many miles of hydrogen are there?

Answers

When 20.0 g of Potassium reacts with water, 0.256 moles of hydrogen gas are produced.

To determine the moles of hydrogen produced when 20.0 g of potassium reacts with water to form potassium hydroxide and hydrogen gas, follow these steps:

1. Determine the molar mass of potassium (K): The atomic weight of potassium is 39.1 g/mol.

2. Calculate the moles of potassium (K) used: moles = mass / molar mass
  moles of K = 20.0 g / 39.1 g/mol ≈ 0.512 moles

3. Use the stoichiometry of the balanced equation to find the moles of hydrogen (H₂) produced: 2 moles K produce 1-mole H₂, so the ratio is 1:0.5.

4. Calculate the moles of H₂ produced: moles of H2 = moles of K * (1 mole H₂ / 2 moles K)
  moles of H₂ = 0.512 moles * (1/2) ≈ 0.256 moles

So, when 20.0 g of potassium reacts with water to produce potassium hydroxide and hydrogen gas, there are approximately 0.256 moles of hydrogen.

Learn more about moles at https://brainly.com/question/29367909

#SPJ11

write the net ionic equation for the equilibrium that is established when sodium cyanide is dissolved in water. This solutions is: (acid, base, neutral)

Answers

The net ionic equation for the equilibrium that is established when sodium cyanide (NaCN) is dissolved in water is:

NaCN + H2O ⇌ CN- + Na+ + H2O

In this equation, the cyanide ion (CN-) is produced by the dissociation of NaCN in water. The sodium ion (Na+) and water (H2O) are spectator ions and do not participate in the reaction. Therefore, they are not included in the net ionic equation.

This solution is basic because the cyanide ion is a weak base and can hydrolyze water to produce hydroxide ions (OH-) according to the following reaction:

CN- + H2O ⇌ HCN + OH-

The equilibrium constant for this reaction is relatively small, but it is enough to make the solution basic.

Visit here to learn more about ionic equation brainly.com/question/29299745

#SPJ11

If you have 500 ml of a 0.10 m solution of the acid, what mass of the corresponding sodium salt of the conjugate base do you need to make the buffer with a ph of 2.08 (assuming no change in volume)

Answers

The mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08.

To determine the mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08, you can follow these steps:

1. Identify the given information:
  - Initial volume of acid solution: 500 mL
  - Initial concentration of acid solution: 0.10 M
  - Desired pH: 2.08

2. Use the Henderson-Hasselbalch equation:
  pH = pKa + log ([conjugate base]/[acid])

3. Assuming the acid is a weak monoprotic acid (HA) and its conjugate base is A-, determine the pKa:
  pKa = pH - log ([A-]/[HA])

4. Calculate the ratio of [A-] to [HA]:
  [A-]/[HA] = 10^(pH-pKa)

5. Calculate the moles of HA in the 500 mL of 0.10 M solution:
  moles of HA = (volume x concentration) = 500 mL x 0.10 mol/L = 0.050 mol

6. Calculate the moles of A- needed:
  moles of A- = moles of HA x ([A-]/[HA]) ratio

7. Determine the molar mass of the sodium salt of the conjugate base (A-) using the molecular formula.

8. Calculate the mass of the sodium salt of the conjugate base:
  mass = moles of A- x molar mass of A-

By following these steps, you will be able to determine the mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08.

To know more about conjugate base refer here: https://brainly.com/question/30086613#

#SPJ11

What volume of 0. 125 m kmno4 is required to yield 0. 180 mol of potassium permanganate, kmno4?.

Answers

1.44 liters of 0.125 M [tex]KMnO4[/tex] solution is required to yield 0.180 mol of [tex]KMnO4[/tex].

To determine the volume of 0.125 M [tex]KMnO4[/tex] solution required to yield 0.180 mol of [tex]KMnO4[/tex], we can use the following formula:

moles = concentration x volume

We can rearrange this formula to solve for volume:

volume = moles / concentration

First, we can calculate the volume of 0.125 M [tex]KMnO4[/tex] solution that contains 0.180 moles of [tex]KMnO4[/tex]:

volume = moles / concentration

volume = 0.180 mol / 0.125 mol/L

volume = 1.44 L

Therefore, 1.44 liters of 0.125 M [tex]KMnO4[/tex] solution is required to yield 0.180 mol of [tex]KMnO4[/tex].

To know more about yield refer to-

https://brainly.com/question/30700754

#SPJ11

Question 1 options: calculate the energy, in joules, of a photon that has a frequency of 3.73 x 1014 s-1.

Answers

The energy of a photon can be calculated using the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.

Substituting the given values, we get:

E = (6.626 x 10⁻³⁴ J s) x (3.73 x 10¹⁴ s⁻¹)

E = 2.47 x 10⁻¹⁹ J

Therefore, the energy of the photon with a frequency of 3.73 x 10¹⁴ s¹ is 2.47 x 10⁻¹⁹ J.

This value may seem small, but it is consistent with the fact that photons with higher frequencies (and thus higher energies) are required to cause certain types of chemical reactions and ionization processes.

The energy of a photon with a frequency of 3.73 x 1010¹⁴ s¹ is calculated using the equation E = hf, where h is Planck's constant. The energy of the photon is found to be 2.47 x 1010⁻¹⁹ J.

To know more about the energy of a photon refer here :

https://brainly.com/question/2393994#

#SPJ11

Three students are asked to discuss whether Gibbs Free Energy was positive or


negative for each dissolution. Select the student that employs correct


scientific reasoning.
. Student 1: The Gibbs Free Energy was negative for both reactions because the reactions were


spontaneous, the reactions happened.


• Student 2: The Gibbs Free Energy was positive for the first reaction because it got colder and


negative for the second reaction because it got hotter.


• Student 3: The Gibbs Free Energy was positive for both reactions because it is always positive for


dissolutions.


Student 3


Student 2


Student 1


In the next three problems, use the CER format to answer this guiding

Answers

Based on scientific reasoning, the correct student is Student 1.

The Gibbs Free Energy is negative for both reactions because they are spontaneous, meaning they occur naturally without the need for external input. This indicates that the reactions release energy and are thermodynamically favorable.

Student 2's reasoning is incorrect because the temperature change alone does not determine the Gibbs Free Energy.

Student 3's reasoning is also incorrect because the Gibbs Free Energy can be both positive and negative depending on the reaction conditions. Therefore, Student 1's explanation aligns with the laws of thermodynamics and is scientifically accurate.

To know more about Gibbs Free Energy click on below link:

https://brainly.com/question/13318988#

#SPJ11

Sort the disciptions of open clusters and globular clusters into the correct categories

Answers

Open clusters:

Found in the disk of the galaxyYoung starsFew hundred to a few thousand starsLoosely bound by gravityIrregular shape

Globular clusters:

Found in the halo of the galaxyOld starsTens of thousands to millions of starsTightly bound by gravitySpherical shape

What are clusters?

Clusters are collections of stars that are gravitationally connected to one another and close to one another in astronomy. Open clusters and globular clusters are the two basic categories into which they can be separated.

While globular clusters are collections of much older stars that are tightly bound together into a spherical shape, open clusters are collections of much younger stars that are relatively loosely bound together.

Find out more on open clusters here: https://brainly.com/question/15222665

#SPJ1

If we began the experiemtn with 0.70 g of cucl2 x 2 h2o, according to the stoichiometry o the reaction, how much al should be used to complete the reaction withtout either reactant being in excess

Answers

0.70 g of CuCl₂ • 2 H₂O reacts completely with 0.48 g of Al. The molar ratio of CuCl₂ • 2 H₂O to Al is 1:2. The reaction completes without any excess reactant.

The balanced chemical equation for the reaction between CuCl₂ • 2 H2O and Al is:

3CuCl₂ • 2 H₂O + 2Al → 3Cu + 2AlCl₃ + 6H₂O

From the equation, we can see that 3 moles of CuCl₂ • 2 H₂O react with 2 moles of Al. We need to find the amount of Al required to react completely with 0.70 g of CuCl₂ • 2 H₂O.

1 mole of CuCl₂ • 2 H₂O has a mass of (63.55 + 2 x 35.45 + 2 x 18.02) g = 170.48 g

0.70 g of CuCl₂ • 2 H₂O is equal to 0.70/170.48 = 0.0041 moles of CuCl₂ • 2 H₂O

From the balanced equation, we can see that 3 moles of CuCl₂ • 2 H₂O react with 2 moles of Al.

Therefore, the moles of Al required is (2/3) x 0.0041 = 0.0027 moles.

The molar mass of Al is 26.98 g/mol. Therefore, the mass of Al required is:

0.0027 moles x 26.98 g/mol = 0.073 g

Therefore, 0.073 g of Al should be used to complete the reaction without either reactant being in excess.

To know more about the molar ratio refer here :

https://brainly.com/question/17920577#

#SPJ11

Complete question :

If we began the experiment with 0.70 g of CuCl₂ • 2 H₂O, according to the stoichiometry of the reaction, how much Al should be used to complete the reaction without either reactant being in excess? Show your calculations.

You perform a titration where you add 0.35 m hcl to a flask containing 50 ml of 0.75 m naoh. what is the ph after you add 50 ml of 0.35 m hcl

Answers

The pH after adding 50 mL of 0.35 M HCl to a flask containing 50 mL of 0.75 M NaOH is approximately 12.68.

1. Calculate moles of NaOH: moles = M x V = 0.75 M x 0.05 L = 0.0375 moles


2. Calculate moles of HCl: moles = M x V = 0.35 M x 0.05 L = 0.0175 moles


3. Determine moles of excess OH-: moles = moles of NaOH - moles of HCl = 0.0375 - 0.0175 = 0.02 moles


4. Calculate the concentration of excess OH-: [OH-] = moles / total volume = 0.02 moles / 0.1 L = 0.2 M


5. Determine the pOH: pOH = -log10[OH-] = -log10(0.2) = 0.699


6. Calculate the pH: pH = 14 - pOH = 14 - 0.699 ≈ 12.68

To know more about pH click on below link:

https://brainly.com/question/2288405#

#SPJ11

Other Questions
What are the operations in the equation 4x 5 = 7? What operations do you need to use to solve for x? firm a has revenue function r = 200q - 4q 2 and cost function c = 0.5q 2 11q 70. what is the level of production that maximizes firm a's profit? 18.8889 21 6 45.7777 Bond Prices [ LO2] Westco Co. Issued 15-year bonds a year ago at a coupon rate of 5. 4 percent. The bonds make semiannual payments and have a par value of $1,000. If the YTM on these bonds is 4. 5 percent, what is the current price of the bond in dollars Whats the answer? I need help please What was the most influential invention since printing? Which system has to do with skin, hair, and nails?. if the silver sheet costs $9.75 per cm^2, the copper sheet costs $3.25 per cm^2, and the stone costs $1.75 per cm^2, what is the materials cost for the brooch 7.003x10^-5 in standard form help me What is the rule of this function? 5+ 5 5 5 5Question 1 of 7 I need to find the missing angle and arc measures. please answerStep by step What is the in a 12. 2 L vessel that contains 1. 13 mol of Co2 at a temperature of 42 degrees C? Calculate the inherent value of one share of pepsi. assuming that dividends grow at a constant rate of 6.00%, next year's dividend will be $2.75, and you target a rate of return of 10% Cardinal Company is considering a five-year project that would require a $2,500,000 investment in equipment with a useful life of five years and no salvage value. The companys discount rate is 12%. The project would provide net operating income in each of five years as follows:Sales $ 2,853,000Variable expenses 1,200,000Contribution margin 1,653,000Fixed expenses: Advertising, salaries, and other fixed out-of-pocket costs $ 790,000 Depreciation 500,000 Total fixed expenses 1,290,000Net operating income $ 363,000 Differential Analysis for Sales Promotion Proposal Kankakee Cosmetics Company is planning a one-month campaign for December to promote sales of one of its two cosmetics products. A total of $150,000 has been budgeted for advertising, contests, redeemable coupons, and other promotional activities. The following data have been assembled for their possible usefulness in deciding which of the products to select for the campaign: Moisturizer PerfumeUnit selling price $35 $55 Unit production costs: Direct materials $(12) $(20) Direct labor (8) (10) Variable factory overhead (3) (6) Fixed factory overhead (2) (6) Total unit production costs $(25) $(42) Unit variable selling expenses (2) (3) Unit fixed selling expenses (2) (8) Total unit costs $(29) $(53) Operating income per unit $6 $2No increase in facilities would be necessary to produce and sell the increased output. It is anticipated that 40,000 additional units of moisturizer or 30,000 additional units of perfume could be sold from the campaign without changing the unit selling price of either product. Required:Prepare a differential analysis as of November 2 to determine whether to promote moisturizer (Alternative 1) or perfume (Alternative 2). If an amount is zero, enter "0" The setting, theme, genre, characters, and summary of the hawk can soar by randi davenport What social or cultural issues exist around scientific development? The game was O interrupting interrupt interrupts O interrupted by a heavy shower. This project provides an exact exposure to the lesson on cystic fibrosis. An alternative project your teacher may prefer is to research a genetic ethics case and complete the same set of questions. However, the sites are educational projects funded by the NIH specifically for educational purposes.First, read the page at DNA files (http://www.dnafiles.org/programs/prenatal-genetic-testing). DNA files is an educational project funded by the National Science Foundation and the National Institutes of Health. Be sure to see that there are two different dates. The original information came out in 1998, and was later updated in 2007.Next, listen to the radio program on the same page. It can be streamed or downloaded. It is about an hour long. Be sure to take notes as you listen, which you'll turn in as rough notes.After you listen to the radio program, answer the following questions in writing.What kinds of thoughts made the women deciding on prenatal tests nervous?Describe what exactly is a wrongful life or wrongful birth suit?After the segment on wrongful life suits concluded, what was YOUR opinion on this kind of case?Describe how the ability to test for genetic abnormalities via an amnio ended up coming at a crossroads with the legalization of the abortion procedure in the United States. That is, how did these two separate events first become intertwined?Describe the alpha-fetoprotein (AFP) test and its use. Be sure to mention how often it screens as positive. Are all positive screenings truly spina bifida?Summarize the story of Judy, who had an amnio that came back as showing a possible problem.Describe what Tay Sachs syndrome is and what groups most often carry the disease.Describe how the Orthodox Jewish community avoids the ethical dilemmas of prenatal testing, but still manages to screen for Tay Sachs.Summarize some of the things that the family of Brendan, who has cystic fibrosis, must do to cope with his disease.Which two ethnic groups are mentioned as not having a strong possibility of carrying CF?Why does the radio program mention that CF can be a very mild disease without too many symptoms or problems? Can prenatal testing tell a couple how bad the baby's problems may be?In the portion of the program regarding testing for Down Syndrome, what is the importance of the geography and culture of the doctor's patients? What does it have to do with prenatal testing?Describe what eugenics is. What is its philosophical connection and similarity with German Nazi views? How does it relate to genetic testing?What is achondroplasia?According to the program, by what percent has prenatal testing reduced the prevalence of genetic abnormalities?One doctor, Lee Silver, describes a possible future where genes are introduced purposefully into a baby's make up in order to give the person future protection against a disease. What is the potential ethical conflict of this practice? where should the linear inequality y 1/4 x- 3 be shaded? Using the formula m1v1=m2v2 , you have a 0.5 m mgso4 stock solution available.calculate the volume of the stock solution needed to make 2.0 l of 0.20m mgso4.0.5 l04.0l0.9 lkid 0.8 l