The first four derivatives of f(t) are [tex]f'(t) = 12t + 9e^t, f''(t) = 12 + 9e^t, f'''(t) = 9e^t[/tex], and [tex]f''''(t) = 9e^t[/tex].
How to find first four derivatives of f(t)?The given function is [tex]f(t) = 6t^2+ 9e^t[/tex].
To find its derivative, we can apply the power rule and the derivative of exponential function, which states that the derivative of [tex]e^t[/tex]is [tex]e^t[/tex]itself.
Thus, we get [tex]f'(t) = 12t + 9e^t[/tex].
Applying the power rule again, we get [tex]f''(t) = 12 + 9e^t[/tex].
Taking the derivative one more time, we get [tex]f'''(t) = 9e^t[/tex].
Finally, taking the fourth derivative, we get [tex]f''''(t) = 9e^t[/tex].
In summary, the first four derivatives of f(t) are [tex]f'(t) = 12t + 9e^t[/tex], [tex]f''(t) = 12 + 9e^t[/tex], [tex]f'''(t) = 9e^t[/tex], and[tex]f''''(t) = 9e^t[/tex].
Learn more about differentiation of a quadratic function
brainly.com/question/1462307
#SPJ11
help me with this please!!! i need the answer rn
: (
Answer:
Its B because you find the number in the middle, if theres two numbers in the middle, you add them up and divide by 2
the answer is B
the answer is B because 21 and 23 both seem to be in the middle. when two numbers are in the middle, you add them, then divide by two as a result, you would get 22.
There are 5 children running in a relay race. in a relay race, each person runs part of the race. the next runner starts where the previous runner stops. each runner runs the same distance. in this relay race, each child runs of a mile, then stops so the next , a runner can continue. plot the point on the number line that represents the location where the fourth child will stop running.
The location where the fourth child will stop running in the relay race is 4/5 of the way.
To determine the location where the fourth child will stop running in the relay race, we need to find out the total distance covered by the first four children.
Since each child runs 1/5 of a mile, we can find the total distance for the first four children by multiplying their individual distances.
Total distance = (Number of children) * (Distance run by each child)
Total distance = 4 * (1/5)
Now, let's multiply:
Total distance = 4/5
So, the fourth child will stop running at a location 4/5 of a mile from the starting point. To plot this point on a number line, locate the point between 0 and 1 that is 4/5 of the way. This point represents the location where the fourth child will stop running in the relay race.
To learn more about relay race problems go to :
https://brainly.com/question/1658477?referrer=searchResults
#SPJ11
Show that p(0,7), q(6,5), r(5,2) and s(-1,4) are the vertices of rectangular
Answer:
Step-by-step explanation:
P(0,7), Q(6,5), R(5,2), and S(-1,4) form the vertices of a rectangle. To prove this, we need to show that the opposite sides of the quadrilateral are parallel and that the diagonals are equal in length and bisect each other.
To explain this solution in more detail, we can start by finding the slopes of the line segments connecting each pair of points. The slope of a line segment can be calculated using the formula:
slope = (change in y) / (change in x)
For example, the slope of the line segment connecting P and Q is:
slope PQ = (5 - 7) / (6 - 0) = -2/6 = -1/3
We can calculate the slopes of the other line segments in a similar way. If the opposite sides of the quadrilateral are parallel, then their slopes must be equal. We can check that this is true for all pairs of opposite sides:
slope PQ = -1/3, slope SR = -1/3
slope QR = (2 - 5) / (5 - 6) = -3/-1 = 3, slope PS = (4 - 7) / (-1 - 0) = -3/-1 = 3
Next, we can calculate the lengths of the diagonals using the distance formula:
distance PR = sqrt[(5 - 0)^2 + (2 - 7)^2] = sqrt(5^2 + (-5)^2) = sqrt(50)
distance QS = sqrt[(6 - (-1))^2 + (5 - 4)^2] = sqrt(7^2 + 1^2) = sqrt(50)
If the diagonals are equal in length, then we should have distance PR = distance QS, which is indeed the case.
Finally, we need to show that the diagonals bisect each other. This means that the midpoint of PR should be the same as the midpoint of QS. We can calculate the midpoint of each diagonal using the midpoint formula:
midpoint of PR = [(0 + 5)/2, (7 + 2)/2] = (2.5, 4.5)
midpoint of QS = [(6 + (-1))/2, (5 + 4)/2] = (2.5, 4.5)
Since the midpoints are the same, we have shown that the diagonals bisect each other.
Therefore, we have shown that the points P(0,7), Q(6,5), R(5,2), and S(-1,4) form the vertices of a rectangle.
To know more about vertices of a rectangle refer here:
https://brainly.com/question/16071215#
#SPJ11
A circle of radius 6 is centred at the origin, as shown.
The tangent to the circle at point P crosses the y-axis at (0, -14).
Work out the coordinates of point P.
Give any decimals in your answer to 1 d.p.
Answer:
P = (5.4, -2.6)
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5 cm}\underline{Equation of a circle}\\\\$(x-h)^2+(y-k)^2=r^2$\\\\where:\\ \phantom{ww}$\bullet$ $(h,k)$ is the center. \\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}[/tex]
As the given circle has a radius of 6 units and is centred at the origin, the equation of the circle is:
[tex]x^2+y^2=36[/tex]
The formula for the equation of the tangent line to a circle with the equation x² + y² = a² is:
[tex]\boxed{y = mx \pm a \sqrt{1+ m^2}}[/tex]
where:
m is the slope.a is the radius of the circle.To find the slope of the equation of the tangent line to the circle that passes through the point (0, -14), substitute a = 6, x = 0 and y = -14 into the formula and solve for m:
[tex]\implies -14 = m(0) \pm 6 \sqrt{1+ m^2}[/tex]
[tex]\implies -14 = \pm 6 \sqrt{1+ m^2}[/tex]
[tex]\implies \pm\dfrac{14}{6} =\sqrt{1+ m^2}[/tex]
[tex]\implies \left(\pm\dfrac{14}{6}\right)^2 =1+m^2[/tex]
[tex]\implies m^2= \left(\pm\dfrac{14}{6}\right)^2-1[/tex]
[tex]\implies m^2=\dfrac{40}{9}[/tex]
[tex]\implies \sqrt{m^2}= \sqrt{\dfrac{40}{9}}[/tex]
[tex]\implies m=\pm\sqrt{\dfrac{40}{9}}[/tex]
[tex]\implies m=\pm\dfrac{2\sqrt{10}}{3}[/tex]
The slope-intercept form of a straight line is y = mx + b, where m is the slope and b is the y-intercept.
As the slope of the given tangent line is positive, and the y-intercept is (0, -14), the equation of the tangent line is:
[tex]\boxed{y=\dfrac{2\sqrt{10}}{3}x-14}[/tex]
As point P is the point of intersection of the circle and the tangent line, substitute the tangent line into the equation of the circle and solve for x:
[tex]x^2+\left(\dfrac{2\sqrt{10}}{3}x-14\right)^2=36[/tex]
Expand the brackets:
[tex]x^2 +\dfrac{40}{9}x^2-\dfrac{56\sqrt{10}}{3}x+196=36[/tex]
Subtract 36 from both sides of the equation:
[tex]\dfrac{49}{9}x^2-\dfrac{56\sqrt{10}}{3}x+160=0[/tex]
Multiply both sides of the equation by 9:
[tex]49x^2-168\sqrt{10}x+1440=0[/tex]
Rewrite the equation in the form a² - 2ab + b²:
[tex](7x)^2-2 \cdot 7 \cdot 12\sqrt{10}x+(12\sqrt{10})^2=0[/tex]
Apply the Perfect Square formula: a² - 2ab + b² = (a - b)²
[tex](7x-12\sqrt{10})^2=0[/tex]
Solve for x:
[tex]7x-12\sqrt{10}=0[/tex]
[tex]7x=12\sqrt{10}[/tex]
[tex]x=\dfrac{12\sqrt{10}}{7}[/tex]
To find the y-coordinate of point P, substitute the found value of x into the equation of the tangent line:
[tex]y=\dfrac{2\sqrt{10}}{3}\left(\dfrac{12\sqrt{10}}{7}\right)-14[/tex]
[tex]y=\dfrac{2\sqrt{10}\cdot 12\sqrt{10}}{3\cdot 7}\right)-14[/tex]
[tex]y=\dfrac{240}{21}-14[/tex]
[tex]y=\dfrac{80}{7}-\dfrac{98}{7}[/tex]
[tex]y=-\dfrac{18}{7}[/tex]
Therefore, the exact coordinates of point P are:
[tex]\left(\dfrac{12\sqrt{10}}{7}, -\dfrac{18}{7}\right)[/tex]
The coordinates of point P to 1 decimal place are:
[tex](5.4, -2.6)[/tex]
Find the arc length of CD
Answer: 15 feet
Step-by-step explanation:
Suppose z = x+ sin(y) , x = 2t = - 482, y = 6st. - 1 A. Use the chain rule to find дz as and Oz as functions of дz Ət X, Y, s and t. - az მs/Əz as/Əz B. Find the numerical values of and o"
The numerical value of Oz is approximately -1819.86.
Using the chain rule, we have:
[tex]dz/dt = dz/dx * dx/dt + dz/dy * dy/dt\\dz/ds = dz/dy * dy/ds[/tex]
We can calculate each term using the given equations:
dz/dx = 1
dx/dt = 2
dy/dt = 0
dz/dy = cos(y)
dy/ds = 6t
Substituting these values, we get:
[tex]dz/dt = dz/dx * dx/dt + dz/dy * dy/dt = 1 * 2 + cos(y) * 0 = 2\\dz/ds = dz/dy * dy/ds = cos(y) * 6t = 6t * cos(6st)[/tex]
To find дz as/Əz, we need to solve for as in terms of z and s:
z = x + sin(y) = 2t + sin(6st)
x = 2t
y = 6st - 1
Solving for s in terms of t, we get:
s = (y + 1)/(6t)
Substituting this into the equation for z, we get:
z = 2t + [tex]sin(6t(y+1)/(6t)) = 2t + sin(y+1)[/tex]
Taking the partial derivative of z with respect to as, we get:
[tex]дz/Əz = 1[/tex]
B. To find the numerical values of дz and Oz, we need to plug in the given values of x, y, s, and t into our equations. Using the given values, we get:
x = 2t = -964
y = 6st - 1 = -3617
z = x + sin(y) = -964 + sin(-3617) ≈ -964.73
Using the values of s and t, we can find:
s = (y + 1)/(6t) ≈ -0.9985
t = x/2 ≈ -482
Substituting these values into our equation for дz as/Əz, we get:
дz/Əz = 1
Therefore, the numerical value of дz is 1.
Substituting these values into our equation for dz/ds, we get:
dz/ds = 6t * cos(6st) ≈ -1819.86
Therefore, the numerical value of Oz is approximately -1819.86.
To know more about chain rule here
https://brainly.com/question/30895266
#SPJ4
The table shows the amount of rainfall, in cm, that fell each day for 30 days.
Rainfall (r cm)
Frequency
0 < r ≤ 10
9
10 < r ≤ 20
13
20 < r ≤ 30
5
30 < r ≤ 40
2
40 < r ≤ 50
1
Work out an estimate for the mean amount of rainfall per day.
Optional working
+
cm
Ansv
Total marks: 3
Answer: The mean amount of rainfall per day is 16 cm.
Step-by-step explanation: Finding the total of all the rainfall amounts and dividing it by the total number of days will estimate the mean amount of rain that falls each day. We will use the midpoint technique, which assumes that the rainfall values in each interval have equal distributions, to calculate the mean.
Here is how to calculate it:
Midpoint of 0 < r ≤ 10 = (0+10)/2 = 5
Midpoint of 10 < r ≤ 20 = (10+20)/2 = 15
Midpoint of 20 < r ≤ 30 = (20+30)/2 = 25
Midpoint of 30 < r ≤ 40 = (30+40)/2 = 35
Midpoint of 40 < r ≤ 50 = (40+50)/2 = 45
The formula for calculating average rainfall is (95 + 1315 + 525 + 235 + 1*45) / (9 + 13 + 5 + 2+1) = (45 + 195 + 125 + 70 + 45) / 30 = 480 / 30 = 16
Consequently, the estimated average daily rainfall is 16 cm.
To know what is mean:
https://brainly.in/textbook-solutions/q-define-arithmetic-mean?source=quick-results
Need help please show work
Answer:
Add the lengths:
5x - 16 + 2x - 4 = 7x - 20
1) What do you think this graph is suggesting regarding skill levels for future employment, give two suggestions..
2) What occupational group will people with a skill level 5 be able to join?
Answer:
1) I think the graph is suggesting that a higher level of skill, or degree, will ultimately help you get a better job easier and faster.
2) With a skill level of five, you can become a sales worker or labourer. It is a low percentage of people with a skill level five to become community and personal service workers.
Thanks for reading! Always work toward your dreams! :)
3 square root y to the second power
The expression for the given statement is √3².
We have,
The expression that can be written from the statement.
3 square root = √3
Second power of x = x²
Now,
We can write the expression as,
= √3²
Thus,
The expression for the given statement is √3².
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ1
Alexandra and her mother are planting a rectangular garden. In the middle of the garden they will plant the vegetables and they will plant flowers around vegetable garden, as shown below.
If the area around the vegetable garden is of uniform width (labeled with x) and the dimensions of the vegetable garden is 45 feet by 20 feet, what expression represents the area of the flower garden?
Make sure to show all of your steps in your answer, including the area of the vegetable garden and the area of the entire garden.
The expression for the area of the flower garden is (45+2x)(20+2x) - 900.
How to solveArea of vegetable garden:
[tex]A_v = 45 ft * 20 ft[/tex] = 900 sq ft
Dimensions of entire garden:
Length = 45 ft + 2x
Width = 20 ft + 2x
Area of entire garden:
[tex]A_e = (45+2x)(20+2x)[/tex]
Area of flower garden:
[tex]A_f = A_e - A_v = (45+2x)(20+2x) - 900 sq ft[/tex]
So, the expression for the area of the flower garden is (45+2x)(20+2x) - 900.
Read more about area here:
https://brainly.com/question/25292087
#SPJ1
I NEED SERIUOS HELPPP
The regression line equation, can be found to be y = 0.90x - 3.79
How to find the regression equation ?Find the slope using the slope formula :
m = ( 5 x 1944 - 98 x 69 ) / ( 5 x 2580 - 98² )
m = ( 9720 - 6762 ) / ( 12900 - 9604 )
m = 2958 / 3296
= 0.8975
Then find the y - intercept :
b = ( 69 - 0. 8975 x 98) / 5
b = ( 69 - 87. 945) / 5
b = - 18. 945 / 5
= - 3.789
The regression equation is:
y = 0.90x - 3.79
Find out more on regression equation at https://brainly.com/question/27997774
#SPJ1
What does the mapping found in part b tell you about the relationship between the two circles? explain your reasoning.
The term "mapping" refers to the process of creating a mathematical correspondence between points or objects in two different sets. In this case, the mapping found in part b tells us that there exists a one-to-one correspondence between the points in Circle A and the points in Circle B.
There is a one-to-one correspondence between the points in Circle A and the points in Circle B, and that this correspondence preserves distance.
This means that for every point in Circle A, there is exactly one corresponding point in Circle B that is the same distance away from the center of the circle as the original point.
Since the correspondence is one-to-one, it follows that the two circles have the same number of points. That is, if Circle A has n points, then Circle B also has n points.
Therefore, we can conclude that the two circles have the same size.
Furthermore, because the correspondence preserves distance, any transformation that maps one circle onto the other must be a rigid motion, meaning it preserves angles and distances.
In particular, the transformation must be an isometry.
Therefore, we have shown that the two circles are congruent. That is, they have the same size and shape, and can be transformed onto one another by a combination of translations, rotations, and reflections.
Read more about Circle.
https://brainly.com/question/29142813
#SPJ11
Identify the equation of the line that passes through the pair of points (−3, 6) and (−5, 9) in slope-intercept form.
Therefore, the equation of the line that passes through the points (-3, 6) and (-5, 9) in slope-intercept form is:
y = -3/2 x + 3/2
Step-by-step explanation:
To find the equation of the line that passes through the points (-3, 6) and (-5, 9) in slope-intercept form (y = mx + b), we need to first find the slope of the line using the formula:
m = (y2 - y1) / (x2 - x1)
where (x1, y1) = (-3, 6) and (x2, y2) = (-5, 9).
m = (9 - 6) / (-5 - (-3))
m = 3 / (-2)
m = -3/2
Now that we have the slope, we can use either of the two given points and the slope to find the y-intercept (b) of the line:
y = mx + b
6 = (-3/2)(-3) + b
6 = 9/2 + b
b = 6 - 9/2
b = 3/2
A gym offers a trial membership for 2 months. It discounts the regular monthly fee, f, by $15. Logan would like to sign up if the total price of the trial membership is less than $60. Which inequality could help Logan determine if he would like to sign up?
If he would like to sign up, then the inequlity could help Logan is defined as 2x ≤ 30, where, x --> monthly fee.
Inequality is defined as the 'not equal'. An inequality is a statement that shows a non-equal comparison between two numbers or mathematical expressions and expresses relationship between them. The symbols used for showing inequality are <, > , ≤, ≥. We have a gym offers a 2 months trials membership. The discounts the regular monthly fee, f
= $ 15
Now, Logan interested to sign up. Total price trial membership is less than $60. Let the total price of trial membership and regular monthly fee be P dollars and x dollars respectively. So, P ≤ $60 and P
= 2x - 2×15 = 2x - 30
If he would like to sign up, then the inequlity could help Logan is defined as below, 2x - 30 ≤ 60. Hence, required inequlity is 2x ≤ 30.
For more information about inequality, visit:
https://brainly.com/question/28230245
#SPJ4
Evaluate the following indefinite integral si 3x^2 – 3x +1/ x^3 + 2
To evaluate the indefinite integral of 3x^2 – 3x +1/ x^3 + 2, we can use partial fraction decomposition.
First, we factor the denominator: x^3 + 2 = (x + ∛2)(x^2 – ∛2x + 2).
Next, we can write the fraction as:
3x^2 – 3x +1/ x^3 + 2 = A/x + B(x^2 – ∛2x + 2) + C(x + ∛2)
Multiplying both sides by the denominator, we get:
3x^2 – 3x + 1 = A(x^2 – ∛2x + 2)(x + ∛2) + Bx(x + ∛2) + C(x^2 – ∛2x + 2)
To solve for A, B, and C, we can plug in specific values of x. For example, if we plug in x = -∛2, we get:
-2√2 + 1 = A(4√2) + C(0)
Therefore, A = (2 – √2)/8.
If we plug in x = 0, we get:
1 = A(2√2) + B(0) + C(√2)
Therefore, C = 1/√2.
Finally, if we plug in x = 1, we get:
1 = A(3√2) + B(1 – √2) + C(1 + √2)
Therefore, B = (-1 + √2)/4.
Now that we have A, B, and C, we can write the original fraction as:
3x^2 – 3x +1/ x^3 + 2 = (2 – √2)/8 * 1/x + (-1 + √2)/4 * (x^2 – ∛2x + 2) + 1/√2 * (x + ∛2)
Using this partial fraction decomposition, we can now integrate each term separately.
Integrating the first term, we get:
∫(2 – √2)/8 * 1/x dx = (1/8)(2ln|x| – √2 ln|x^2 + 2|) + C
Integrating the second term, we can complete the square to get:
∫(-1 + √2)/4 * (x^2 – ∛2x + 2) dx = (-1 + √2)/4 * ∫(x – ∛1/2)^2 + 3/2 dx = (-1 + √2)/4 * ((x – ∛1/2)^2 + 3/2) + C
Integrating the third term, we get:
∫1/√2 * (x + ∛2) dx = (1/2√2) * (x^2/2 + ∛2x) + C
Putting it all together, we have:
∫(3x^2 – 3x +1)/ (x^3 + 2) dx = (1/8)(2ln|x| – √2 ln|x^2 + 2|) + (-1 + √2)/4 * ((x – ∛1/2)^2 + 3/2) + (1/2√2) * (x^2/2 + ∛2x) + C
where C is the constant of integration.
Visit here to learn more about indefinite integral brainly.com/question/29133144
#SPJ11
Kyra has 2 plates, 2 cups, and 2 bowls. If she chooses one of each randomly, what is the probability that the plate, cup, and bowl she chooses will all be blue?
0.167
0.333
0.125
0.083
The probability is 0.125
To solve this problemThere are a total of 2 × 2 x 2 = 8 possibilities of one plate, one cup, and one bowl that Kyra can select if she has two plates, two cups, and two bowls.
We need to figure out how many combinations fit this requirement because we are interested in the likelihood that all three objects are blue. There are 2 × 2 x 2 = 8 potential color combinations if we assume that each item can be either blue or not blue.
There is only one of these eight color pairings in which all three components are blue. P(all three are blue) = 1/8 = 0.125 is the likelihood that Kyra will select one blue plate, one blue cup, and one blue bowl.
So, the probability is 0.125.
Learn more about probability here : brainly.com/question/29280399
#SPJ1
Find the volume of the solid generated by revolving the region bounded by the curve y=7secx and the line y=72 over the interval − π 4≤x≤ π 4 about the x-axis.
To find the volume of the solid generated by revolving the region bounded by the curve y=7secx and the line y=72 over the interval − π/4≤x≤π/4 about the x-axis, we can use the method of cylindrical shells.
First, we need to find the equation of the curve of the region being revolved. We have y=7secx and y=72, so at the intersection point, we have 7secx=72, which gives us secx=10.285. Taking the inverse secant function of both sides, we get x=1.37 (approximately).
Now, we can set up the integral for the volume using cylindrical shells. The radius of each shell is y-72, and the height of each shell is 2π times the distance from x to the intersection point, which is x-1.37. The integral is:
V = ∫(2π)(y-72)(x-1.37) dx, from -π/4 to π/4
We can substitute y=7secx into the integral:
V = ∫(2π)(7secx-72)(x-1.37) dx, from -π/4 to π/4
Using integration by parts, we can evaluate the integral:
V = (2π)[(7/2)ln|secx+tanx| - 72x + (1.37)(7/2)ln|secx+tanx| + 46.8] from -π/4 to π/4
V = (2π)(7/2)(ln|11+6√3| + ln|11-6√3| + 1.37ln|11+6√3| + 1.37ln|11-6√3| - 144)
V ≈ 305.64 cubic units.
Therefore, the volume of the solid generated by revolving the region bounded by the curve y=7secx and the line y=72 over the interval − π/4≤x≤ π/4 about the x-axis is approximately 305.64 cubic units.
To find the volume of the solid generated by revolving the region bounded by the curve y=7sec(x) and the line y=72 over the interval -π/4≤x≤π/4 about the x-axis, you can use the disk method. The formula for the disk method is:
Volume = π * ∫[R(x)² - r(x)²] dx from a to b
In this case, R(x) represents the outer radius, which is given by y=72, and r(x) represents the inner radius, which is given by y=7sec(x). The limits of integration are a=-π/4 and b=π/4. Therefore, the volume can be calculated as:
Volume = π * ∫[72² - (7sec(x))²] dx from -π/4 to π/4
Now, evaluate the integral and multiply by π to find the volume of the solid.
Learn more about volume here: brainly.com/question/1578538
#SPJ11
please help.
1. Complete the Pythagorean triple. (24,143, ___)
2. Given the Pythagorean triple (5,12,13) find x and y
3. Given x=10 and y=6 find associated Pythagorean triple
4. Is the following a possible Pythagorean triple? (17,23,35)
The value that will complete Pythagorean triple would be = 24,143, 145 )
How to calculate the missing value of a triangle using the Pythagorean formula?To calculate the missing value of a triangle that completes a Pythagorean triple that formula that should be used is given as follows.
That is;
C ² = a² + b²
C = Missing value of the Pythagorean triple
a = 24
b.= 143
C² = 24²+143²
= 576+20,449
C =√21,025
= 125
Learn more about Pythagorean theorem here:
https://brainly.com/question/28981380
#SPJ1
there are at present 40 solar energy construction firms in the state of indiana. an average of 20 solar energy construction firms open each year in the state. the average firm stays in business for 10 years. if present trends continue, what is the expected number of solar energy construction firms that will be found in indiana? if the time between the entries of firms into the industry is exponentially distributed, what is the probability that (in the steady state) there will be more than 300 solar energy firms in business? (hint: for large l, the poisson distribution can be approximated by a normal distribution.)
a) The expected number of solar energy construction firms that will be in indiana
is equal to 200 firms.
b) In case of exponential Probability distribution that there will be more than 300 solar energy firms in business is equals to the 0.305 × 10⁻⁵ .
The Poisson process is used when events are independent of each other and the average rate is constant. Two events cannot occur simultaneously. We have a data of about the number of solar energy construction firms in the state of indiana. Number of solar energy construction firms in the state at present
= 40
Average of solar energy construction firms open each year in the state = 20
For number of year average firm stays in business = 10 years.
We have to determine the expected number of solar energy construction firms that will be found in indiana. Let X be excepted value,then (X∼Poi(λt)X∼ Poi(200),
a) If the present trends continue, then the expected number of energy construction firms that will be found in Indiana will be
Expected Number of firms = 20× 10
= 200 firms
(b) If the time between the entries of firms into the industry is exponentially distributed. Then the probability that there will be more than 300 solar energy firms in business, P ( x> 300) = e⁻ᵐˣ , where m = 1/20 and x
= 300
=> P( x> 300) = 1/exp.( 300/20)
= e⁻¹⁵
= 0.0000003059 = 0.305 × 10⁻⁵
Hence, required probability value is 0.305 × 10⁻⁵.
For more information about exponential distribution, visit:
https://brainly.com/question/11843641
#SPJ4
Si hoy es martes que día sera dentro de 300 días
Answer:
Si hoy es martes en 300 días será lunes.
⭐Vamos a considerar que una semana tiene 7 días, es decir, cada 7 días será martes.
Pensamos una aproximación de semanas, al dividir 300 entre 7:
300 ÷ 7 = 42,85 ≈ 42 semanas completas
Cantidad de días que hay en 42 semanas:
7 × 41 = 294 días
Cantidad de días que faltan para completar 300:
300 - 294 = 6 días
El día 294 será martes
6 días después (para completar 300) será lunes ✔️
Step-by-step explanation:
Brainlist porfavor
Answer:
Si hoy es martes en 300 días será lunes.
in each hand of a card game, there is a 54% chance of winning 3 points and a 46% chance of losing 4 points. is the game a fair game? explain
Answer: yes, the game is fair.
Step-by-step explanation:
The game is fair because:
a. you are playing with multiple players, and they have equal odds
b. the odds of winning are higher, so there is balance since you earn less points.
Give brainliest please!
7. The table shows the linear relationship between the total amount Mrs. Jacobs will be
charged for a skating party and the number of children attending.
Which equation best represents y, the total amount in dollars Mrs. Jacobs will be
charged for
x number of children attending the skating party?
The equation that best represents the linear relationship between the total amount Mrs. Jacobs will be charged and the number of children attending the skating party is y = mx + b.
In this case, y represents the total amount in dollars that Mrs. Jacobs will be charged, x represents the number of children attending the party, m represents the slope of the line, and b represents the y-intercept.
To find the equation, we need to determine the slope and y-intercept from the table given. From the table, we can see that for every additional child attending the party, the total amount charged increases by $10. This means that the slope (m) of the line is 10.
To find the y-intercept (b), we can look at the table and see that when there are zero children attending the party, the total amount charged is $50. This means that the y-intercept is 50.
Putting it all together, the equation that best represents the linear relationship is y = 10x + 50.
To know more about linear relationship refer here:
https://brainly.com/question/29066440#
#SPJ11
An aquarium manager drena
blueprint for a cylindrical fish tanka
the tank has a vertical tube in the
middle in which visitors can stand
and view the fish
the best average density for the species of fish that will go in the
tankis 16 fish per 100 gallons of water. this provides enough
room for the fish to swim while making sure that there are
plenty of fish for people to see
the aquarium has 275 fish available to put in the tank, s bis he
right number of fish for the tank. if not, how many fich should
be added or removed? explain your reasoning
To determine if the 275 fish are the right number for the cylindrical fish tank, we need to calculate the tank's capacity and compare it to the recommended average density of 16 fish per 100 gallons of water.
The volume of a cylinder is given by the formula V = πr^2h, where V is the volume, r is the radius, and h is the height of the cylinder.
Assuming the tank has a height of h and a radius of r, we can calculate its volume as follows:
[tex]V = πr^2h[/tex]
Since the tank has a vertical tube in the middle, we need to subtract the volume of the tube from the total volume of the tank. Let's assume the tube has a radius of 2 feet and a height of 8 feet. Then the volume of the tube is:
Vtube = π(2)^2(8) = 100.53 cubic feet
Thus, the volume of the tank without the tube is:
Vtank = πr^2h - Vtube
To find the value of r, we need to know the diameter of the tank. Let's assume the tank has a diameter of 10 feet, which means the radius is 5 feet.
Then the volume of the tank without the tube is:
Vtank = π(5)^2h - 100.53
We need to convert the volume of the tank from cubic feet to gallons, so we multiply by 7.48 (1 cubic foot = 7.48 gallons):
Vtank(gallons) = 7.48[π(5)^2h - 100.53]
Now we can calculate the recommended number of fish for the tank:
Recommended number of fish = 16 fish/100 gallons x Vtank(gallons)
Recommended number of fish = 16 fish/100 gallons x 7.48[π(5)^2h - 100.53]
Recommended number of fish = 1.175[π(5)^2h - 100.53]
So, if the number of fish available is 275, we can set up the following equation:
275 = 1.175[π(5)^2h - 100.53]
Solving for h, we get:
h = (275/1.175π(5)^2) + (100.53/π(5)^2)
h ≈ 8.3 feet
Therefore, the cylindrical fish tank with a height of 8.3 feet and a radius of 5 feet can hold 275 fish with an average density of 16 fish per 100 gallons of water. If the aquarium manager wants to add more fish, they should recalculate the volume of the tank and adjust the height accordingly to maintain the recommended density of 16 fish per 100 gallons of water. Conversely, if they want to remove fish, they can do so without changing the height of the tank.
To know more about volume refer here
https://brainly.com/question/25282116#
#SPJ11
A scientist uses a submarine to study ocean life.
She begins at sea level, which is an elevation of o feet.
She travels straight down for 41 seconds at a speed of 4.9 feet per second.
• She then ascends for 49 seconds at a speed of 3.2 feet per second.
●
After this 90-second period, how much time, in seconds, will it take for the scientist
to travel back to sea level at 3.6 feet per second? If necessary, round your answer to
the nearest tenth of a second.
After these 90 seconds, the time, in seconds, that it will take for the scientist to travel back to sea level at 3.6 feet per second is 12.3 seconds, rounded to the nearest tenth of a second.
How the time is determined:The descent rate = 4.9 feet per second
The descent time = 41 seconds
The total descent distance = 200.9 feet (4.9 x 41)
The ascent rate = 3.2 feet per second
The ascent time = 49 seconds
The total ascent distance traveled = 156.8 feet (3.2 x 49)
The difference between descent and ascent distances = 44.1 feet (200.9 - 156.8)
Traveling speed to sea level = 3.6 feet per second
The time to be taken to travel to sea level = 12.25 (44.1 ÷ 3.6)
= 12.3 seconds
Learn more about time, distance, and speed at https://brainly.com/question/26046491.
#SPJ1
Calculate the accumulated amount in each investment after 40 years. Using a TVM solver
a. $150 invested on the first day of each month at 6% compounded monthly.
b. $900 invested on January 1st and on July 1st at 4% compounded semi-annually.
c. $450 invested on January 1st, April 1st, July 1st, and October 1st at 5% compounded quarterly.
Answer: a. Using a TVM solver with the following inputs:
Present value (PV) = 150
Interest rate (I/Y) = 6/12 = 0.5 (monthly interest rate)
Number of periods (N) = 40 years x 12 months/year = 480
Payment (PMT) = -150 (negative because it's an outgoing cash flow at the beginning of each month)
Compounding frequency (C/Y) = 12 (monthly compounding frequency)
We get an accumulated amount (FV) of $222,812.64.
b. Using a TVM solver with the following inputs:
Present value (PV) = 900
Interest rate (I/Y) = 4/2 = 2 (semi-annual interest rate)
Number of periods (N) = 40 years x 2 semi-annual periods/year = 80
Payment (PMT) = 0 (because there are no regular payments)
Compounding frequency (C/Y) = 2 (semi-annual compounding frequency)
We get an accumulated amount (FV) of $3,054.58.
c. Using a TVM solver with the following inputs:
Present value (PV) = 450
Interest rate (I/Y) = 5/4 = 1.25 (quarterly interest rate)
Number of periods (N) = 40 years x 4 quarterly periods/year = 160
Payment (PMT) = 0 (because there are no regular payments)
Compounding frequency (C/Y) = 4 (quarterly compounding frequency)
We get an accumulated amount (FV) of $2,109.64.
Step-by-step explanation: can i get brainliest :D
To calculate the accumulated amount in each investment after 40 years, we can use the TVM solver. For each investment, use the appropriate formula to calculate the accumulated amount by plugging in the given values of principal amount, interest rate, number of times interest is compounded per year, and number of years. Finally, calculate the accumulated amount to find the answer.
Explanation:a. To calculate the accumulated amount in the first investment, $150 invested on the first day of each month at 6% compounded monthly for 40 years, you can use the formula:
Let P be the principal amount: $150Let r be the annual interest rate: 6% or 0.06Let n be the number of times interest is compounded per year: 12 (monthly)Let t be the number of years: 40Use the formula A = P(1 + r/n)^nt to calculate the accumulated amount:A = 150(1 + 0.06/12)^(12*40)
A=1643.61
b. To calculate the accumulated amount in the second investment, $900 invested on January 1st and July 1st at 4% compounded semi-annually for 40 years, you can use the formula:
Let P be the principal amount: $900Let r be the annual interest rate: 4% or 0.04Let n be the number of times interest is compounded per year: 2 (semi-annually)Let t be the number of years: 40Use the formula A = P(1 + r/n)^(2*t) to calculate the accumulated amount:A = 900(1 + 0.04/2)^(2*40)
A=4387.89
c. To calculate the accumulated amount in the third investment, $450 invested on January 1st, April 1st, July 1st, and October 1st at 5% compounded quarterly for 40 years, you can use the formula:
Let P be the principal amount: $450Let r be the annual interest rate: 5% or 0.05Let n be the number of times interest is compounded per year: 4 (quarterly)Let t be the number of years: 40Use the formula A = P(1 + r/n)^(n*t) to calculate the accumulated amount:A = 450(1 + 0.05/4)^(4*40)
A=3284.11
Learn more about Calculating accumulated amount here:https://brainly.com/question/34559577
#SPJ11
3. Peter throws a dice and spins a coin 150 times as part of an experiment. He records 71 heads, and a six 21 total times. On 68 occasions, he gets neither a head nor a six. Complete the table. Roll a b Not a six Total Head Tail Totals
After evaluating the given question the number of rolls that were both heads and sixes is 142, under the condition that Peter throws a dice and spins a coin 150 times.
Here we have to depend on the principle of probability,
Its given that he recorded 71 heads, and a six 21 total times.
Then,
| Roll | A (dice) | B (coin) | Not a six | Total |
|------|----------|----------|-----------|-------|
| Head | | | | |
| Tail | | | | |
| Total| | | | |
To find the number of rolls that were tails, we can subtract the number of heads from the total number of rolls:
150 - 71 = 79
So we can put in the Tail row with 79.
Now to find the number of roll s that were both heads and sixes, we can add up the number of heads and sixes and then subtract the number of rolls that were both heads and sixes
21 + 71 - x = y
Here
x = number of rolls that were both heads and sixes
y = total number of rolls that were either heads or sixes .
We know that there were 71 heads and 21 sixes, so
y = 71 + 21 = 92.
There were 68 rolls that were neither heads nor sixes,
so
x + y = 150 - 68 = 82.
Solving for x, we get:
x = y - 21 + 71
x = 92 - 21 + 71
x = 142
Lets fill the table
| Roll | A (dice) | B (coin) | Not a six | Total |
|------|-------|-------|-----------|-------|
| Head | - | 71 | - | 71 |
| Tail | - | 79 | - | 79 |
| Total| - | 150 | 68 | - |
To learn more about probability
https://brainly.com/question/13604758
#SPJ4
Volume of a sphere with a radius of 41
Answer:
Volume = 288695.6 in³
Step-by-step explanation:
Volume of a sphere is given by
v=4/3πr^3
Where r is the radius of the sphere
From the question
radius = 41 in
Substitute the value into the above formula
We have
v=4/3 x 41^3π
=275684/3 π
= 288695.6097
We have the final answer as
Volume = 288695.6 in³ to the nearest tenth
Volume = 288695.6 in³ to the nearest tenth
Hope this helps you
PLS MARK BRAINLIEST
What is a sine wave in Trigonometry
Answer:
Read Below
Step-by-step explanation:
A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the sine trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in mathematics, as well as in physics, engineering, signal processing and many other fields
Answer:
It is a type of wave. There are also cosine waves and tangent waves.
Step-by-step explanation:
WILL MARK BRAINLIEST QUESTION IN PHOTO
Step-by-step explanation:
See image....check my math ! ( I didn't)