Help me solve the equivalent expression (4x+2)-3x+5

Answers

Answer 1

Answer:

X+7

Step-by-step explanation:

Remove the parentheses:

4x+2-3x+5

Collect like terms:

4x-3x=x

2+5=7

Solution:

X+7

Answer 2

Hey there!

(4x + 2) - 3x + 5

= 4x + 2 - 3x + 5

COMBINE the LIKE TERMS

= (4x - 3x) + (2 + 5)

= 4x - 3x + 2 + 5

= 1x + 7

= x + 7


Therefore, your answer is: x + 7


Good luck on your assignment & enjoy your day!


~Amphitrite1040:)


Related Questions

Simplify the following expression:
-5[(x^3 + 1)(x + 4)]​

Answers

Answer:

[tex]-5x^{4} -20x^{3} -5x-20[/tex]

Step-by-step explanation:

[tex]-5[(x^{3} +1)(x+4)][/tex]

Use the FOIL method for the last two groups.

[tex]-5(x^{4} +4x^{3} +x+4)[/tex]

Now, distribute the -5 into each term.

[tex]-5x^{4} -20x^{3} -5x-20[/tex]

What else would need to be congruent to show that ABC=DEF by SAS?

Answers

Answer:

A

Step-by-step explanation:

Answer:

The answer here is A.

A) A is congruent to D.

A=

Step-by-step explanation:

AP E

The sum of two fractions can always be written as a

Answers

Answer: decimal

Step-by-step explanation:

because i did this quiz

What’s the correct answer for this?

Answers

Answer:

C.

Step-by-step explanation:

Density = Mass / Volume

2.7 = 54 / V

V = 54 / 2.7

V = 20 cubic cm

Find the general solution to y′′+6y′+13y=0. Give your answer as y=.... In your answer, use c1 and c2 to denote arbitrary constants and x the independent variable. Enter c1 as c1 and c2 as c2.

Answers

Answer:

[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]

Step-by-step explanation:

In order to find the general solution of a homogeneous second order differential equation, we need to solve the characteristic equation. This is basically as easy as solving a quadratic.

For a second order differential equation of type:

[tex]ay''+by'+cy=0[/tex]

Has characteristic equation:

[tex]a r^{2} +br+c=0[/tex]

Whose solutions [tex]r_1 , r_2 ,.., r_n[/tex] are the roots from which the general solution can be formed. There are three cases:

Real roots:

[tex]y(x)=c_1e^{r_1 x} +c_2e^{r_2 x}[/tex]

Repeated roots:

[tex]y(x)=c_1e^{r x} +c_1 xe^{r x}[/tex]

Complex roots:

[tex]y(x)=c_1e^{\lambda x}cos(\mu x) +c_2e^{\lambda x}sin(\mu x)\\\\Where:\\\\r_1_,_2=\lambda \pm \mu i[/tex]

Therefore:

The characteristic equation for:

[tex]y''+6y'+13y=0[/tex]

Is:

[tex]r^{2} +6r+13=0[/tex]

Solving for [tex]r[/tex] :

[tex]r_1_,_2= -3 \pm 2i[/tex]

So:

[tex]\mu = 2\\\\and\\\\\lambda=-3[/tex]

Hence, the general solution of the differential equation will be given by:

[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]

arl rides his bicycle 120 feet in 10 seconds. How many feet does he ride in 1 minute? 2 feet 12 feet 720 feet 7,200 feet

Answers

Answer: 720 ft

Step-by-step explanation: He rides 720 feet.

if 120 feet are in 10 seconds then;

60 seconds are 60/10*120=720 feet

Answer:

720

Step-by-step explanation:

120/10 to find his feet per second which is 12 feet per second

12*60

since there are 60 seconds in a minute

= 720

The following histogram shows the exam scores for a Prealgebra class. Use this histogram to answer the questions.Prealgebra Exam ScoresScores 70.5, 75.5, 80.5, 85.5, 90.5, 95.5, 100.5Frequency 0, 4, 8, 12, 16, 20, 24Step 1 of 5:Find the number of the class containing the largest number of exam scores (1, 2, 3, 4, 5, or 6).Step 2 of 5:Find the upper class limit of the third class.Step 3 of 5:Find the class width for this histogram.Step 4 of 5:Find the number of students that took this exam.Step 5 of 5:Find the percentage of students that scored higher than 95.595.5. Round your answer to the nearest percent.

Answers

Answer:

The number of the class containing the  largest score can be found in frequency  24 and the class is  98 - 103

For the third class 78 - 83 ; the upper limit = 83

The class width for this histogram 5

The number of students that took the exam simply refers to the frequency is  84

The percentage of students that scored higher than 95.5 is 53%

Step-by-step explanation:

The objective of this question is to use the following histogram that shows the exam scores for a Pre-algebra class to answer the question given:

NOW;

The table given in the question can be illustrated as follows:

S/N           Class                Score          Frequency

1                 68  - 73            70.5           0

2                73 - 78             75.5           4

3                78 - 83             80.5           8

4                83 - 88             85.5           12

5                88 - 93            90.5           16

6                93 - 98            95.5           20

7                98 - 103           100.5          24                            

TOTAL:                                                 84

                                                                                           

a) The number of the class containing the  largest score can be found in frequency  24 and the class is  98 - 103

b) For the third class 78 - 83 ; the upper limit = 83  ( since the upper limit is derived by addition of  5 to the last number showing  in the highest value specified by the number in the class interval which is 78 ( i.e 78 + 5 = 83))

c)   The class width for this histogram 5 ; since it  is the difference  between the upper and lower boundaries  limit of the given class.

So , from above the difference in any of the class will definitely result into 5

d) The number of students that took the exam simply refers to the frequency ; which is (0+4+8+12+16+20+24) = 84

e) Lastly; the percentage of students that scored higher than 95.5 is ;

⇒[tex]\dfrac{20+24}{84} *100[/tex]

= 0.5238095 × 100

= 52.83

To the nearest percentage ;the percentage of students that scored higher than 95.5 is 53%

Answer:

1. 98-103 (6th class)

2. 88

3. 5

4. 84

5. 52%

Step-by-step explanation:

Find attached the frequency table.

The class of exam scores falls between (1, 2, 3, 4, 5, or 6).

The exam score ranged from 68-103

1) The largest number of exam scores = 24

The largest number of exam scores is in the 6th class = 98 -103

Step 2 of 5:

The upper class limit is the higher number in an interval. Third class interval is 83-88

The upper class limit of the third class 88.

Step 3 of 5:

Class width = upper class limit - lower class limit

We can use any of the class interval to find this as the answer will be the same. Using the interval between 73-78

Class width = 78 - 73

Class width for the histogram = 5

Step 4 of 5:

The total of students that took the test = sum of all the frequency

= 0+4+8+12+16+20+24 = 84

The total of students that took the test = 84

Step 5 of 5:Find the percentage of students that scored higher than 95.5

Number of student that scored higher than 95.5 = 20 + 24 = 44

Percentage of students that scored higher than 95.5 = [(Number of student that scored higher than 95.5)/(total number of students that took the test)] × 100

= (44/84) × 100 = 0.5238 × 100 = 52.38%

Percentage of students that scored higher than 95.5 = 52% (nearest percent)

Write an
explicit formula for
ans
the nth
term of the sequence 20, -10,5, ....

Answers

Answer:an=20(-1/2)^n-1

Step-by-step explanation:

11+11=4
22+22=16
33+33=
What’s the answer

Answers

Answer:

what method exactly r u using ????

One possible answer can be 36

Which number is irrational

Answers

Answer:

Can you give the question. Can you post the picture. I can help solve. I will edit this answer once you have given the question/picture.

Write the number that is ten thousand more than
1,853,604,297:​

Answers

Answer:

The answer would be 1,853,614,297

1853614297 is the number that is ten thousand more than 1863604297

Find the constant of variation for the relation and use it to write and solve the equation.

if y varies directly as x and as the square of z, and y=25/9 when x=5 and z=1, find y when x=1 and z=4

Answers

Answer:

When x = 1 and z = 4,   [tex]y=\frac{80}{9}[/tex]

Step-by-step explanation:

The variation described in the problem can be written using a constant of proportionality "b" as:

[tex]y=b\,\,x\,\,z^2[/tex]

The other piece of information is that when x = 5 and z = 1, then y gives 25/9. So we use this info to find the constant "b":

[tex]y=b\,\,x\,\,z^2\\\frac{25}{9} =b\,\,(5)\,\,(1)^2\\\frac{25}{9} =b\,\,(5)\\b=\frac{5}{9}[/tex]

Knowing this constant, we can find the value of y when x=1 and z=4 as:

[tex]y=b\,\,x\,\,z^2\\y=\frac{5}{9} \,\,x\,\,z^2\\y=\frac{5}{9} \,\,(1)\,\,(4)^2\\y=\frac{5*16}{9}\\y=\frac{80}{9}[/tex]

Find the measure of a positive angle and a negative angles that are coterminal with each given angle 400°

Answers

Answer: see below

Step-by-step explanation:

To find a coterminal angle, add or subtract 360° to the given angle as many times as needed to get a positive or negative angle.

I should mention that there are an infinite number of answers!

4) 400°

I can subtract 360° to get a positive angle of 40°

I can subtract another 360° to get a negative angle of -320°

5) -360°

I can subtract 360° to get a negative angle of -720°

I can add 360° twice to get a positive angle of 360°

6) -1010°

I can add 360° to get a negative angle of -650°

I can add 360° another 3 times to get a positive angle of 720°

7) 567°

I can subtract 360° to get a positive angle of 207°

I can subtract another 360° to get a negative angle of -153°

8) -164°

I can subtract 360° to get a negative angle of -524°

I can add 360° to get a positive angle of 194°

9) 358°

I can subtract 360° to get a negative angle of -2°

I can add 360° to get a positive angle of 718°

which of the following explains expressions are equivalent to - 5/6 /-1/3

Answers

Answer:

2.5

Step-by-step explanation:

(-5/6 ) / (-1/3)

multiply the numerator and denominator by the same number -3 gives:

(-5 * -3 /6 ) / (-1* -3/3)

(15/6 ) / (3/3)

(15/6 ) / 1

(15/6 )

12/6 + 3/6

2 3/6

2 1/2

2.5

Given that d is the midpoint of line segment ab and k is the midpoint of line segment bc, which statement must be true? (May give brainliest)

Answers

Answer:

B is the midpoint of line segment AC

A spinner has 10 equally sized sections, 8 of which are gray and 2 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue ? Write your answer as a fraction in simplest form.

Answers

Answer:

4/25

Step-by-step explanation:

The probability the first spin lands on gray is 8/10 = 4/5.

The probability the second spin lands on blue is 2/10 = 1/5.

The probability of both events is 4/5 × 1/5 = 4/25.

1. In an arithmetic sequence, the first term is -2, the fourth term is 16, and the n-th term is 11,998

(a) Find the common difference d

(b) Find the value of n.​


pls help...

Answers

Answer:

see explanation

Step-by-step explanation:

The n th term of an arithmetic sequence is

[tex]a_{n}[/tex] = a₁ + (n - 1)d

(a)

Given a₁ = - 2 and a₄ = 16, then

a₁ + 3d = 16 , that is

- 2 + 3d = 16 ( add 2 to both sides )

3d = 18 ( divide both sides by 3 )

d = 6

--------------

(b)

Given

[tex]a_{n}[/tex] = 11998 , then

a₁ + (n - 1)d = 11998 , that is

- 2 + 6(n - 1) = 11998 ( add 2 to both sides )

6(n - 1) = 12000 ( divide both sides by 6 )

n - 1 = 2000 ( add 1 to both sides )

n = 2001

------------------

9. In 2002 the Georgia department of education reported a mean reading test score of 850 from Tattnall County Career Academy with a standard deviation of 50. The sample was taken from 100 11th grade students. Assuming the test scores are normally distributed, what is the standard error

Answers

Answer:

The standard error = 5

Step-by-step explanation:

Explanation:-

Given sample size 'n' = 100

Given mean reading test score μ =  850

Given standard deviation of the population 'σ' = 50

The standard error is determined by

 Standard error =   [tex]\frac{S.D}{\sqrt{n} }[/tex]

                    S.E = σ/√n

[tex]S.E = \frac{S.D}{\sqrt{n} } = \frac{50}{\sqrt{100} } = 5[/tex]

Final answer:-

The standard error ( S.E) = 5

Find an Equation of a line with the given slope that passes through the point. Write the equation in the form Ax + By=C
M=3/2, (7,-2) -problem
Bridge math sails
Module 4B2

Answers

Answer:

c = 24 can i get brainliest

Step-by-step explanation:

The average math SAT score is 511 with a standard deviation of 119. A particular high school claims that its students have unusually high math SAT scores. A random sample of 55 students from this school was​ selected, and the mean math SAT score was 528. Is the high school justified in its​ claim? Explain. ▼ No Yes ​, because the​ z-score ​( nothing​) is ▼ unusual not unusual since it ▼ does not lie lies within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means. ​(Round to two decimal places as​ needed.)

Answers

Answer:

No, because the​ z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual​ event, namely within 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Unusual

If X is more than two standard deviations from the mean, x is considered unusual.

In this question:

[tex]\mu = 511, \sigma = 119, n = 55, s = \frac{119}{\sqrt{55}} = 16.046[/tex]

A random sample of 55 students from this school was​ selected, and the mean math SAT score was 528. Is the high school justified in its​ claim?

If Z is equal or greater than 2, the claim is justified.

Lets find Z.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{528 - 511}{16.046}[/tex]

[tex]Z = 1.06[/tex]

1.06 < 2, so 528 is not unusually high.

The answer is:

No, because the​ z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual​ event, namely within 2 standard deviations of the mean of the sample means.

The statement that could be made regarding the high school about the justification of its claim would be:

- No, because the​ z-score of Z = 1.06 is not unusual since it does not lie within the range of a usual​ event, namely within 2 standard deviations of the mean of the sample means.

Given that,

μ = 511

σ = 119

Sample(n) = 55

and

s = [tex]119/\sqrt{55}[/tex]

[tex]= 16.046[/tex]

As we know,

The claim of the high school could be valid and justified only when

[tex]Z > 2[/tex]

To find,

The value of Z

So,

[tex]Z = (X -[/tex] μ )/σ

by putting the values using Central Limit Theorem,

[tex]Z = (528 - 511)/16.046[/tex]

[tex]Z = 1.06[/tex]

Since [tex]Z < 2[/tex], the claim is not justified.

Learn more about "Standard Deviation" here:

brainly.com/question/12402189

If (x + k) is a factor of f(x), which of the following must be true?
f(K) = 0
fl-k)=0
A root of f(x) is x = k.
A y intercept of f(x) is x = -k.

Answers

Answer:

f(-k)=0

Step-by-step explanation:

(x + k) is a factor of f(x)

x+k=0 => x= -k;    -k is a root of f(x)

=> f(-k)=0

[tex](x + k) is a factor of f(x)x+k=0 = > x= -k; -k is a root of f(x)= > f(-k)=0[/tex]

So the correct option is B.fl-k)=0.

What is a root function example?

The cube root function is f(x)=3√x f ( x ) = x 3 . A radical function is a function that is defined by a radical expression. The following are examples of rational functions: f(x)=√2x4−5 f ( x ) = 2 x 4 − 5 ; g(x)=3√4x−7 g ( x ) = 4 x − 7 3 ; h(x)=7√−8x2+4 h ( x ) = − 8 x 2 + 4 7 .

What is the root function?

The root function is used to find a single solution to a single function with a single unknown. In later sections, we will discuss finding all the solutions to a polynomial function. We will also discuss solving multiple equations with multiple unknowns. For now, we will focus on using the root function.

Learn more about root function here: https://brainly.com/question/13136492

#SPJ2

Evaluate 1/2 + 1/2 ÷ 18​

Answers

Answer:

1/18

Step-by-step explanation:

First you would add 1/2 and 1/2 to get 1 then you would divide it by 18 to get 1/18

Answer:

1/18

Step-by-step explanation:

plz mark me brainliest.

Find the area of a triangle bounded by the y-axis, the line f(x)=9−2/3x, and the line perpendicular to f(x) that passes through the origin. Area =

Answers

Answer:

The area of the triangle is 18.70 sq.units.

Step-by-step explanation:

It is provided that a triangle is bounded by the y-axis, the line [tex]f(x)=y=9-\frac{2}{3}x[/tex].

The slope of the line is: [tex]m_{1}=-\frac{2}{3}[/tex]

A perpendicular line passes through the origin to the line f (x).

The slope of this perpendicular line is:[tex]m_{2}=-\frac{1}{m_{1}}=\frac{3}{2}[/tex]

The equation of perpendicular line passing through origin is:

[tex]y=\frac{3}{2}x[/tex]

Compute the intersecting point between the lines as follows:

[tex]y=9-\frac{2}{3}x\\\\\frac{3}{2}x=9-\frac{2}{3}x\\\\\frac{3}{2}x+\frac{2}{3}x=9\\\\\frac{13}{6}x=9\\\\x=\frac{54}{13}[/tex]

The value of y is:

[tex]y=\frac{3}{2}x=\frac{3}{2}\times\frac{54}{13}=\frac{81}{13}[/tex]

The intersecting point is [tex](\frac{54}{13},\ \frac{81}{13})[/tex].

The y-intercept of the line f (x) is, 9, i.e. the point is (0, 9).

So, the triangle is  bounded by the points:

(0, 0), (0, 9) and [tex](\frac{54}{13},\ \frac{81}{13})[/tex]

Consider the diagram attached.

Compute the area of the triangle as follows:

[tex]\text{Area}=\frac{1}{2}\times 9\times \frac{54}{13}=18.69231\approx 18.70[/tex]

Thus, the area of the triangle is 18.70 sq.units.

HELP! Let f(x) = x + 1 and g(x)=1/x The graph of (fg)(x) is shown below.

Answers

Answer:

Step-by-step explanation:

all numbers except y = 1

because (f*g)(x) = 1+1/x

and 1/x cannot be equal to 0

A student takes a multiple-choice test that has 11 questions. Each question has five choices. The student guesses randomly at each answer. Let X be the number of questions answered correctly. (a) Find P (6). (b) Find P (More than 3). Round the answers to at least four decimal places.

Answers

Answer:

a) P(6) = 0.0097

b) P(More than 3) = 0.1611

Step-by-step explanation:

For each question, there are only two possible outcomes. Either it is guessed correctly, or it is not. Questions are independent of each other. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A student takes a multiple-choice test that has 11 questions.

This means that [tex]n = 11[/tex]

Each question has five choices.

This means that [tex]p = \frac{1}{5} = 0.2[/tex]

(a) Find P (6)

This is P(X = 6).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 6) = C_{11,6}.(0.2)^{6}.(0.8)^{5} = 0.0097[/tex]

P(6) = 0.0097

(b) Find P (More than 3).

Either P is 3 or less, or it is more than three. The sum of the probabilities of these outcomes is 1. So

[tex]P(X \leq 3) + P(X > 3) = 1[/tex]

We want P(X > 3). So

[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]

In which

[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{11,0}.(0.2)^{0}.(0.8)^{11} = 0.0859[/tex]

[tex]P(X = 1) = C_{11,1}.(0.2)^{1}.(0.8)^{10} = 0.2362[/tex]

[tex]P(X = 2) = C_{11,2}.(0.2)^{2}.(0.8)^{9} = 0.2953[/tex]

[tex]P(X = 3) = C_{11,3}.(0.2)^{3}.(0.8)^{8} = 0.2215[/tex]

[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0859 + 0.2362 + 0.2953 + 0.2215 = 0.8389[/tex]

Then

[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8389 = 0.1611[/tex]

P(More than 3) = 0.1611

Please answer this correctly

Answers

Answer:

Bailey: 16%

Coco: 28%

Ginger: 32%

Ruby: 24%

I hope this helps!

Find the area of a circle with radius, r = 5.7m.
Give your answer rounded to 2 DP.
The diagram is not drawn to scale.
(I attached the diagram below!)

Answers

Answer:

the area of the circle is 102.11 square metres

Isabella averages 152 points per bowling game with a standard deviation of 14.5 points. Suppose Isabella's points per bowling game are normally distributed. Let X= the number of points per bowling game. Then X∼N(152,14.5)______.
If necessary, round to three decimal places.
Suppose Isabella scores 187 points in the game on Sunday. The z-score when x=187 is ___ The mean is _________
This z-score tells you that x = 187 is _________ standard deviations.

Answers

Answer:

The z-score when x=187 is 2.41. The mean is 187. This z-score tells you that x = 187 is 2.41 standard deviations above the mean.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question:

[tex]\mu = 152, \sigma = 14.5[/tex]

The z-score when x=187 is ...

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{187 - 152}{14.5}[/tex]

[tex]Z = 2.41[/tex]

The z-score when x=187 is 2.41. The mean is 187. This z-score tells you that x = 187 is 2.41 standard deviations above the mean.

A statistics professor receives an average of five e-mail messages per day from students. Assume the number of messages approximates a Poisson distribution. What is the probability that on a randomly selected day she will have five messages

Answers

Answer:

The probability that on a randomly selected day the statistics professor will have five messages is 0.1755.

Step-by-step explanation:

Let the random variable X represent the number of e-mail messages per day a statistics professor receives from students.

The random variable is approximated by the Poisson Distribution with parameter λ = 5.

The probability mass function of X is as follows:

[tex]P(X=x)=\frac{e^{-5}\cdot 5^{x}}{x!};\ x=0,1,2,3...[/tex]

Compute the probability that on a randomly selected day she will have five messages as follows:

[tex]P(X=5)=\frac{e^{-5}\cdot 5^{5}}{5!}[/tex]

               [tex]=\frac{0.006738\times 3125}{120}\\\\=0.17546875\\\\\approx 0.1755[/tex]

Thus, the probability that on a randomly selected day the statistics professor will have five messages is 0.1755.

a football team had 50 players at the start of the season, but then some players left the team. After that, the team had 42 players

Answers

Answer:

50 = p + 42

Step-by-step explanation:

The unknown part of this equation is the variable p, the number of people that left. So you want to add p to 42 and that will give you the total number of football players, which is 50. In order to get p, you need to get it by itself and make it equal something. Subtract 42 from both sides and you are stuck with 50-42 = p

p = 8

Answer:

50-p=42

Step-by-step explanation:

Other Questions
Most of the increase in wages has gone to what group of people? According to the Coase theorem, private parties can negotiate to an efficient solution in the presence of externalities if the is (are) relatively low.Suppose Jeremy, Francis, and Andrew are part of Mu Epsilon Nu, a college fraternity known for its very loud, rambunctious weekend parties. The parties annoy many of the residents in nearby apartment complexes due to the loud music and blaring neon lights. This is a(n)example:________a.external cost b. positive externality c. neither Standard written English includes which of the following?? Match the effects with the causes. More than one answer may be necessary, and answers may be used more than once. Answer Choices: 1. Drug use during pregnancy.2. Smoking or exposure to to secondhand smoke while pregnant.3. High caffeine consumption during pregnancy 4. Bipolar disorder5. Schizophrenia 6. Alcohol use during pregnancy Question(s): 1. Baby can become addicted2. May result in miscarriages 3. Baby may have FAS, a syndrome characterized by symptoms such as brain damage and heart defects4. May result in stillbirth5. Baby may be a victim of SIDS6. Contracting flu increases chances of child developing this disorder 7. May cause birth defects Your history teacher is going to give you a 92 point assessment. There are 2 point questions and 3 point questions. If there is a total of 40 questions on the assessment, how many questions are worth 2 points? The VO2 for a person with an exercise heart rate (HR) of 100 bpm, a stroke volume of 80 mL, and a O2diff of 10 mL per 100 mL is _____. Balu and Pumba shared 2/3 of a cake. Balu got to eat three times as much cake as Pumba. What fraction of the whole cake did Balu eat?Pleas answer help and answer correctly. after you analyzed demand, you took steps to make sure your business made sense financially. How will thinking on the margin help increase the chance of long-term success for your business, even if additional competition enters your community. i am usually single-stranded. is it DNA O RNA ? . Why did Jim decide to move his lab to New York? a) he wanted to be near where the trials were occurring b) he wanted to be closer to his family c) the pharmaceutical company demanded it Select the polynomial that is a perfect square trinomial. 9x2 + 9x + 1 36b2 24b + 8 16x2 + 24x + 9 4a2 10a + 25 This formula equation is unbalanced. Pb(NO3)2(aq) + Li2SO4(aq) Right arrow. PbSO4(s) + LiNO3(aq) Which coefficient should appear in front of LiNO3 in the balanced equation? 1 2 3 4 The Mazzanti Wholesale Food Company's fiscal year-end is June 30. The company issues quarterly financial statements requiring the company to prepare adjusting entries at the end of each quarter. Assume all quarterly adjusting entries were properly recorded. On December 1, 2020, the company paid its annual fire insurance premium of $9,200 for the year beginning December 1 and debited prepaid insurance. On August 31, 2020, the company borrowed $152,500 from a local bank. The note requires principal and interest at 8% to be paid on August 31, 2021. Mazzanti owns a warehouse that it rents to another company. On January 1, 2021, Mazzanti collected $30,400 representing rent for the 2021 calendar year and credited deferred rent revenue. Depreciation on the office building is $22,200 for the fiscal year. Employee salaries for the month of June 2021 $22,000 will be paid on July 20, 2021. Prepare the necessary year-end adjusting entries at the end of June 30, 2021, for the above situations. (If no entry is required for a transaction/event, select "No journal entry required" in the first account field.) [A]s I dried myself with a paper towel, I stared into the mirror. In this perfumed ladies' room, with its pink-and-silver wallpaper and marbled sinks, I looked completely out of place. There are 8 sophomores on the academic team. At the last competition, they each took the math test. Their scores were 82%,92%, 76%, 72%, 92%, 74%, 80%, and 78%. What was the median math score of the sophomores?79%82%87%92% A shop has 4 types of sweets (chocolate, taffy, gummies, and cookies), 2 types of snacks (chips and crackers), and 3 types of drinks (sodas, juice, and sports drinks).Mystery boxes are put together that randomly combine 1 sweet, 1 snack, and 1 drink.What is the probability that a mystery box contains chocolate, chips, and juice? ASAP What is the slope of the line y= 3? What did the Nuclear Test Ban Treaty achieve? eased tensions between the United States and the Soviet Union brought on glasnost and perestroika established the former Soviet republics as independent countries showed the American economy was able to survive under pressure According to survey records, 75.4% of women aged 20-24 have never been married. In a random sample of 25 young women aged 20-24, find the mean, variance and standard deviation for the number who are or who have been married. What is an armada????????