An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. The direction of the electric field vector of this wave is:___________

Answers

Answer 1

Answer:

either +z direction or -z direction.

Explanation:

The direction of the electric field, in an electromagnetic wave always is perpendicular to the direction of the magnetic field and the direction of propagation of the wave.

You assume a system of coordinates with the negative x axis as the west direction, and the y axis as the up direction

In this case, the wave is propagating toward the west (- x direction), and the magnetic field vector points up (+ y direction), then, it is mandatory that the electric field vector points either +z direction or -z direction.


Related Questions

Blocks of mass 10, 30, and 90 kg are lined up from left to right in that order on a frictionless surface so each block is touching the next one. A rightward-pointing force of magnitude 32 N is applied to the left-most block. 1) What is the magnitude of the force that the left block exerts on the middle one

Answers

Answer:

32N

Explanation:

The Left force exerts an opposite horizontal force of 32N on the middle object

A glass sphere carrying a uniformly distributed charge of +Q is surrounded by an initially neutralspherical plastic shell. (Assume the charge +Q is uniformly distributed across thesurface of the glass sphere.)

Required:
a. Qualitatively, indicate the polarization of the plastic.

1. The plastic will polarize so as to have positive charge +Qon its inner surface and negativecharge −Q on its outer surface.
2. Dipoles in the plastic will polarize and orient themselves perpendicular to the radial electricfield due to the charge +Q.
3. Dipoles in the plastic will polarize and orient themselves radially, with their negativeends pointing toward the center.
4. Dipoles in the plastic will polarize and orient themselves radially, with their positiveendspointing toward the center.

b. Qualitatively, indicate the polarization of the inner glass sphere. Explain briefly.A net charge −Q from the dipoles will be uniformly distributed through the volume of the sphere.

1. There will be no polarization inside the glass sphere since the net electric field there iszero.
2. Dipoles in the glass will polarize and orient themselves perpendicular to the radial electricfield due to the charge +Q.
3. Dipoles in the glass will polarize and orient themselves radially, with their positive endspointing toward the center.

c. Is the electric field at location Poutside the plastic shell larger, smaller, or the same as itwould be if the plastic weren't there? Explain briefly.

1. Larger, because a net positive charge is created from the polarization of the shell.
2. Larger, because the positive charges displaced during polarization are closer to P than thenegative charges.
3. Smaller, because the negative charges displaced during polarization are closer to Pthanthe positive charges.
4. Smaller, because the plastic shell shields location Pfrom the charge +Q, such that the netfield at Pis zero.
5. The same, because no net charge is created from the polarization of the field.

Answers

Answer:

(A) 3. Dipoles in the plastic will polarize and orient themselves radially, with their negativeends pointing toward the center

(B) 2. There will be no polarization inside the glass sphere since the net electric field there is zero.

Explanation: charges are only distributed on the surface of the charged hollow conductor. The core must have zero charge.

(C) 2. Larger, because the positive charges displaced during polarization are closer to P than thenegative charges.

The red giant Betelgeuse has a surface temperature of 3000 K and is 600 times the diameter of our sun. (If our sun were that large, we would be inside it!) Assume that it radiates like an ideal blackbody.a) If Betelgeuse were to radiate all of its energy at the peak-intensity wavelength, how many photons per second would it radiate?b) Find the ratio of the power radiated by Betelgeuse to the power radiated by our sun (at 5800 K).

Answers

Answer:

Explanation:

a )

Radius of the sun = .69645 x 10⁹ m .

600 times = 600 x .69645 x 10⁹ m

= 4.1787 x 10¹¹ m .

surface area A = 4π (4.1787 x 10¹¹)²

= 219.317 x 10²²

energy radiated E = σ A Τ⁴

= 5.67 x 10⁻⁸ x 219.317 x 10²² x (3000)⁴

= 100695 x 10²⁶ J

To know the wavelength of photon emitted

[tex]\lambda_mT= b[/tex]

[tex]\lambda_m= \frac{b}{T}[/tex]

= 2.89777 x 10⁻³ / 3000

= 966 nm

= 1275 /966 eV

1.32 x 1.6 x 10⁻¹⁹ J

= 2.112 x 10⁻¹⁹ J

No of photons radiated = 100695 x 10²⁶ / 2.112 x 10⁻¹⁹

= 47677.5 x 10⁴⁵

= .476 x 10⁵⁰ .

b )

energy radiated by our sun per second

E₂ = σ A 5800⁴

energy radiated by Betelgeuse per second

E₁ = σ  x 600²A x  3000⁴

E₁ / E₂  = σ  x 600²A x  3000⁴ / σ A 5800⁴

= 36 X 10⁴ x 3⁴ x 10¹² / 58⁴ x 10⁸

= 25.76 x 10⁸ x 10⁻⁵

= 25760 times .

At a time when mining asteroids has become feasible, astronauts have connected a line between their 3220-kg space tug and a 6240-kg asteroid. They pull on the asteroid with a force of 362 N. Initially the tug and the asteroid are at rest, 311 m apart. How much time does it take for the ship and the asteroid to meet

Answers

-- F = m a ... ==>  a = F/m

-- The tension in the rope is 362 N.  That same force acts on the asteroid and on the tug, pulling them together.

-- The asteroid's acceleration is 362N / 6240 kg = 0.058 m/s², headed for a point on the rope somewhere between the asteroid and the tug.

-- The tug's acceleration is 362 N / 3220 kg = 0.112 m/s², also headed for a point on the rope somewhere between the tug and the asteroid.

-- So now we have a gap between them, initially 311 m long, closing with a speed that starts at zero and accelerates at  0.170 m/s² .

-- D = (1/2) a T²

311 m = (1/2) (0.170 m/s²) (T²)

T²  =  311 m / 0.085 m/s²

T = √(311/0.085)  seconds

T = 60.41 seconds

The answer I get is so durn near 60 seconds (1 minute) that it suggests two things to me:  ==> That's where the weird numbers of 362N and 311m came from, and ==> there's a good chance that my answer is correct.

Note:  It's important to me that you know that 5 points for this one is really cheap and chintzy, and the reason I decided to try it was only to see whether I could.

A 1,269 kg rocket is traveling at 413 m/s with 2,660 kg of fuel on board. If the rocket fuel travels at 1,614 m/s relative to the rocket, what is the rockets final velocity after it uses half of its fuel?

Answers

Answer:

About 2104m/s

Explanation:

[tex]F=ma \\\\F=\dfrac{2660kg}{2}\cdot 1614m/s=2,146,620N \\\\2,146,620N=1,269kg\cdot a \\\\a\approx 1691m/s \\\\v_f=v_o+at=413m/s+1691m/s=2104m/s[/tex]

Hope this helps!

1. Calculate the centripetal force exerted on a 900kg900kg car that rounds a 600m600m radius curve on horizontal ground at 25.0m/s25.0m/s. 2. Static friction prevents the car from slipping. Find the magnitude of the frictional force between the tires and the road that allows the car to round the curve without sliding off in a straight line.

Answers

Explanation:

It is given that,

Mass of a car is 900 kg

Radius of curve is 600 m

Speed of the car in the curve is 25 m/s

We need to find the centripetal force exerted on a car. The formula used to find the centripetal force is given by :

[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{900\times (25)^2}{600}\\\\F=937.5\ N[/tex]

So, the centripetal force exerted on a car is 937.5 N.

Static friction prevents the car from slipping. It means that the magnitude of centripetal force is balanced by the frictional force. So, the frictional force of 937.5 N is acting on the car.  

A 330-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,110 A. If the conductor is copper with a free charge density of 8.50 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 107 for the number of seconds in a year.)

Answers

Answer:

t = 402 years

Explanation:

To find the number of year that electrons take in crossing the complete transmission line, you first calculate the drift speed of the electrons. Then, you use the following formula for the current in a wire:

[tex]I=nqv_dA[/tex]  (1)

n: number of mobile charge carrier per volume = 8.50*10^28 e/m^3

q: charge of the electron = 1.6*10^-19 C

vd: drift velocity of electron in the metal = ?

A: cross sectional area of the wire = π r^2 = π (0.02m/2)^2 = 3.1415*10^-4 m^2

I: current in the wire = 1110 A

You solve the equation (1) for vd:

[tex]v_d=\frac{I}{nqA}=\frac{110A}{(8.50*10^{28}m^{-3})(1.6*10^{-19}C)(3.1415*10^{-4}m^2)}\\\\v_d=2.59*10^{-4}m/s[/tex]

Next, you calculate the time by using the information about the length of the line transmission:

[tex]x=v_dt\\\\x=330km=330000m\\\\t=\frac{x}{v_d}=\frac{330000m}{2.59*10^{-4}m/s}=1,270,184,865s\\\\1,270,184,865s*\frac{1\ year}{3,156,107}=402.45\ years[/tex]

hence, the electrons will take aproximately 402 years in crossing the line of transmission

please help
Complete the first and second sentences, choosing the correct answer from the given ones.
1. A temperature of 100 K corresponds on a Celsius scale to 100 ° C / 0 ° C / 173 ° C / –173 ° C.
2. At 50 ° C, it corresponds to a Kelvin scale of 150 K / 323 K / 273 K / 223 K.

Answers

1)  100 ° C

2) 323 K

hope it helps youuuuuu

g The potential energy of a pair of hydrogen atoms separated by a large distance x is given by U(x)=−C6/x6, where C6 is a positive constant. Part A What is the force that one atom exerts on the other? Express your answer in terms of C6 and x. Fx = nothing Request Answer Part B Is this force attractive or repulsive? Is this force attractive or repulsive? attractive repulsive

Answers

Answer:

[tex]F_x = -\frac{6 C_6}{2^7}[/tex]

Attractive

Explanation:

Data provided in the question

The potential energy of a pair of hydrogen atoms given by [tex]\frac{C_6}{X_6}[/tex]

Based on the given information, the force that one atom exerts on the other is

Potential energy μ = [tex]\frac{C_6}{X_6}[/tex]

Force exerted by one atom upon another

[tex]F_x = \frac{\partial U}{\partial X} = \frac{\partial}{\partial X} (-\frac{C_6}{X^6})[/tex]

or

[tex]F_x = \frac{\partial}{\partial X} (\frac{C_6}{X^6})[/tex]

or

[tex]F_x = -\frac{6 C_6}{2^7}[/tex]

As we can see that the [tex]C_6[/tex] comes in positive and constant which represents that the force is negative that means the force is attractive in nature

Why do bears activity increase as certain points during the day

Answers

Because they are well rested and have to work to get food in their system.

first law of equilibrium

Answers

Answer:

For an object to be an equilibrium it must be experiencing no acceleration.

Explanation:

Hope it helps.

I really need help with this question someone plz help !

Answers

Answer:weight

Explanation:weight

What percent of our solar system's mass is in the sun?

Answers

Answer:

99.8

Explanation:

most massive the sun is at the center of the universe

Question 10
Air with a density of 1.20 kg/m3 flows through a 75.0 cm diameter pipe with a velocity of 2.00 m/s. What is the mass flow rate?

Answers

Answer:

75.0 cm

Explanation:

becouse i don,t no the right answer

A uniform rod of mass 2.30 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 5.30 kg is attached to one end and a second mass m2 = 3.50 kg is attached to the other end of the rod. Treat the two masses as point particles.
A) What is the moment of inertia of the system?B) If the rod rotates with an angular speed of 2.00 rad/s, how much kinetic energy does the system have?C) Now consider the rod to be of negligible mass. What is the moment of inertia of the rod and masses combined?D) If the rod is of negligible mass, what is the kinetic energy when the angular speed is 2.00 rad/s?

Answers

Answer:

Explanation:

Moment of inertia of the rod = 1/12 m L²

m is mass of the rod and L is its length

= 1/2 x 2.3 x 2 x 2

= 4.6 kg m²

Moment of inertia of masses attached with the rod

= m₁ d² + m₂ d²

m₁ and m₂ are masses attached , and d is their distance from the axis of rotation

= 5.3 x 1² + 3.5 x 1²

= 8.8 kg m²

Total moment of inertia = 13.4 kg m²

B )

Rotational kinetic energy = 1/2 I ω²

I is total moment of inertia and ω is angular velocity

= .5 x 13.4 x 2²

= 26.8 J .

C )

when mass of rod is negligible , moment of inertia will be due to masses only

Total moment of inertia of masses

= 8.8 kg m²

D )

kinetic energy of the system

= .5 x 8.8 x 2²

= 17.6 J .

(A) Total moment of inertia is 13.4 kgm²

(B) Total kinetic energy is 26.8J

(C) Moment of inertia is  8.8 kgm²
(D) Kinetic energy is 17.6J

Rotational motion:

(A) The moment of inertia of the rod is given by:

I = 1/12 mL²

where m is the mass of the rod

and L is the length

So,

I = (1/12) × 2.3 × 2²

I = 4.6 kgm²

Now, the moment of inertia of masses attached to the rod is given by:

I' = m₁ d² + m₂d²

where m₁ and m₂ are masses

and d is their distance from the axis of rotation

I' = 5.3 × 1² + 3.5 × 1²

I' = 8.8 kgm²

The total moment of inertia of the system is given by:

I(tot) = I + I'

I(tot) = 13.4 kgm²

(B) The rotational kinetic energy of an object with a moment of inertia I and angular velocity ω is given by:

KE = 1/2 I(tot)ω²

KE = 0.5 × 13.4 × 2²

KE = 26.8J

(C) If the mass of the rod is negligible, then the moment of inertia of the rod will be zero. So the total moment of inertia will be

I(tot) = I' = 8.8 kgm²

(D) the kinetic energy of the system when the mass of the rod is negligible and the angular speed is 2 rad/s is given by:

KE = 1/2 I'ω²

KE = 0.5 × 8.8 × 2²

KE = 17.6J

Learn more about rotational motion:

https://brainly.com/question/15120445?referrer=searchResults

You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes zooming up towards you traveling at a horrendous 85.0 km/h. If the siren has a rated frequency 665 Hz, what frequency of the sound do you hear

Answers

Answer:

The frequency of the sound you will hear is 713.85 Hz

Explanation:

Given;

speed of your car, [tex]v_s[/tex] = 85.0 km/h

frequency of the siren, f = 665 Hz

Speed of sound in air, v = 345 m/s

The frequency of the sound you hear, can be calculated as;

[tex]f' = f(\frac{v}{v-v_s})[/tex]

Convert the speed of the car to m/s

[tex]85 \ km/h =\frac{85 \ km}{h} (\frac{1000\ m}{1 \ km})(\frac{1 \ h}{3600 \ s} ) = 23.61 \ m/s[/tex]

[tex]f' = f(\frac{v}{v-v_s} )\\\\f' = 665(\frac{345}{345-23.61} )\\\\f' = 665 (1.07346)\\\\f' = 713.85 \ Hz[/tex]

Therefore, the frequency of the sound you will hear is 713.85 Hz

When you take your 1900-kg car out for a spin, you go around a corner of radius 56 m with a speed of 14 m/s. The coefficient of static friction between the car and the road is 0.88. Part A Assuming your car doesn't skid, what is the force exerted on it by static friction

Answers

Answer:

6,650 newtons

Explanation:

The computation of the force exerted on it by static friction is shown below:

Data provided in the question

Mass of car = m = 1,900 kg

speed = v = 14 m/s

radius = r = 56 m

Let us assume friction force be f

And, the Coefficient of friction = [tex]\mu[/tex]= 0.88

As we know that

[tex]f = \frac{mv^2}{r}[/tex]

[tex]= \frac{1,900 \times 14^2}{56}[/tex]

= 6,650 newtons

We simply applied the above formula so that the force exerted could come

You're driving a vehicle of mass 850 kg and you need to make a turn on a flat road. The radius of curvature of the turn is 80 m. The maximum horizontal component of the force that the road can exert on the tires is only 0.22 times the vertical component of the force of the road on the tires (in this case the vertical component of the force of the road on the tires is , the weight of the car, where as usual 9.8 N/kg, the magnitude of the gravitational field near the surface of the Earth). The factor 0.22 is called the "coefficient of friction" (usually written "", Greek "mu") and is large for surfaces with high friction, small for surfaces with low friction.(a) What is the fastest speed you can drive and still make it around the turn? Invent symbols for the various quantities and solve algebraically before plugging in numbers.
maximum speed = ____ m/s
(b) Which of the following statements are true about this situation?
The net force is nonzero and points away from the center of the kissing circle.The momentum points toward the center of the kissing circle.The net force is nonzero and points toward the center of the kissing circle.The rate of change of the momentum is nonzero and points toward the center of the kissing circle.The centrifugal force balances the force of the road, so the net force is zero.The rate of change of the momentum is nonzero and points away from the center of the kissing circle.
(c) Look at your algebraic analysis and answer the following question. Suppose your vehicle had a mass 3 times as big (5250 kg). Now what is the fastest speed you can drive and still make it around the turn?
maximum speed = ____ m/s
(d) Look at your algebraic analysis and answer the following question. Suppose you have the original 1750 kg vehicle but the turn has a radius twice as large (166 m). What is the fastest speed you can drive and still make it around the turn?
maximum speed = ____m/s

Answers

Answer:

(a) v = 13.13 m/s

(b) The centrifugal force balances the force of the road, so net force is zero.

(c) v = 13.13 m/s

(d) v = 18.92 m/s

Explanation:

(a)

To make it around the turn without skidding the frictional force on cat must balance the centrifugal force. Therefore:

Frictional Force = Centrifugal Force

μR = mv²/r

where,

R = Normal Reaction = Weight of Car = mg

Therefore,

μmg = mv²/r

μg = v²/r

v = √μgr

where,

v = maximum possible velocity of car = ?

μ = coefficient of friction = 0.22

g = 9.8 m/s²

r = radius of curvature = 80 m

Therefore,

v = √[(0.22)(9.8 m/s²)(80 m)

v = 13.13 m/s

(b)

In order for the car to move without skidding around the turn, all the forces in horizontal direction must be equal. Hence, the centrifugal force and the frictional force (force of the road) must balance each other. So the true statement is:

The centrifugal force balances the force of the road, so net force is zero.

(c)

v = √μgr

Since the formula for speed is independent of mass. Therefore, the speed will remain same.

v = 13.13 m/s

(d)

v = √μgr

v = √[(0.22)(9.8 m/s²)(166 m)

v = 18.92 m/s

What is the highest point at which weather will generally occur?

Answers

Answer:

At thestratosphere: it 20- 25km

At an accident scene on a level road, investigators measure a car’s skid mark (mass of car is M) to be of length d. It was a rainy day and the coefficient of friction was estimated to be μk.
A) Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.B) Why does the car's mass not matter?1) Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation.2) Since the work done by friction does not depend on mass.3) Since the change in kinetic energy and the work done by friction do not depend on mass.

Answers

Answer:

1) Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation

Explanation:

The kinetic  friction works against the kinetic energy of the car and the car stops when these two equalises .

friction force = μk x R , μk is coefficient of kinetic friction and R is reaction from the ground.

= μk x mg

work done by friction

= force x displacement

=  μk x mg x d

kinetic energy of car at the time of accident = 1/2 m v²

kinetic energy = work done by friction

1/2 m v² = μk x mg x d

d = v² / (2 μk x g)

v² = 2dμk g

v = √(2dμk g)

Since both the change in kinetic energy and the work done by friction are proportional to the mass. The mass cancels out of the equation

A hornet circles around a pop can at increasing speed while flying in a path with a 12-cm diameter. We can conclude that the hornet's wings must push on the air with force components that are Group of answer choices down and backwards. down, backwards, and outwards. down and inwards. down and outwards. straight down.

Answers

Answer:

down, backwards, and outwards.

Explanation:

For a hornet that is accelerating in flight, this means that there is a net forward motion at a relatively constant vertical height above the ground.

For this flight, the wings beat downwards to counter the weight of the hornet due to gravity, keeping it at that height above the floor.

For the hornet to accelerate forward, there has to be a net backwards force by the wing on the air. This backwards force accelerates tr forward due to the absence of an equal opposing force in the opposite direction save for a little drag.

The wings also beat with forces directed outwards to provide centripetal force to keep the hornet stable. The absence of this would cause it to spiral out of control.

The site from which an airplane takes off is the origin. The X axis points east, the y axis points straight up. The position and velocity vectors of the plane at a later time are given by r=(1.21x103i+3.45x104;)m and v= (2 i-3.5j) m/s The magnitude, in meters, of the plane's displacement from the origin is:_________
a. 2.50 x104
b. 1.45 x 104
c. 3.45x104
d. 2.5x103
e. none of the above

Answers

Answer:

d = 3.5*10^4 m

Explanation:

In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

[tex]\vec{r}=(1.21*10^3\hat{i}+3.45*10^4\hat{j})m[/tex]

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:

[tex]d=\sqrt{(x-x_o)^2+(y-y_o)^2}[/tex]   (1)

where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

[tex]d=\sqrt{(1.12*10^3-0)^2+(3.45*10^4-0)^2}=3.45*10^4m[/tex]

hence, the displacement of the airplane is 3.45*10^4 m

Your new toaster has two separate toasting units, each of which consumes 600 watts of power when it is in use. When you operate one unit, a current of 5 amperes flowsthrough the wiring in your home and the wires waste about 1 watt of power handling that current. If you operate both toasting units at once, your toaster consumes 1200 watts and the current flowing through the wiring in your home doubles to 10 amperes. How much power will the wires in your home waste now

Answers

Answer:

1.92 Watt lost

Explanation:

Power rating of each toaster = 600 Watts

Current that flows = 5 Amperes

Wasted power = 1 Watt

Voltage of toaster can be gotten from P = [tex]I^{2}[/tex]R

where I = current

and R = Resistance

600 = [tex]5^{2}[/tex] x R

R = 600/25 = 24 Ohms.

According to joules loss due to heating of wire

Power loss P ∝ [tex]I^{2}[/tex]R

imputing values,

1 ∝ [tex]5^{2}[/tex] x 24

1 ∝ 600

to remove the proportionality sign, we introduce a constant k

1 = 600k

k = 1/600 = 0.00167

For the case where the current is doubled to 10 ampere, as the power doubles to 1200 W.

The resistance across the wire becomes

1200 = [tex]10^{2}[/tex]R

R = 1200/100 = 12 Ohms

power loss P = k x [tex]I^{2}[/tex]R

P = 0.0016 x [tex]10^{2}[/tex] x 12

P = 1.92 Watt lost

This question involves the concepts of power, current, and resistance.

The power wasted by the wires in the home for two units will be "4 watt".

POWER WASTAGE

The power wasted by the wires can be given in terms of current and resistance by the following formula:

[tex]P=I^2R\\\\\frac{P}{I^2}=R=Constant\\\\\frac{P_1}{I_1^2}=\frac{P_2}{I_2^2}[/tex]

where,

P₁ = Power wasted for one unit = 1 wattI₁ = current through wires for one unit = 5 AR = Resistance of wires = constantP₂ = Power wasted for two units = ?I₂ = Current through wires for two units = 10 A

Therefore,

[tex]\frac{1\ watt}{(5\ A)^2}=\frac{P_2}{(10\ A)^2}\\\\P_2=\frac{(1\ watt)(100\ A^2)}{25\ A^2}[/tex]

P₂ = 4 watt

Learn more about power here:

https://brainly.com/question/7963770

A 20 g "bouncy ball" is dropped from a height of 1.8 m. It rebounds from the ground with 80% of the speed it had just before it hit the ground. Assume that during the bounce the ground causes a constant force on the ball for 75 ms. What is the force applied to the ball by the ground in N?
The following are not correct: 0.513 N, 0.317 N, 0.121 N. Please show your work so I can understand!

Answers

Answer:

F = 0.314 N

Explanation:

In order to calculate the applied force to the ball by the ground, you first calculate the speed of the ball just before it hits the ground. You use the following formula:

[tex]v^2=v_o^2+2gy[/tex]        (1)

y: height from the ball starts its motion = 1.8 m

vo: initial velocity = 0 m/s

g: gravitational acceleration =  9.8 m/s^2

v: final velocity of the ball = ?

You replace the values of the parameters in the equation (1):

[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(1.8m)}=5.93\frac{m}{s}[/tex]

Next, you take into account that the force exerted by the ground on the ball is given by the change, on time, of the linear momentum of the ball, that is:

[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}=m\frac{v_2-v_1}{\Delta t}[/tex]      (2)

m: mass of the ball = 20g = 20*10^-3 kg

v1: velocity of the ball just before it hits the ground = 5.93m/s

v2: velocity of the ball after it impacts the ground (80% of v1):

0.8(5.93m/s) = 4.75 m/s

Δt: time interval o which the ground applies the force on the ball = 75*10^-3 s

You replace the values of the parameters in the equation (2):

[tex]F=(20*10^{-3}kg)\frac{4.75m/s-5.93m/s}{75*10^{-3}s}=-0.314N[/tex]

The minus sign means that the force is applied against the initial direction of the motion of the ball.

The applied force by the ground on the bouncy ball is 0.314 N

An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed

Answers

Complete Question

An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?

A It should stay the same

B  It should be quadrupled.

C It should be quintupled

D It should be doubled.

E It should be tripled

Answer:

Option D is the correct option

Explanation:

Generally electric field is mathematically represented as

        [tex]E = \frac{\sigma}{\epsilon_o}[/tex]

Where [tex]\sigma[/tex] is the charge per unit area (Charge density )

From the question we are told that [tex]\sigma[/tex] is doubled hence the

     [tex]E = \frac{2 \sigma }{\epsilon_o}[/tex]    

Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density

An arrow is shot from a height of 1.55 m toward a cliff of height H. It is shot with a velocity of 26 m/s at an angle of 60° above the horizontal. It lands on the top edge of the cliff 3.99 s later.
(a) Draw a sketch of the given example. Include the x-y coordinate system.
(b) What is the height of the cliff?
(c) What is the maximum height reached by the arrow along its trajectory?
(d) What is the arrow's impact speed just before hitting the cliff?

Answers

Answer:

Explanation:

vertical component of the velocity of arrow

= 26 sin 60 = 22.516 m

height reached by it after 3.99 s

h = ut - 1/2 g t²

= 22.516 x 3.99 - .5 x 9.8 x 3.99²

= 89.83 - 78

11.83 m

Total height of cliff = 1.55 + 11.83

= 13.38 m

c ) maximum height covered s

v² = u² - 2gs

0 = u² - 2gs

s = u² / 2g

= 22.516² / 2 x 9.8

= 25.86

maximum height reached

= 25.86 + 1.55

= 27.41 m

d )

vertical speed after 3.99 s

v = u - gt

= 22.516 - 9.8 x 3.99

= -16.586

Horizontal component will remain unchanged

Horizontal component = 26 cos 60

= 13 m /s

Resultant of two velocities

= √ 13²+ 16.568²

= 21 m /s

Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 kg that is traveling horizontally at 11.3 m/s. Olaf's mass is 75.0 kg. (a) If Olaf catches the ball, with what speed v_f do Olaf and the ball move afterward

Answers

Answer:

v = 0.059 m/s

Explanation:

To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:

[tex]mv_{1i}+Mv_{2i}=(m+M)v[/tex]  (1)

m: mass of the ball = 0.400kg

M: mass of Olaf = 75.0 kg

v1i: initial velocity of the ball = 11.3m/s

v2i: initial velocity of Olaf = 0m/s

v: final velocity of Olaf and the ball

You solve the equation (1) for v and replace the values of all variables:

[tex]v=\frac{mv_{1i}}{m+M}=\frac{(0.400kg)(11.3m/s)}{0.400kg+75.0kg}=0.059\frac{m}{s}[/tex]

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s

Two carts undergo an inelastic collision where they stick together. Cart A has an initial velocity v0, and the second cart B is initially at rest. After the collision, it is observed that the ratio of the final kinetic energy system to its initial kinetic energy is KfK0= 1/6. Determine the ratio of the carts' masses, mBmA. (Assume the track is frictionless.)

Answers

Answer:

Explanation:

Initial kinetic energy of the system = 1/2 mA v0²

If Vf be the final velocity of both the carts

applying conservation of momentum

final velocity

Vf = mAvo / ( mA +mB)

kinetic energy ( final ) =  1/2 (mA +mB)mA²vo² /  ( mA +mB)²

= mA²vo²  / 2( mA +mB)

Given 1/2 mA v0²  / mA²vo²  / 2( mA +mB) = 6

mA v0² x ( mA +mB) / mA²vo² = 6

( mA +mB) / mA = 6

mA + mB = 6 mA

5 mA = mB

mB / mA = 5 .

A man pushes a 25kg box up an incline 2.0m by applying a steady force of 95N parallel to the incline. The box moves up the incline at a steady speed. The incline makes an angle 15 degrees to the horizontal

a) What is the force of friction between the incline and the box

b)If the box is released at the top of the incline, what will its speed be at the bottom

Answers

Answer:

a) Ff = 19.29 N

b) v = 3.00 m/s

Explanation:

a) To calculate the friction force you use the second Newton Law in the incline plane, with an acceleration equal to zero, because the motion of the box has a constant velocity:

[tex]F-F_f-Wsin(\theta)=0\\\\[/tex]        (1)

F: force applied by the man = 95N

Ff: friction force

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the inclined plane = 15°

You solve the equation (1) for Ff and you replace the values of all variables in the equation (1):

[tex]F_f=-Wsin(\theta)+F\\\\F_f=-(245N)sin18\°+95N=19.29N[/tex]

b) To fins the velocity of the box at the bottom you use the following formula:

[tex]W_N=\Delta K[/tex]   (2)

That is, the net work over the box is equal to the change in the kinetic energy of the box.

The net work is:

[tex]W_N=Mgsin(18\°)d-Ffd[/tex]

d: distance traveled by the box = 2.0m

[tex]W_N=245sin18\°(2.0m)N-19.29(2.0m)N=112.83J[/tex]

You use this value of the net work to find the final velocity of the box, by using the equation (2):

[tex]112.8J=\frac{1}{2}m[v^2-v_o^2]\\\\v_o=0m/s\\\\v=\sqrt{\frac{2(112.8J)}{m}}=\sqrt{\frac{225.67J}{25kg}}=3.00\frac{m}{s}[/tex]

The speed of the box, at the bottom of the incline plane is 3.00 m/s

"A trooper is moving due south along the freeway at a speed of 28 m/s. At time t = 0, a red car passes the trooper. The red car moves with constant velocity of 40 m/s southward. At the instant the trooper's car is passed, the trooper begins to speed up at a constant rate of 2.9 m/s2. What is the maximum distance ahead of the trooper that is reached by the red car?"

Answers

Answer:

24.83 m

Explanation:

Applying the equation of motion;

d = vt + 0.5at^2 ......1

Where;

d = distance

v = velocity

t = time

a = acceleration

For the trooper;

v = 28 m/s

a = 2.9 m/s^2

Substituting into equation 1;

d1 = 28t + 0.5(2.9t^2)

d1 = 28t + 1.45t^2

For the red car;

v = 40 m/s

a = 0

Substituting into equation 1

d2 = 40t

The difference in distance is;

d = d2 - d1

d = 40t - (28t + 1.45t^2)

d = 12t - 1.45t^2

The maximum distance is at d(d)/dt = 0

differentiating d;

d' = 12 - 2.9t = 0

2.9t = 12

t = 12/2.9 = 4.137931034482

t = 4.138 s

Substituting t into function d;

d(max) = 12(4.138) - 1.45(4.138^2)

d(max) = 24.8275862 = 24.83 m

the maximum distance ahead of the trooper that is reached by the red car is 24.83 m

Other Questions
3. What issues were created from the use of theatomic bomb in World War 11? name any 3 products we derive from forest Factor the expression 15x+10 using the GCF.Help plz ASAP will give brainliest to first who solves! How does Gregor feel about the change in his father?O A. Gregor is upset that his father looks even weaker and morepowerless than before.O B. Gregor is happy that his father is treating him with more kindnessand respect.C. Gregor is almost unable to believe that his father looks so healthyand strongD. Gregor is sad that his father was forced to go back to workbecause of what happened, A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.80 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.0 m. Calculate the magnitude of the total angular momentum of the womandisk system. (Assume that you can treat the woman as a point.) List 2 Examples Of Why Teens Give Into Negative Peer Pressure. I need help with this question A gas company in Massachusetts charges $2.80 for 15.0 ft3 of natural gas (CH4) measured at 20.0C and 1.00 atm. Calculate the cost of heating 2.00 102 mL of water (enough to make a cup of coffee or tea) from 20.0C to 100.0C. Assume that only 50.0% of the heat generated by the combustion is used to heat the water; the rest of the heat is lost to the surroundings. Assume that the products of the combustion of methane are CO2(g) and H2O(l). Egyptians invented a new form of writing called _______.a.cunneiformc.papyrus,b.hieroglyphsd.the alphabet What do we call each step that makes up a reaction mechanism? A. reaction step B. individual stepC. Elementary StepD. reactant step 5 PointsRebecca is given two triangles, AABC and A DEF. At first glance, she thinksthat the triangles are congruent. How can she use what she knows aboutrotations and triangle congruence to prove the triangle congruence? In A, tangent HF and chord EG intersect to form ZHEG. Find mZHEG.A. 118B. 236C. 242D. 3540Please select the best answer from the choices providedBD 1. Did your buoy move as you expected? Explain why or why not. Lloyd Inc. has sales of $250,000, a net income of $20,000, and the following balance sheet: Cash $51,000 Accounts payable $63,600 Receivables 118,800 Notes payable to bank 40,800 Inventories 294,000 Total current liabilities $104,400 Total current assets $463,800 Long-term debt 82,800 Net fixed assets 136,200 Common equity 412,800 Total assets $600,000 Total liabilities and equity $600,000 The new owner thinks that inventories are excessive and can be lowered to the point where the current ratio is equal to the industry average, 2.5x, without affecting sales or net income. If inventories are sold and not replaced (thus reducing the current ratio to 2.5x); if the funds generated are used to reduce common equity (stock can be repurchased at book value); and if no other changes occur, by how much will the ROE change? Do not round intermediate calculations. Round your answer to two decimal places. % What will be the firm's new quick ratio? Do not round intermediate calculations. Round your answer to two decimal places. solve for x in 4x-4/x+4=10 The Great Lakes are all part of what? The Mississippi River The St. Lawrence Seaway A large body of salt lakes The Missouri River The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum. A compound containing C, H, and O exhibits broad absorption at 3450 cm^-1 (m) and an intense band at 1725, plus a band at 1100 cm^-1 (m). Relative absorption intensity: (s) = strong, (m) = medium, (w) = weak. What functional class(es) does the compound belong to? List only classes for which evidence is given here. Attach no significance to evidence not cited explicitly. Do not over-interpret exact absorption band positions. None of your inferences should depend on small differences like 10 to 20 cm^-1. The functional class(es) of this compound is(are)________. (Enter letters from the table below, in any order, with no spaces or commas.)a. alkane (List only if no other functional class applies.) b. alkene h. aminec. terminal alkyne i. aldehyde or ketoned. internal alkyne j. carboxylic acide. arene k. esterf. alcohol l. nitrileg. ether NEED HELP ASAP!!! a hexagon-based pyramid has a height of 54cm. The volume of the pyramid is 1080cm3. What is the area of the base? How is the trade in Canada? One end of an insulated metal rod is maintained at 100c and the other end is maintained at 0.00 c by an icewater mixture. The rod has a length of 75.0cm and a cross-sectional area of 1.25cm . The heat conducted by the rod melts a mass of 6.15g of ice in a time of 10.0 min .find the thermal conductivity k of the metal?k=............ W/(m.K)