Answer:
Step-by-step explanation:
Hello!
Given the variables
Y: family spending
X₁: income of a family
X₂: family size
X₃: additions to savings of a family
And the regression output (see attachment)
The population model is Y= α + β₁X₁ + β₂X₂ + β₃X₃
a)
To write the estimated regression equation of the relationship between the variables you have to use the information given in the regression output. Under the column "coefficients", the value that corresponds to "intercept" is the estimation of the y-intercept (a), the value under X₁ corresponds to the estimation for the slop for the variable "income of the family" (b₁), under X₂ is the estimation of the slope for the variable "family size" (b₂) and under X₃ is the estimation for the slope corresponding to the variable "additions to savings" (b₃)
The estimated regression equation is:
^Y= a + b₁X₁ + b₂X₂ + b₃X₃
^Y= 0.0136 + 0.7992X₁ + 0.2280X₂ -0.5796X₃
b)
Using the SS information you can calculate the coefficient of determination as:
SStotal= SSReg+SSError= 45.9634+2.6218= 48.5852
[tex]R^2= \frac{SS_{Reg}}{SS_{Total}} = \frac{45.9634}{(48.5852)} = 0.946[/tex]
R²= 94.6%
This means that 94.6% of the variability of the average family spending is explained jointly by the family income, the family size and the addition to saving under the estimated model ^Y= 0.0136 + 0.7992X₁ + 0.2280X₂ -0.5796X₃
c)
The hypotheses are:
H₀: β₁= β₂= β₃= 0
H₁: At least one βi≠0 ∀ i=1, 2, 3
α: 0.05
The statistic for the multiple regression is
[tex]F=\frac{MS_{Reg}}{MS_{Error}} ~~F_{Df_{Reg};Df_{Error}}[/tex]
[tex]MS_{Reg}= \frac{SS_{reg}}{Df_{Reg}}= \frac{45.9634}{3} = 15.32[/tex]
[tex]MS_{Error}= \frac{SS_{Error}}{Df_{Error}} = \frac{2.6218}{11} = 0.238[/tex]
[tex]F_{H_0}= \frac{MS_{Reg}}{MS_{Error}}= \frac{15.32}{0.238}= 64.37[/tex]
p-value < .00001
At a 5% significance level, there is enough evidence to reject the null hypothesis. This means that the family income, family size and the addition to savings modify jointly the average spending of families.
d.
Individual tests:
There are two possible statistics to test the significance of each independent variable: [tex]t= \frac{b_i-\beta_i }{S_{b_i}} ~~t_{n-3}[/tex] ∀ i= 1, 2, 3, or [tex]F=\frac{MS_{X_i}}{MS_{Error}} ~F_{Df_{X_i}; Df_{Error\\}}[/tex]
Since the output doesn't give us the information of the individual ANOVA, you have to use the t-test (Df: n-3= 12-3= 9) for these hypotheses. Using the p-value approach. the decision rule for the three hypothesis will be:
If p-value ≤ α ⇒ Reject null hypothesis.
If p-value > α ⇒ Do not reject the null hypothesis.
1)
H₀: β₁ = 0
H₁: β₁ ≠ 0
α: 0.05
[tex]t_{H_0}= \frac{b_1-\beta_1 }{Sb_1}= \frac{0.7992-0}{0.074}= 10.8[/tex]
p-value < .00001 ⇒ Decision is to reject the null hypothesis.
2)
H₀: β₂ = 0
H₁: β₂ ≠ 0
α: 0.05
[tex]t_{H_0}= \frac{b_2-\beta_2 }{Sb_2}= \frac{0.2280-0}{0.190}= 1.2[/tex]
p-value: 0.260773 ⇒ The decision is to not reject the null hypothesis.
3)
H₀: β₃ = 0
H₁: β₃ ≠ 0
α: 0.05
[tex]t_{H_0}= \frac{b_3-\beta_3 }{Sb_3}= \frac{-0.5796-0}{0.920}= -0.63[/tex]
p-value: 0.544355 ⇒ The decision is to not reject the null hypothesis.
So, at a 5% significance level, it seems that the three independent variables influence jointly the variation on the average spending of the families, but looking at them separately, only the income of the families seems to affect their spending habits significantly while the family size or their addition to savings don't seem to have major effect over their spending habits.
I hope this helps!
Given cot ø = 4/3. Find the other two reciprocal trigonometic ratios. 1) scs 2) sec
Answer:
csc ø = 5/3 ; sec ø = 5/4
Step-by-step explanation:
cot ø = adj/opp
adj = 4
opp = 3
after that, we must find the hypotenuse by using phytagoras theorem
hpy² = adj² + opp²
hpy² = 4² + 3²
hpy² = 25
hpy = 5
now let's find the other
csc ø (not scs) = hyp/opp = 5/3
sec ø = hyp/adj = 5/4
Customer arrivals at a bank are random and independent; the probability of an arrival in any one-minute period is the same as the probability of an arrival in any other one-minute period. Answer the following questions, assuming a mean arrival rate of three customers per minute.
Required:
a. What is the probability of exactly three arrivals in one-minute period?
b. What is the probability of at least three arrivals in a one-minute period?
Answer:
a)0.2240
b)0.5768
Step-by-step explanation:
Given:
µ=3
Poison probability is given by :
[tex]f_k=\frac{\mu^ke^-^\mu}{k!}[/tex]
a) Evaluating at k=3
[tex]f(3)=\frac{3^3e^-^3}{3!} \approx 0.2240[/tex]
b)Evaluating at k=0,1,2:
[tex]f(0)=\frac{3^0e^-^3}{0!} \approx 0.0498[/tex]
[tex]f(1)=\frac{3^1e^-^3}{1!} \approx 0.1494[/tex]
[tex]f(2)=\frac{3^2e^-^3}{2!} \approx 0.2240[/tex]
Use complement rule:
P(x≥3)= 1 - f(0) - f(1) - f(2)= 1- 0.0498 - 0.1494 - 0.2240 =0.5768
The mean height of women in a country (ages 20-29) is 64.3 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 inches? Assume sigma=2.81.
Answer:
z(65) = (65-64.2)/[2.81/sqrt(60)] = 0.8/(0.3279)
Step-by-step explanation:
Using the normal probability distribution and the central limit theorem, it is found that there is a 0.0154 = 1.54% probability that the mean height for the sample is greater than 65 inches.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X. By the Central Limit Theorem, for samples of size n, the standard deviation is [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]In this problem:
Mean of 64.3 inches, thus [tex]\mu = 64.3[/tex]Standard deviation of 2.81 inches, thus [tex]\sigma = 2.81[/tex]Sample of 75, thus [tex]n = 75[/tex].The probability that the mean height for the sample is greater than 65 inches is 1 subtracted by the p-value of Z when X = 65, thus:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \frac{65 - 64.3}{\frac{2.81}{\sqrt{75}}}[/tex]
[tex]Z = 2.16[/tex]
[tex]Z = 2.16[/tex] has a p-value of 0.9846.
1 - 0.9846 = 0.0154
0.0154 = 1.54% probability that the mean height for the sample is greater than 65 inches.
A similar problem is given at https://brainly.com/question/24663213
Alex is planning to surround his pool ABCD with a single line of tiles. How many units of tile will he need to surround his pool? Round your answer to the nearest hundredth.
Answer:
19.82 units
Step-by-step explanation:
The number of units of tile simply refers to the perimeter.
So, we need to find all the sides of the rectangle.
Now, we have AB = 4.24 units and BD = 7.07 units.
So, we can find AD using pythagoras theorem.
So,
(AD)² + 4.24² = 7.07²
(AD)² + 17.978 = 49.985
(AD)² = 49.985 - 17.978
AD = √32.007
AD = 5.66 units
AD = BC = 5.66 units
Likewise, AB = DC = 4.24 units
Thus,
perimeter = 2(5.66) + 2(4.24) = 19.8 units
Closest answer among the options is approximately 19.82
Answer:
19.82 units
Step-by-step explanation:
just took test and got it right
My son and I are stuck on this one. Can anyone give some insight to this problem? Thank you.
Answer:
I made is clear for you, now you may match each one
Step-by-step explanation:
f(1)= 11, f(n)= 3*f(n-1)
11*3= 33, 33*3= 99, 99*3= 297, ...11, 33, 99, 297...⊕ middle
f(1)= -18, f(n)= f(n-1)+21
-18+21= 3, 3+21= 24, 24+21= 45, ...-18, 3, 24, 45, ...f(1)= -18, f(n)= f(n-1) + 22
-18+22= 4, 4+22= 26, 26+22= 48, ...-18, 4, 26, 48, ...f(1)= -18, f(n)= 2*f(n-1)
-18*2= -36, -36*2= -72, -72*2= -144, ...- 18, -36, -72, -144...⊕ bottom
f(1)= -18, f(n)= 6*f(n-1)
-18*6= -108, -108*6= -648, -648*6= -3888, ...- 18, - 108, - 648, -3888, ...⊕ top
f(1)= 11, f(n)= f(n-1) + 22
11+22= 33, 33+22= 55, 55+22= 77, ...11, 33, 55, 77, ...Can anybody please help me with this one??
Answer:
[tex]the \: answer \: is \: d.(x + 4) {}^{2} = 8(y + 4)[/tex]
Which steps can be used to solve for the value of y?
(2013
(y +57) = 178
Answer: [tex]y = 121[/tex]
[tex](y+57) = 178[/tex]
[tex]y+57= 178[/tex]
[tex]y = 178 -57[/tex]
[tex]y = 121[/tex]
Problem PageQuestion The mass of a radioactive substance follows a continuous exponential decay model, with a decay rate parameter of per day. Find the half-life of this substance (that is, the time it takes for one-half the original amount in a given sample of this substance to decay).
Answer:
8.55 days for a decay rate parameter of 8.1% per day
Step-by-step explanation:
Assuming a decay rate parameter of 8.1% per day
the general equation for radioactive decay is;
N = N₀e^(-λt)
x - decay constant (λ) - rate of decay
t- time
N - amount remaining after t days , since we are calculating the half life, amount of time it takes for the substance to to be half its original value, its N₀/2
N₀ - amount initially present
substituting the values
N₀/2 = N₀e^(-0.081t)
0.5 = e^(-0.081t)
ln (0.5) = -0.081t
-0.693 = -0.081t
t = 0.693 / 0.081 = 8.55
half life of substance is 8.55 days
Please help I'm Timed Will Name Brainliest if Correct.
Answer:
A
Step-by-step explanation:
We can see that Function A's y coordinate doubles every time. The function A = f(x) = 5(2)^x. It is an exponential growth function, and therefore y can never be 0. This means that A does not have an x-intercept.
Function B is a rational function. x cannot be 0, since that would result in an undefined number. This also means that B does not have an x-intercept.
Factorizar e indicar cuántos factores primos tiene -3+3x^2+y-x^2*y-y^2+x^2*y
The top tree broke and fell over.the remaining tree teunk is 3 feet tall.the tip of the tree rests on the ground 14 feet from the base of the trunk.what is the lenght of the broken part of the tree to the nearest tenth of a foot
Answer:
14.3 feet.
14.3 feet
Step-by-step explanation:
The problem forms a right triangle in which:
The Vertical Leg of the Right Triangle = 3 feet
The Horizontal Leg of the Right Triangle =14 feet
We are to determine the length of the broken part of the tree. This is the Hypotenuse of the Right Triangle,
Using Pythagoras Theorem
[tex]Hypotenuse^2=Opposite^2+Adjacent^2\\Hypotenuse^2=14^2+3^2\\Hypotenuse^2=205\\Hypotenuse=\sqrt{205}\\Hypotenuse=14.32\\ \approx 14.3 feet $(to the nearest tenth of a foot).\\Therefore, the lenght of the broken part of the tree to the nearest tenth of a foot is 14.3 feet.[/tex]
A small child has 6 more quarters than nickels. If the total amount of the coins is $3.00, find the number of nickels and quarters the child has.
Answer:
nickels- 5, quarters- 11
Step-by-step explanation:
nickel= 5 p, quarter= 25 p
5x+25(x+6)= 300
30x+150=300
30x=150
x=150/30
x=5 nickels
x+6= 11 quarters
If P(-2, 1) is rotated 90°, its image is
Find the values
Y = 3x - 7
Y = x - 1
X = Y =
Answer: Y=3x -7
Y=x-1
X=Y=
Step-by-step explanation:
in four lines determine how to find a perimeter and area of garden with specific dimensions
Answer:
[tex]Perimeter\ of\ the\ Garden\ =2(l1*b1)[/tex]
[tex]Area\ of\ the\ garden\ =l1*b1[/tex]
Step-by-step explanation:
Let assume the l1 is the length of the garden and b1 is the breadth of garden then
[tex]Perimeter\ of\ the\ Garden\ = 2 ( L ength + Breadth )\\Perimeter\ of\ the\ Garden\ =2(l1*b1)[/tex]
Now,
[tex]Area\ of\ Garden\ = Length * Breadth[/tex]
[tex]Area\ of\ the\ garden\ =l1*b1[/tex]
What is the missing number in the pattern? Please Help. Been stuck on this for hours.
Answer:
8
Step-by-step explanation:
The other patterns go with the two factors on top (2 x 3 = 6 and 3 x 3 = 9).
So, 2 x 4 = 8
Among 25- to 30-year-olds, 29% say they have used a computer while under the influence of alcohol. Suppose five 25- to 30-year-olds are selected at random. Complete parts (a) through (d) below. (a) What is the probability that all five have used a computer while under the influence of alcohol? (Round to four decimal places as needed.) (b) What is the probability that at least one has not used a computer while under the influence of alcohol? (Round to four decimal places as needed.) (c) What is the probability that none of the five have used a computer while under the influence of alcohol? (Round to four decimal places as needed.) (d) What is the probability that at least one has used a computer while under the influence of alcohol? (Round to four decimal places as needed.)
Answer:
(a) The probability that all five have used a computer while under the influence of alcohol is 0.0021.
(b) The probability that at least one has not used a computer while under the influence of alcohol is 0.9979.
(c) The probability that none of the five have used a computer while under the influence of alcohol is 0.1804.
(d) The probability that at least one has used a computer while under the influence of alcohol is 0.8196.
Step-by-step explanation:
We are given that among 25- to 30-year-olds, 29% say they have used a computer while under the influence of alcohol.
Suppose five 25- to 30-year-olds are selected at random.
The above situation can be represented through the binomial distribution;
[tex]P(X = x) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; x = 0,1,2,3,.........[/tex]
where, n = number of trials (samples) taken = Five 25- to 30-year-olds
r = number of success
p = probability of success which in our question is probability that
people used a computer while under the influence of alcohol,
i.e. p = 29%.
Let X = Number of people who used computer while under the influence of alcohol.
So, X ~ Binom(n = 5, p = 0.29)
(a) The probability that all five have used a computer while under the influence of alcohol is given by = P(X = 5)
P(X = 5) = [tex]\binom{5}{5}\times 0.29^{5} \times (1-0.29)^{5-5}[/tex]
= [tex]1 \times 0.29^{5} \times 0.71^{0}[/tex]
= 0.0021
(b) The probability that at least one has not used a computer while under the influence of alcohol is given by = P(X [tex]\geq[/tex] 1)
Here, the probability of success (p) will change because now the success for us is that people have not used a computer while under the influence of alcohol = 1 - 0.29 = 0.71
SO, now X ~ Binom(n = 5, p = 0.71)
P(X [tex]\geq[/tex] 1) = 1 - P(X = 0)
= [tex]1-\binom{5}{0}\times 0.71^{0} \times (1-0.71)^{5-0}[/tex]
= [tex]1 -(1 \times 1 \times 0.29^{5})[/tex]
= 1 - 0.0021 = 0.9979.
(c) The probability that none of the five have used a computer while under the influence of alcohol is given by = P(X = 0)
P(X = 0) = [tex]\binom{5}{0}\times 0.29^{0} \times (1-0.29)^{5-0}[/tex]
= [tex]1 \times 1 \times 0.71^{5}[/tex]
= 0.1804
(d) The probability that at least one has used a computer while under the influence of alcohol is given by = P(X [tex]\geq[/tex] 1)
P(X [tex]\geq[/tex] 1) = 1 - P(X = 0)
= [tex]1-\binom{5}{0}\times 0.29^{0} \times (1-0.29)^{5-0}[/tex]
= [tex]1 -(1 \times 1 \times 0.71^{5})[/tex]
= 1 - 0.1804 = 0.8196
What is a unit rate?
A) a rate with one in the numerator
B) a rate in which the numerator and the denominator are equal
C) a rate with one in the denominator
D) a rate in which the denominator is greater than the numerator
Hey there! Welcome to Brainly! I"m happy to help!
The unit rate is how much there is of something per one unit. The word per basically means divided or a fraction. So, if something was a, the unit rate would be a/1.
Therefore, the unit rate is C) a rate with one in the denominator.
I hope that this helps! Have a wonderful day!
Solve the following inequality. |-2x + 1| < 13
Please help!!!!
Answer:
x>−6 and x<7
Step-by-step explanation:
Let's solve your inequality step-by-step.
|−2x+1|<13
Solve Absolute Value.
|−2x+1|<13
We know−2x+1<13and−2x+1>−13
−2x+1<13(Condition 1)
−2x+1−1<13−1(Subtract 1 from both sides)
−2x<12
−2x
−2
<
12
−2
(Divide both sides by -2)
x>−6
−2x+1>−13(Condition 2)
−2x+1−1>−13−1(Subtract 1 from both sides)
−2x>−14
−2x
−2
>
−14
−2
(Divide both sides by -2)
x<7
Answer:
x>−6 and x<7
Choose the inequality that could be used to solve the following problem.
Three times a number is at most negative six.
Answer:
3x ≤ -6
Step-by-step explanation:
"At most" means "less than or equal to." If x represents the number, then you have ...
(three) times (a number) (is at most) negative 6 . . . . . English
3 · x ≤ -6 . . . . . . . . . . . . . . . . Math
__
3x ≤ -6
Answer:
3x ≤ -6
Step-by-step explanation:
What is the y coordinate of the point that divides the directed line segment from j to k into a ratio of 2 to 3
Answer:
y = [tex]y_{1}[/tex] + rise * 2/5
Step-by-step explanation:
Round the following number to the nearest thousand 2385
By rounding of the following number to the nearest thousand is 2000.
What is rounding a number to some specific place?Rounding some number to a specific value is making its value simpler (therefore losing accuracy), mostly done for better readability or accessibility.
'
Rounding to some place keeps it accurate on the left side of that place but rounded or sort of like trimmed from the right in terms of exact digits.
Round the following number to the nearest thousand
2385
= 2000
Thus, by rounding of the following number to the nearest thousand is 2000.
Learn more about rounding numbers here:
https://brainly.com/question/1285054
#SPJ2
how do you add 9 in 1 6 + 2 1/12
Step-by-step explanation:
9 + 1/6 + 2 1/12
9 + 2.25
11.25
The first few steps in solving the quadratic equation 9x2 + 49x = 22 − 5x by completing the square are shown. 9x2 + 49x = 22 − 5x 9x2 + 54x = 22 9(x2 + 6x) = 22 Which is the best step to do next to solve the equation by completing the square? 9(x2 + 6x + 3) = 25 9(x2 + 6x + 3) = 49 9(x2 + 6x + 9) = 31 9(x2 + 6x + 9) = 103
Answer:
The Answer is : 9(x2 + 6x + 9) = 103
Step-by-step explanation:
Option D on edge2020 i got a 100 on the quiz
The resulting quadratic equation is [tex](x+3)^2-103/9=0[/tex]
Quadratic equationGiven the quadratic equation [tex]9x^2 + 49x = 22 - 5x[/tex]
Write in standard form:
[tex]9x^2 + 49x = 22 - 5x\\ 9x^2 + 49x + 5x -22= 0\\ 9x^2+54x-22=0[/tex]
Divide through by 9
[tex]x^2+6x-22/9=0\\ [/tex]
complete the square to have:
[tex]x^2+6x-22/9+3^2-3^2=0\\ x^2+6x+3^2-9-22/9 = 0\\ (x+3)^2-103/9=0[/tex]
Hence the resulting quadratic equation is [tex](x+3)^2-103/9=0[/tex]
Learn more on completing the square here: https://brainly.com/question/1596209
2. The sum of the ages of Denise and Earl is 42
years. Earl is 8 years younger than Denise.
How old is each?
d-Denis
e-Earl
d+e=42
e+8=d
e+8+e=42
2e+8=42
2e=34
e=17
d=17+8=25
Denis is 25 and Earl is 17
Answer
Earl is 17 years old.
Denis is 25 years old.
See? Easy!
Step-by-step explanation:
which of the following are solutions to the quadratic equation check all that apply x ^ 2 + 10x + 25 = 7
Answer:
the Answers are : B and E
Step-by-step explanation:
From the given quadratic equation [tex]x^2 + 10x + 25 = 7[/tex] Thus, the solution is x = -1 and -9.
How to find the roots of a quadratic equation?Suppose that the given quadratic equation is
[tex]ax^2 + bx + c = 0[/tex]
Then its roots are given as:
[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
We have been given a quadratic equation
[tex]x^2 + 10x + 25 = 7[/tex]
[tex]x^2 + 10x + 25 - 7=0\\\\x^2 + 10x + 18[/tex]
The solution of the given equation;
[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\\\x = \dfrac{-10 \pm \sqrt{10^2 - 4\times 18}}{2}\\\\x = \dfrac{-10 \pm \sqrt{100- 36}}{2}\\\\x = \dfrac{-10 \pm \sqrt{64}}{2}\\\\x = \dfrac{-10 \pm 8}{2}\\[/tex]
Therefore, the solution are x = -1 and -9.
Learn more about finding the solutions of a quadratic equation here:
https://brainly.com/question/3358603
#SPJ2
Solve the inequality and graph the solution set. Write the answer in interval notation. Write your answer in exact simplified form
0> 20x+2>-32
what is the solution?
Answer:
The solution is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex].
Step-by-step explanation:
An inequality is a mathematical relationship between two expressions and is represented using one of the following:
≤, "less than or equal to"<, "less than">, "greater than" ≥, "greater than or equal to"To find the solution of the inequality [tex]0>\:20x+2>\:-32[/tex] you must:
[tex]\mathrm{If}\:a>u>b\:\mathrm{then}\:a>u\quad \mathrm{and}\quad \:u>b\\\\0>20x+2\quad \mathrm{and}\quad \:20x+2>-32[/tex]
First, solve [tex]0>20x+2[/tex]
[tex]\mathrm{Switch\:sides}\\\\20x+2<0\\\\\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}\\\\20x+2-2<0-2\\\\\mathrm{Simplify}\\\\20x<-2\\\\\mathrm{Divide\:both\:sides\:by\:}20\\\\\frac{20x}{20}<\frac{-2}{20}\\\\\mathrm{Simplify}\\\\x<-\frac{1}{10}[/tex]
Next, solve [tex]20x+2>-32[/tex]
[tex]20x+2-2>-32-2\\\\20x>-34\\\\\frac{20x}{20}>\frac{-34}{20}\\\\x>-\frac{17}{10}[/tex]
Finally, combine the intervals
[tex]x<-\frac{1}{10}\quad \mathrm{and}\quad \:x>-\frac{17}{10}\\\\-\frac{17}{10}<x<-\frac{1}{10}[/tex]
The interval notation is [tex]\:\left(-\frac{17}{10},\:-\frac{1}{10}\right)[/tex] and the graph is:
Which flight has the fastest average speed
Answer:
Fastest wind speed ever recorded
That is, however, a patch on the top speed ever reached by an aircraft, a record held by the Lockheed Blackbird, which tickled 2,193mph in 1976
Step-by-step explanation:
You received your monthly bank statement and you are reconciling your account balance using the information below. What is the true balance of your checking account? Check Register Balance $314.97 Bank Statement Balance $423.68 Outstanding Checks $123.71 Service Charge $15.00
Answer:
299.97 is the actual answer
Step-by-step explanation:
I took the test.
Which expression would be easier to simplify if you used the associative
property to change the grouping?
A. 0.85+ (0.15 +(-3)
B. [(-3)+(-3)] +(-3)
C. (160 + 40 + 27
O D. 1+*+(-))
SUBMIT
P
Answer:
A . 0.85 + (0.15 +(-3)) = -2
B . [(-3)+(-3)]+(-3) = - 9
Step-by-step explanation:
Explanation:-
Associative property with addition
(a+(b+c)) = (a+b) + c
A)
Given 0.85 + (0.15 +(-3)) = (0.85 +0.15)+(-3)
= 1 - 3
= -2
B) Given [(-3)+(-3)]+(-3) = ( (-3)+[( -3)+(-3))]
= ( -3 +[-3-3]
= -3 -6
= -9
Final answer:-
A . 0.85 + (0.15 +(-3)) = -2
B . [(-3)+(-3)]+(-3) = - 9