Answer:
0
Step-by-step explanation:
In a suit of 52 cards
The Red Cards are: diamonds and heartsThe Black cards are: clubs and spadesThe experiment consists of drawing 1 card from the standard deck.
Since diamonds are red, there is no black jack of diamonds.
Therefore:
P(drawing a black jack of diamonds)
[tex]=\dfrac{0}{52}\\\\ =0[/tex]
Answers:
In photo below
Explanation:
I got it correct in my test :)
HURRY! WILL GIVE BRAINLIEST! HURRY
[tex]answer \\ = - 0.5 \\ please \: see \: the \: attached \: picture \: for \: \\ full \: solution \\ hope \: it \: helps \\ good \: luck \: on \: your \: assignment[/tex]
Answer:
Step-by-step explanation:
Fraction - Multiplication : 3/4 x 1/7
Answer:
given
3/4×1/7
=3×1/4×7
=3/28
thus the answer is 3/28
[tex]answer = \frac{3}{28} \\ solution \\ \frac{3}{4} \times \frac{1}{7} \\ = \frac{3 \times 1}{4 \times 7} \\ = \frac{3}{28} \\ hope \: it \: helps \\ good \: luck \: on \: your \: assignment[/tex]
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
A
Step-by-step explanation:
It is not B because 7x^2 means multiplying the equation by seven. It isn't C because that would move the graph DOWN seven units. And it's not D because when it is in parenthesis like that, it means that it is a horizontal shift, not vertical.
Answer:
A. G(x) = [tex]x^2+7[/tex]
Step-by-step explanation:
→For the function to shift upwards 7 units, 7 must be added to the function, like so:
G(x) = [tex]x^2+7[/tex]
→F(x) + c (in this case is 7), cases a vertical shift and the function is moved "c," units. The graph would shift downwards if 7 was being subtracted.
This means the correct answer is A.
Please answer this correctly
Answer:
5
Step-by-step explanation:
There are two ways you can solve this. First is to just count all the numbers in the list given that are within the range 15-19. This is an inclusive range meaning the numbers 15 and 19 are a part of it. The second method is to count how many numbers are in the list given and count all the numbers that have already been put on the table. There are 19 total numbers, and 14 have already been counted. If you subtract you are left with 5 numbers that are within the range. So the answer is 5.
Explanation:
One method is to count all of the values that are between 15 and 19. Those values are highlighted in the diagram below. There are 5 values marked.
An alternative method is to note there are 19 values total. The items in the given table add to 5+2+1+2+4 = 14, so there must be 19-14 = 5 items missing to completely fill out the table.
Can someone help me with this I don’t know if I’m right so
Na figura abaixo estão representadas cinco ruas do bairro onde moram João, Marcos, Pedro, Vitor e Samuel. A localização da casa de cada menino é identificada pela inicial de seu nome. Na esquina das ruas A e D fica a escola onde todos estudam. Sabe-se que as ruas A, B e C são paralelas e que todos os meninos vão a pé para a escola, sempre pelo caminho mais curto. Se Samuel caminha 100 m até a escola, Vitor caminha 260 m, João caminha 180 m e Marcos, 270 m, qual é a distância, em metros, que Pedro percorre de sua casa até a escola?
280m
300m
340m
460m
320m
Answer:
340 m
Step-by-step explanation:
Assume the figure looks like the one below.
We have three parallel lines cut by two transversals.
1. Lengths of segments
(a) Segment VS
If Vitor walks 260 m,
VS + SE = 260
VS + 100 = 260
VS = 260 - 100 = 160 m
(b) Segment MJ
If Marcos walks 270 m,
MJ + JE = 270
VS + 180 = 270
VS = 270 - 180 = 90 m
(c) Segment PV
The segments on the transversals are proportional.
[tex]\begin{array}{rcl}\dfrac{x}{90} & = & \dfrac{160}{180} \\\\x & = & 90 \times \left (\dfrac{160}{180}\right )\\\\& = &\textbf{80 m}\\\end{array}\\\textbf{PV = 80 m}[/tex]
2. Distance travelled by Pedro
Distance = PV + VS + SE = 80 m + 160 m + 100 m = 340 m
Pedro walks 340 m to school.
Classify the following triangle .check all that apply
Answer:
Its right and scalene.
It has a right angle and all the sides are diferent.
In a sample of 800 adults, 214 think that most celebrities are good role models. Two us adults are selected from this sample without replacement. find the probability that both adults think most celebrities are good role models
Answer:
11449/160000
Step-by-step explanation:
The probability of selecting a single adult that thinks most celebrities are good role models is 214/800 = 107/400
The probability that both do is
(107/400)^2 =. 11449/160000
A population has the following characteristics.(a) A total of 25% of the population survives the first year. Of that 25%, 75% survives the second year. The maximum life span is 3 years.(b) The average number of offspring for each member of the population is 3 the first year, 5 the second year, and 3 the third year.The population now consists of 144 members in each of the three age classes. How many members will there be in each age class in 1 year?0 ≤ age ≤ 1 = 1 ≤ age ≤ 2 = 2 ≤ age ≤ 3 = In 2 years?0 ≤ age ≤ 1 = 1 ≤ age ≤ 2 = 2 ≤ age ≤ 3 =
Answer:
After 1st year, the age distribution will be
[tex]x_1 = \left[\begin{array}{ccc}1584\\36\\108\end{array}\right][/tex]
After 2nd year, the age distribution will be
[tex]x_2 = \left[\begin{array}{ccc}5256\\396\\27\end{array}\right][/tex]
Step-by-step explanation:
A population has the following characteristics.
A total of 25% of the population survives the first year. Of that 25%, 75% survives the second year.
The average number of offspring for each member of the population is 3 the first year, 5 the second year, and 3 the third year.
From the above information, we can construct a transition age matrix.
[tex]A = \left[\begin{array}{ccc}3&5&3\\0.25&0&0\\0&0.75&0\end{array}\right][/tex]
The population now consists of 144 members in each of the three age classes.
From the above information, we can construct the current age matrix.
[tex]x = \left[\begin{array}{ccc}144\\144\\144\end{array}\right][/tex]
How many members will there be in each age class in 1 year?
After 1st year, the age distribution will be
[tex]x_1 = A \cdot x[/tex]
[tex]x_1 = \left[\begin{array}{ccc}3&5&3\\0.25&0&0\\0&0.75&0\end{array}\right] \times \left[\begin{array}{ccc}144\\144\\144\end{array}\right][/tex]
The matrix multiplication is possible since the number of columns of first matrix is equal to the number of rows of second matrix.
[tex]x_1 = \left[\begin{array}{ccc}1584\\36\\108\end{array}\right][/tex]
After 2nd year, the age distribution will be
[tex]x_2 = A \cdot x_1[/tex]
[tex]x_2 = \left[\begin{array}{ccc}3&5&3\\0.25&0&0\\0&0.75&0\end{array}\right] \times \left[\begin{array}{ccc}1584\\36\\108\end{array}\right][/tex]
[tex]x_2 = \left[\begin{array}{ccc}5256\\396\\27\end{array}\right][/tex]
Solve for x in the diagram below
Answer:
So the diagram couldn't come due to coronavirus?
Answer:
there is no diagram
Step-by-step explanation:
If a sequence c1,c2,c3,...has limit K then the sequence ec1,ec2,ec3,...has limit e^K. Use this fact together with l'Hopital's rule to compute the limit of the sequence given by
bn=(n)^(5.6/n).
Answer:
Step-by-step explanation:
If a sequence c1,c2,c3,...has limit K then the sequence ec1,ec2,ec3,...has limit e^K. Use this fact together with l'Hopital's rule to compute the limit of the sequence given by
bn=(n)^(5.6/n).
a)
[tex]L = \lim_{n \to \infty} b_n \\\\\\L= \lim_{n \to \infty} n^{\frac{5.6}{n} }[/tex]
Log on both sides
[tex]In (L) = \lim_{n \to \infty} In (n)^{\frac{5.6}{n} }\\\\= \lim_{n \to \infty} \frac{5.6}{n} In(n)[/tex]
[tex]=5.6 \lim_{n \to \infty} \frac{d}{dn} In(n)/\frac{d}{dn} (n)\\\\=5.6 \lim_{n \to \infty} \frac{1}{n} /1 \\\\=5.6 \lim_{n \to \infty} \frac{1}{n} \\\\=5.6 \times 0\\\\In(L) =0\\\\L=e^0\\\\L=1[/tex]
[tex]\therefore \lim_{n \to \infty} (n)^{\frac{5.6}{n} =1[/tex]
The limit value of given sequece is 1.
To understand more, check below explanation.
Limit of function:The given sequence is,
[tex]b_{n}=n^{5.6/n}[/tex]
We have to find limit of above sequence.
[tex]L=\lim_{n \to \infty} b_n \\\\L=\lim_{n \to \infty}n^{5.6/n} \\\\ln(L)=\lim_{n \to \infty}\frac{5.6}{n}ln(n) \\\\ln(L)=5.6\lim_{n \to \infty}\frac{ln(n)}{n} \\\\ln(L)=5.6\lim_{n \to \infty}\frac{1/n}{1} \\\\ln(L)=5.6*0=0\\\\L=e^{0}=1[/tex]
Therefore, the limit value of given sequece is 1.
Learn more about the limit of function here:
https://brainly.com/question/2166212
find the area of this figure to the nearest hundredth use 3.14 to approximate pi A=? ft squared
Answer:
[tex]105.13ft^2[/tex]
Step-by-step explanation:
Rectangle
[tex]A=lw\\=10*8\\=80ft^2\\[/tex]
Semicircle
[tex]A=\frac{1}{2} \pi r^2\\=\frac{1}{2}* \pi *4^2\\=25.13ft^2[/tex]
Add both values together
[tex]80+25.13\\=105.13ft^2[/tex]
Answer: 105.13
Step-by-step explanation:
Find the value of a. a) 15 b) 10 c) 25 d) 20
Answer:
answer d) 20
Step-by-step explanation:
Because the two lines are parallel two by two, the figure is a parallelogram.
In a parallelogram the opposite corners are identical.
Given:
opposite corner1 = 130°
opposite corner2= (6a + 10)°
Because corner1 = corner2 we now have:
(6a + 10) = 130
6a + 0 = 130 -10
6a = 120
a = 20
Which is answer d).
The table below gives the list price and the number of bids received for five randomly selected items sold through online auctions. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the number of bids an item will receive based on the list price. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant.Price in Dollars 23 34 40 46 47Number of Bids 1 3 4 5 7Step 1 of 6:Find the estimated slope. Round your answer to three decimal places.Step 2 of 6:Find the estimated y-intercept. Round your answer to three decimal places.Step 3 of 6:Determine if the statement "All points predicted by the linear model fall on the same line" is true or false.Step 4 of 6:Find the estimated value of y when x=46. Round your answer to three decimal places.Step 5 of 6:Determine the value of the dependent variable y^ at x=0.Step 6 of 6:Find the value of the coefficient of determination. Round your answer to three decimal places.
Answer:
1) Estimated slope = b₁ = 0.215
2) Estimated y-intercept = b₀ = -4.185
3) Not all the points predicted fall on the same straight line, but the model gives a close to ideal estimate of the line of best fit.
4) The estimated value of y when x=46 is 5.705
5) The value of the dependent variable y^ at x=0 is -4.185
6) The coefficient of determination = 0.951
Step-by-step explanation:
To solve this, we apply regression analysis
y = b₀ + b₁x
Price in Dollars | 23 | 34 | 40 | 46 | 47
Number of Bids | 1 | 3 | 4 | 5 | 7
For this question, we want to predict the number of bids (dependent variable, y), given the list price of the item (independent variable, x)
So, running the analysis on a spreadsheet application, like excel, the table of parameters is obtained and presented in the first attached image to this solution.
Σxᵢ = sum of all the independent variables (sum of all the list prices)
Σyᵢ = sum of all the dependent variables (sum of all the number of bids in the table)
Σxᵢyᵢ = sum of the product of each dependent variable and its corresponding independent variable
Σxᵢ² = sum of the square of each independent variable (list prices)
Σyᵢ² = sum of the square of each dependent variable (number of bids)
n = number of variables = 5
The scatter plot and the line of best fit is presented in the second attached image to this solution
Then the regression analysis is then done
Slope; m = b₁ = [n×Σxᵢyᵢ - (Σxᵢ)×(Σyᵢ)] / [nΣxᵢ² - (∑xi)²]
Intercept b: b₀ = [Σyᵢ - m×(Σxᵢ)] / n
Mean of x = (Σxᵢ)/n
Mean of y = (Σyᵢ) / n
Sample correlation coefficient r: r =
[n*Σxᵢyᵢ - (Σxᵢ)(Σyᵢ)] ÷ {√([n*Σxᵢ² - (Σxᵢ)²][n*Σyᵢ² - (Σyᵢ)²])}
And -1 ≤ r ≤ +1
All of these formulas are properly presented in the third attached image to this answer
The table of results; mean of x, mean of y, intercept, slope, regression equation and sample coefficient is presented in the fourth attached image to this answer.
Hence, the regression equation is
y = -4.185 + 0.215x
y = b₀ + b₁x
Intercept = b₀ = -4.185
Slope = b₁ = 0.215
And the regression coefficient = 0.951 (Which is very close to 1 and indicates statistic significance)
Hence, we can use this answer obtained to answer the questions attached
1) Find the estimated slope.
Estimated slope = b₁ = 0.215
2) Find the estimated y-intercept.
Estimated y-intercept = b₀ = -4.185
3) Determine if the statement "All points predicted by the linear model fall on the same line" is true or false.
Taking a few of sample data
x = 23 when y = 1
y = -4.185 + 0.215x
y = -4.185 + 0.215 (23) = 0.76 ≈ 1
x = 34, y = 3
y = -4.185 + 0.215 (34) = 3.125 ≈ 3
Hence, it is evident that not all the points predicted fall on the same straight line, but the model gives a close to ideal estimate of the line of best fit.
4) Find the estimated value of y when x=46.
The linear model is
y = -4.185 + 0.215x
when x = 46
y = -4.185 + 0.215(46) = 5.705
5) Determine the value of the dependent variable y^ at x=0.
y = -4.185 + 0.215x
when x = 0
y = -4.185 + 0.215(0) = -4.185
6) Find the value of the coefficient of determination.
The coefficient of determination = regression coefficient = 0.951 (as calculated above)
Hope this Helps!!!
Calculating the standard deviation (σ) for a list of n data values: 1. Calculate the average value. 2. Subtract the average value from each individual data value and enter the results in a column to the right of the data values. 3. Square each of the results obtained in step 2, and enter these in a new column to the right. 4. Sum the squares obtained in step 3. 5. Divide the result from step 4 by (n - 1) (the total number of measurements minus 1). 6. Take the square root of the result from step 5. This is the standard deviation. Expressed as an equation, the standard deviation of n measurements of data value x is: σ = ( Σ (x - xavg)2 / (n - 1) )1/2 Using the 6 steps above (or the spreadsheet function), calculate the standard deviation for the six values on page 16 and enter your answer below. Enter your result with only one sig fig, and remember to use a zero before the decimal point for values less than 1, for example 0.05 or 0.01.
Answer:
Step-by-step explanation:
The missing list of the data values for the question are as follows:
1 1.03
2 1.01
3 0.96
4 0.96
5 0.99
6 1
7 1.01
8 0.98
9 1.02
10 1.03
11 1
12 0.99
13 1
14 0.97
15 1.01
[tex]x_i[/tex] [tex](x_i - \bar x)[/tex] [tex](x_i - \bar x)^2[/tex]
1 1.03 0.03 0.0009
2 1.01 0.01 0.0001
3 0.96 -0.4 0.0016
4 0.96 -0.4 0.0016
5 0.99 -0.1 0.0001
6 1 0.0 0.0
7 1.01 0.1 0.0001
8 0.98 -0.2 0.0004
9 1.02 0.2 0.0004
10 1.03 0.3 0.0009
11 1 0.0 0.0
12 0.99 -0.1 0.0001
13 1 0.0 0.0
14 0.97 -0.03 0.0009
15 1.01 0.1 0.0001
The average value for x is calculated as:
[tex]\bar x = \dfrac{14.96}{15}[/tex]
[tex]\bar x = 0.997 \\ \\ \bar x \approx 1.00[/tex]
[tex]\sum (x-x_i)^2 = 0.0072[/tex]
[tex]\dfrac{\sum (x-x_i)^2 }{n-1}= \dfrac{0.0072}{15-1} \\ \\ = \dfrac{0.0072}{14} \\ \\ = 0.00051[/tex]
[tex]\sigma = \sqrt{\dfrac{\sum (x-x_i)^2 }{n-1}} = \sqrt{0.00051} \\ \\ \sigma =0.0226 \\ \mathbf { \\ \sigma =0.02 \ to \ one \ significant \ figure}[/tex]
Identify the level of measurement of the data, and explain what is wrong with the given calculation. In a survey, the favorite sports of respondents are identified as 100 for basketball comma 200 for baseball comma 300 for football comma and 400 for anything else. The average (mean) is calculated for 597 respondents and the result is 256.1 .The data are at the _________________
level of measurement.
Answer:
The data are at the Nominal level of measurement.
The given calculation is wrong because average (mean) cannot be calculated for nominal level of measurement.
Step-by-step explanation:
The objective here is to Identify the level of measurement of the data, and explain what is wrong with the given calculation.
a)
The data are at the Nominal level of measurement due to the fact that it portrays the qualitative levels of naming and representing different hierarchies from 100 basketball, 200 basketball, 300 football, 400 anything else
b) We are being informed that, the average (mean) is calculated for 597 respondents and the result is 256.1.
The given calculation is wrong because average (mean) cannot be calculated for nominal level of measurement. At nominal level this type of data set do not measure at all , it is not significant to compute their average (mean).
you need 418 yards of blue silk to make one bridesmaid’s dress and 358 yards of the same fabric to make another. How many yards of blue silk do you need to make both dresses?
Answer: you would need 776 yards to make both dresses
Step-by-step explanation:
You would need to find the sum of the amount if yards needed for both dresses.
The first dress needs 418 yards
The seconds dress needs 358 yards
418 + 358 = 776
Therefore you would need 776 yards to be able to make both of the dresses
Suppose f '' is continuous on (−[infinity], [infinity]). (a) If f '(−5) = 0 and f ''(−5) = −1, what can you say about f ? At x = −5, f has a local maximum. At x = −5, f has a local minimum. At x = −5, f has neither a maximum nor a minimum. More information is needed to determine if f has a maximum or minimum at x = −5. (b) If f '(1) = 0 and f ''(1) = 0, what can you say about f ? At x = 1, f has a local maximum. At x = 1, f has a local minimum. At x = 1, f has neither a maximum nor a minimum. More information is needed to determine if f has a maximum or minimum at x = 1.
Answer:
Step-by-step explanation:
a) The first derivative helps considering f decreases or increases. Also, when f'(x) = 0, the function gets local max/min depends on how it acts.
The second derivative helps determining the concave up/down.
At x = -5, f"(-5) = -1 <0 That means the function f have concave down. Also, it shows f increases before -5 and decreases after -5.
Hence f'(-5) = 0 shows f gets maximum at -5.
b) At the point where f" =0, the function has a reflecting point and we need more information to determine if f has a local max/min there.
Using concepts of critical points, it is found that:
a) At x = −5, f has a local maximum.
b) At x = 1, f has neither a maximum nor a minimum.
-----------------------
A critical value of a function f(x) is a value of [tex]x^{\ast}[/tex] for which: [tex]f^{\prime}(x^{\ast}) = 0[/tex].
The second derivative test is also applied:
If [tex]f^{\prime\prime}(x^{\ast}) > 0[/tex], [tex]x^{\ast}[/tex] is a minimum point.If [tex]f^{\prime\prime}(x^{\ast}) < 0[/tex], [tex]x^{\ast}[/tex] is a maximum point.If [tex]f^{\prime\prime}(x^{\ast}) = 0[/tex], [tex]x^{\ast}[/tex] is neither a maximum nor a minimum point.Item a:
[tex]f^{\prime}(-5) = 0, f^{\prime\prime}(-5) = -1[/tex], thus, a maximum point, and the correct option is:At x = −5, f has a local maximum.
Item b:
[tex]f^{\prime}(1) = 0, f^{\prime\prime}(1) = 0[/tex], thus, neither a maximum nor a minimum point, and the correct option is:At x = 1, f has neither a maximum nor a minimum.
A similar problem is given at https://brainly.com/question/16944025
What is the value of m squared minus 2 m n + n squared for m = negative 2 and n = 4?
-4-2×-2×64
-4+4×64
-4+256
=252
Answer: (36)
hope this helps you have a wonderful day
Step-by-step explanation:
What is the indicated missing angle can someone pls help me
Answer:
30
Step-by-step explanation:
Since this is a right triangle, we can use a trig function
cos theta = adjacent/ hypotenuse
cos ? = 52/ 60
Take the inverse cos of each side
cos ^ -1 cos ? = cos ^ -1 ( 52/60)
? =29.92643487
To the nearest degree
? = 30
[tex]answer \\ 30 \\ please \: see \: the \: attached \: picture \: for \: full \: solution \\ hope \: it \: helps[/tex]
outline the procedure for finding the probabilities of any given compound event
Explanation:
We will discuss the probability of any given Compound event under two broad heading. Exclusivity and Dependence.
Two or more events are mutually exclusive if they cannot occur at the same time.
In mutually excusive events,
[tex]P(A \cap B)=0[/tex]
The probability of two mutually exclusive events is given as:
P(A or B)=P(A)+P(B)
If however the two events can occur at the same time, they are mutually inclusive and: [tex]P(A \cap B)\neq 0[/tex].
For mutually inclusive events A and B,
[tex]P(A or B)=P(A)+P(B)-P(A \cap B [/tex].
Two events are independent if the outcome of one does not affect the outcome of the other.
For two independent events, the probability of A and B,
[tex]P(A \cap B)=P(A) \times P(B)[/tex].
Two events are not independent if the outcome of one affect the outcome of the other.
For two dependent events, if A is dependent of B, we say that the probability of A given B,
[tex]P(A|B)=\dfrac{P(A) \cap P(B)}{P(B)}[/tex].
What’s the correct answer for this question?
Answer:
D.
Step-by-step explanation:
In the attached file
please very soon I offer the crown !!! + 10 points urgently !!!
Answer:
a. 3
b. 5
c. 4
d. 4
e. 10
Step-by-step explanation:
Answer:
read below
Step-by-step explanation:
a.3
b.5
c.2
d.2
6. 8p
Does anyone know this?
if a propane tank has the shape of a cylindrical tank with a height of 4.2m and a radius of 1.3m how many cubic metres of propane is in the tank if it's only 50% full
Answer:
11.1 cm³
Step-by-step explanation:
V=πr²h / 2 (for half full)
V = (3.14)(1.3)²(4.2)/2
V = 11.1 cm³
Harasti was inspired to build his hotels after he saw seahorses living in old fishing traps. What is the volume of a fishing trap that is 2 feet wide, 5 feet long, and 3 feet tall?
HELP ME DO THIS !!!!
Answer:
volume of rectangular prism = 30 ft³
Step-by-step explanation:
The fishing trap he wants to build to house sea houses are mostly rectangular prism. The traps are mostly glass like. The volume of the fishing trap will be the volume of the rectangular prism.
volume of rectangular prism = LWH
where
L = length
W = width
H = height
volume of rectangular prism = LWH
Length = 5 ft
width = 2 ft
Height = 3 ft
volume of rectangular prism = 5 × 2 × 3
volume of rectangular prism = 10 × 3
volume of rectangular prism = 30 ft³
Idaho is shaped like a triangle with a base of approximately 320 miles and a height of approximately 520 miles. Calculate the area of Idaho and write the answer in scientific notation
Answer:
8.32 × 10^4
Step-by-step explanation:
The formula for the area of a triangle is 1/2×b×h.
1/2(320)(520) = 83,2000
83,200 in scientific notation is 8.32 × 10^4
If f(x) = 4 – x2 and g(x) = 6x, which expression is equivalent to (9-1(3)?
Answer:
( g − f ) ( 3 ) = 23
Step-by-step explanation:
(g-f)(x)=g(x)-f(x)
=6x-(4-X(2))
=x(2)+6x-4
to evaluate (g-f) (#) substitute x=3 into (g-f)(x)
(g-f)=(9)+(6 x 3) -4=23
if f(x)=ln(sin(2x)), f''(π/4) is equal to
Use the chain rule to compute the second derivative:
[tex]f(x)=\ln(\sin(2x))[/tex]
The first derivative is
[tex]f'(x)=(\ln(\sin(2x)))'=\dfrac{(\sin(2x))'}{\sin(2x)}=\dfrac{\cos(2x)(2x)'}{\sin(2x)}=\dfrac{2\cos(2x)}{\sin(2x)}[/tex]
[tex]f'(x)=2\cot(2x)[/tex]
Then the second derivative is
[tex]f''(x)=(2\cot(2x))'=-2\csc^2(2x)(2x)'[/tex]
[tex]f''(x)=-4\csc^2(2x)[/tex]
Then plug in π/4 for x :
[tex]f''\left(\dfrac\pi4\right)=-4\csc^2\left(\dfrac{2\pi}4\right)=-4[/tex]
select the point that is a solution to the system of inequalities
This point is below both the red diagonal line and the blue parabola. We know that the set of solution points is below both due to the "less than" parts of each inequality sign.
In contrast, a point like (2,2) is above the parabola which is why it is not a solution. It does not make the inequality [tex]y \le x^2-3x[/tex] true. So this is why we can rule choice A out.
Choice C is not a solution because (4,1) does not make [tex]y \le -x+3[/tex] true. This point is not below the red diagonal line. We can cross choice C off the list.
Choice D is similar to choice A, which is why we can rule it out as well.