Answer:
(1R,3R)-1-ethyl-3-methylcyclohexane.
Explanation:
NOTE: The question is not complete since we do not have the diagram to the chemical structure in the question. Kindly check the attached picture for the diagram of the chemical structure.
So, in order to name Enantiomers or chemical structure through the use of the R,S system requires series of rules and regulations to follow for the proper naming.
There is an ethyl attached to the compound as the first substituents and methyl at the third which are the secondary prefix.
=> The longest chain is 6, thus the compound has hexane as the root compound.
=> It is (1R,3R) because when we draw from the highest substituents to the lower substituents, this is done in a clockwise direction.
Photochromic lenses contain Group of answer choices both AgCl and CuCl embedded in the glass. only AgCl embedded in the glass. neither AgCl nor CuCl embedded in the glass. only CuCl embedded in the glass.
Answer:
both AgCl and CuCl embedded in the glass
Explanation:
Photochromic lenses contain both AgCl and CuCl embedded in the glass.
They are light-sensitive lenses that adapt to environmental changes. They appear clear when in an apartment or a building and automatically darken when outside as a result of exposure to sunlight. The darkening is activated by the UV component of the sunlight.
Photochromic lenses are otherwise known as light-adaptive or intelligent lenses and they are formed by coating lenses with silver chloride compounds whose concentration ranges from 0.01 to 0.001 %. Copper (I) chloride is also included in addition to the silver halide.
In summary, photochromic lenses contain both AgCl and CuCl.
Glycine, C2H5O2N, is important for biological energy. The combustion reaction of glycine is given by the equation 4C2H5O2N(s) + 9O2(g) → 8CO2(g) + 10H2O(l) + 2N2(g) ΔH°rxn = –3857 kJ/mol Given that ΔH°f[CO2(g)] = –393.5 kJ/mol and ΔH°f[H2O(l)] = –285.8 kJ/mol, calculate the enthalpy of formation of glycine.
Answer:
ΔH°f C₂H₅O₂N(s) = -537.2kJ
Explanation:
Based on the reaction:
4 C₂H₅O₂N(s) + 9O₂(g) → 8CO₂(g) + 10H₂O(l) + 2N₂(g)
ΔHrxn = ΔH°f products - ΔH°f reactants.
As:
ΔH°fO₂(g) = 0
ΔH°fCO₂(g) = -393.5kJ/mol
ΔH°fH₂O(l) = -285.8kJ/mol
ΔH°fN₂(g) = 0
The ΔHrxn is:
ΔHrxn = (8×-393.5kJ/mol + 10×-285.8kJ/mol) - (4×ΔH°fC₂H₅O₂N(s)) = -3857kJ/mol
-6006kJ/mol - (4×ΔH°fC₂H₅O₂N(s)) = -3857kJ/mol
-4×ΔH°fC₂H₅O₂N(s) = 2149kJ/mol
ΔH°fC₂H₅O₂N(s) = 2149kJ/mol / -4
ΔH°f C₂H₅O₂N(s) = -537.2kJOne compound in the list below is a gas at room conditions, while all of the others are liquids or solids. For each compound, indicate whether it is the gas or the force most responsible for it being a liquid or solid.
First list:
A. CH3OH
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsB. CH4
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsC. CaCO3
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsD. C6H14
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsSecond list:
A. H2O
B. C2H2
C. CCl4
D. KCl
Answer:
First list
A. CH3OH----hydrogen bonds
CH4----dispersion forces
CaCO3---ionic bonds
C6H14----dispersion forces
Second list
H2O------ liquid----hydrogen bonds
C2H2----gas---dispersion forces
CCl4---liquid---dispersion forces
KCl----solid---ionic bonds
Explanation:
For every compound, the intermolecular forces decide whether the substance will be solid liquid or gas. Molecules are known to associate with each other in any particular state of matter. These molecules are held together by different intermolecular interactions with varying degrees of strength. The strength of the intermolecular interaction between the molecules of a substance will decide if the substance will be a solid, liquid or gas.
When the intermolecular forces are very strong such as in ionic solids and covalent network solids, the substance exists as a solid. When the intermolecular forces are not so strong such as dispersion forces and hydrogen bonds, the substance exists as a liquid. However, very weak intermolecular dispersion forces are found in gases hence the molecules are relatively free when compared to molecules of liquids and solids.
The major source of aluminum in the world this bauxite (mostly aluminum oxide). It’s thermal decomposition can be represented by:
Al2 O3 (s) —> 2 Al (s) + 3/2 O2 (g)
ΔH rxn = 1676
If aluminum is produced this way, how many grams of aluminum can conform when 1.000×10^3 kJ of heat is transferred?
Answer:
The correct answer is 32.2 grams.
Explanation:
Based on the given information, the enthalpy of formation for aluminum oxide is 1676 kJ/mol. It signifies towards the energy that is required to generate aluminum and oxygen, and both of these exhibit zero enthalpy of formation. Therefore, the ΔHreaction is the required energy to generate 2 moles of aluminum. Thus, the energy needed for the formation of single mole of aluminum is,
ΔHrxn = 1676/2 = 838 kJ/mol
Q or the energy input mentioned in the given case is 1000 kJ. Therefore, the number of moles of Al generated is,
(1000 kJ) / (838 kJ/Al mole) = 1.19 moles of Aluminum
The grams of aluminum produced can be obtained by using the formula,
mass = moles * molecular mass
= 1.19 * 26.98
= 32.2 grams.
In the thermal decomposition of aluminum oxide, the transference of 1.000 × 10³ kJ of heat can produce 32.19 g of Al.
What is a thermochemical equation?A thermochemical equation is a balanced stoichiometric chemical equation that includes the enthalpy change.
Step 1: Write the thermochemical equation.Al₂O₃(s) ⇒ 2 Al(s) + 3/2 O₂(g) ΔH rxn = 1676 kJ
Step 2: Calculate the moles of Al formed when 1.000 × 10³ kJ of heat is transferred.According to the thermochemical equation, 2 moles of Al are formed when 1676 kJ of heat is transferred.
1.000 × 10³ kJ × (2 mol Al/1676 kJ) = 1.193 mol Al
Step 3: Calculate the mass corresponding to 1.193 moles of AlThe molar mass of Al is 26.98 g/mol.
1.193 mol × 26.98 g/mol = 32.19 g
In the thermal decomposition of aluminum oxide, the transference of 1.000 × 10³ kJ of heat can produce 32.19 g of Al.
Learn more about thermochemical equations here: https://brainly.com/question/25164433
In redox half-reactions, a more positive standard reduction potential means I. the oxidized form has a higher affinity for electrons. II. the oxidized form has a lower affinity for electrons. III. the reduced form has a higher affinity for electrons. IV. the greater the tendency for the oxidized form to accept electrons.
Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
Which of the following is an example of a mechanical wave?
O A. A light ray
B. A seismic wave
C. A radio wave
D. An X-ray
Answer:
A seismic wave
Explanation:
It requires a medium for its propagation.
Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, write only NR. LiNO₃
Answer:
It is neutral (NR)
Explanation:
Salts are formed when the ionizable hydrogens in an acid is replaced by metallic or ammonium ions from bases. The reaction is known as a neutralization reaction.
The nature of a salt formed from this reaction depends on the nature of the reacting acid and base.
If the reaction is between a strong acid and strong base, the salt produced is a neutral salt.
If the reaction occurs between a strong acid and a weak base, the salt produced is acidic.
If the reaction occurs between a strong base and a weak acid, the salt produced is a basic salt.
Considering the salt above, LiNO3.
On hydrolysis, addition of water, the following products are obtained:
LiNO3 + H2O ----> LiOH + HNO3
The products obtained, LiOH and HNO3 are a strong base and a strong acid respectively. Therefore, the salt, LiNO3, is a neutral salt.
The salt, LiNO₃ is a neutral, NR salt as it's a salt formed from the reaction of a strong acid and a strong base.
In neutralisation reactions, acids and bases react to form salt and water.
However, the salt formed may be acidic, basic or neutral. This is dependent on the type of acid and base which form the salt.
A strong acid and a strong base react to yield a neutral salt like, LiNO₃.
The equilibrium equation when LiNO₃ is dissolved in aqeous solution is;
LiNO₃ + H2O ==>. LiOH + HNO₃Evidently, LiOH and HNO₃ are an example strong base and acid respectively.
Read more:
https://brainly.com/question/2254059
Hcl and 1-isopropylcyclohexane formation
Answer:
Spahgetti
Explanation:
What is the molar mass of CH2O2 ? ( C= 12.01 g/mol, H=1.008 g/mol, O=16.00)
Answer:
Molar Mass of CH2O2 is 46.026
Explanation:
What is the molar mass of CH2O2 ? ( C= 12.01 g/mol, H=1.008 g/mol, O=16.00)
C = 12.01g/mol
H = 1.008g/mol
O = 16g/mol
CH2O2 = 12.01+1.008x2+16x2 = 46.026g/mole
a binary ionic compound is made of two components name one of them
Answer:
CATION
Explanation:
It's one is the action and the mother is a cation.
Balance the following chemical equation:
NH4NO3
N20+
H2O
Answer:
NH4NO3 = N2O + 2(H2O)
Explanation:
there are 2 N, 4 H, 3 O
Answer:
NH4NO3=N2O+2H2O
Explanation:
N-2,O-3,H-4
Round off the following measurement to three significant digits: 29.950g
Answer:
30.0 g.
Explanation:
Hello,
In this case, for us to round the given number off to three significant figures, we firstly realize it has initially five significant figures. Thus, cutting at the third digit, which is the second nine, we will have 29.9 g, nonetheless, as a five is after such nine, we should round the nine to ten, so the result is 30.0 g.
Best regards.
Which of the following provides evidence to support Thomson's hypothesis about electrons??
A.) Gold foil experiment
B.) Cathode ray experiments
C.)Spectrum of colors emitted by gas
D.) Radiation produced when beryllium is bombarded with alpha particles
Cathode ray experiments of the following provides evidence to support Thomson's hypothesis about electrons.
What is the hypothesis of Thomson's atomic model?Rutherford's gold leaf experiment demonstrated that the atom is essentially empty space with such a tiny, compact, positively-charged nucleus. Thomson had proposed the plum pie model of the atom, which featured negatively-charged electrons buried within a favorably "soup." Since most of the alpha particles flow through an atom directly without being deflected, contrary to what Thomson's model predicted, the majority of a space inside of an atom is empty. As a result, the Thomson model of a molecule was disproved.
Who disproved Thomson's theory?According to Thomson's model, every atom is made up of negative charges "plums" surrounded in positively charged "pudding," or electrons with a soup of positive ion to balance their negative charges. Hans Geiger and Arthur Marsden's 1909 gold foil test refuted the 1904 Thomson model.
To know more about Thomson hypothesis visit:
https://brainly.com/question/28824828
#SPJ2
6. To isolate benzoic acid from a bicarbonate solution, it is acidified with concen- trated hydrochloric acid, as in experiment 1. What volume of acid is needed to neutralize the bicarbonate
Answer:
For our assumed experiment; the expected volume of Hcl acid needed to neutralize the bicarbonate is 0.13 mL
Explanation:
We are going attempt this question experimentally.
We know that benzoic acid originate from the relationship between benzene and a carboxylic group. So basically , the functional group of a carboxylic acid (-COOH) joins with a benzene ring(C₆H₆) to form a simple aromatic carboxylic acid known as Benzoic acid. (C₇H₆O₂)
However, it is possible to isolate benzoic acid from a bicarbonate solution in the presence of an acidified concentrated hydrochloric acid.
Let assume that ;
0.20 g of benzoic acid was reacted with 2 mL of a 20% solution of NaHCO₃, the amount of the excess NaHCO₃ can be determined by subtracting the amount of benzoic acid from the amount of NaHCO₃.
Let first calculate the number of moles in 0.20 g of benzoic acid
we know that the standard molar mass of benzoic acid is 122.12 g/mol
number of moles of benzoic acid = mass of benzoic acid/molar mass of benzoic acid =
number of moles of benzoic acid = 0.20/ 122.12
number of moles of benzoic acid = 0.0016 mol
number of moles of bicarbonate solution = mass of bicarbonate solution/ molar mass of bicarbonate solution
number of moles of bicarbonate solution = 0.2/84.00654 g/mol
number of moles of bicarbonate solution = 0.00238 mol
∴
(0.00238 - 0.0016) mol
= 7.8 × 10⁻⁴ mol
Let assume that the concentrated HCl is 12 M
Also. HCl and NaHCO₃ react together at the ratio of 1:1; thus the volume of Hcl acid needed to neutralize the bicarbonate is:
[tex]= ( 7.8 * 10^{-4} \ \ mol )* ( \dfrac{2\ L}{ 12 \ M})*( \dfrac{10^3 \mL}{1 \ L})[/tex]
= 0.13 mL
Thus; for our assumed experiment; the expected volume of Hcl acid needed to neutralize the bicarbonate is 0.13 mL
List three ways the rate of solvation of sodium chloride in water may be
increased
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
A quantity of 2.00 × 102 mL of 0.662 M HCl is mixed with 2.00 × 102 mL of 0.331 M Ba(OH)2 in a constant-pressure calorimeter of negligible heat capacity. The initial temperature of the HCl and Ba(OH)2 solutions is the same at 22.00°C. For the process below, the heat of neutralization is −56.2 kJ/mol. What is the final temperature of the mixed solutions? H+(aq) + OH−(aq) → H2O(l)
Answer:
Final temperature of the solution = 26.43°C
Explanation:
Concentration of HCl = 0.662 M, Volume = 200 mL= 0.200 L
Concentration of Ba(OH)₂ = 0.331 M, Volume = 200 mL = 0.200 L
Initial temperature of solution = 22.00°C
Specific Heat capacity of water = 4.184 J/g°C
Heat of neutralization = -56.3 KJ/mol of H₂O produced.
The full calculations is found in the attachment below
What are plastic bottles made of?
Polyethylene
halogen
silicon
Alkyl groups
Answer:
polyethylenes
Explanation:
the plastic bottles used to hold potable water and other drinks are made from polyethylene because, the material is both strong and light.
hope this helped!
Answer: Polyethylenes
Explanation: I got 100% on the test :)
what is the chemical symbol and name of the third element in the periodic table
Answer: Aluminum symbol Al or aluminum American English
Explanation:
Answer:
Hii
Li( Lithium)
Explanation:
Lithium has the atomic number of three and is the third element in periodic table.
From the unbalanced reaction: B2H6 + O2 ---> HBO2 + H2O
How many grams of O2 (32g/mol) will be needed to burn 36.1 g of B2H6 (Molar mass = 27.67g/mol)? ______g
Include the correct number of significant figures in your final answer
Answer: 125 g
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} B_2H_6=\frac{36.1g}{17}=1.30moles[/tex]
The balanced reaction is:
[tex]B_2H_6+3O_2\rightarrow 2HBO_2+2H_2O[/tex]
According to stoichiometry :
1 mole of [tex]B_2H_6[/tex] require = 3 moles of [tex]O_2[/tex]
Thus 1.30 moles of [tex]B_2H_6[/tex] will require=[tex]\frac{3}{1}\times 1.30=3.90moles[/tex] of [tex]O_2[/tex]
Mass of [tex]O_2=moles\times {\text {Molar mass}}=3.90moles\times 32g/mol=125g[/tex]
Thus 125 g of [tex]O_2[/tex] will be needed to burn 36.1 g of [tex]B_2H_6[/tex]
Consider this reaction:
2Cl2O5 —> 2Cl2 + 5O2
At a certain temperature it obeys this rate law.
rate = (2.7.M^-1•s^-1) [Cl2O5]^2
Suppose a vessel contains Cl2O5 at a concentration of 0.600M. calculate how long it takes for the concentration of Cl2O5 to decrease by 94%. you may assume no other reaction is important. round your answer to two digits
Answer:
[tex]t=9.7s[/tex]
Explanation:
Hello,
In this case, we have a second order kinetics given the second power of the concentration of chlorine (V) oxide in the rate expression, thus, the integrated equation for the concentration decay is:
[tex]\frac{1}{[Cl_2O_5]}=kt+\frac{1}{[Cl_2O_5]_0}[/tex]
Thus, the final concentration for a 94% decrease is:
[tex][Cl_2O_5]=0.600M-0.600M*0.94=0.036M[/tex]
Therefore, we compute the time for such decrease:
[tex]kt=\frac{1}{[Cl_2O_5]}-\frac{1}{[Cl_2O_5]_0}=\frac{1}{0.036M}-\frac{1}{0.60M} =26.1M^{-1}[/tex]
[tex]t=\frac{26.1M^{-1}}{k}= \frac{26.1M^{-1}}{2.7M^{-1}*s^{-1}}\\\\t=9.7s[/tex]
Regards.
The equilibrium constant for the reaction NO2(g)+NO3(g)→N2O5(g) is 2.1x10-20 , therefore: a. At equilibrium, the concentration of products and reactants is about the same. b. At equilibrium, the concentration of products is greater than the reactants. c. At equilibrium, the concentration of reactants is greater than the products
Answer: c. At equilibrium, the concentration of reactants is greater than the products
Explanation:
Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
For the reaction:
[tex]NO_2(g)+NO_3(g)\rightleftharpoons N_2O_5(g)[/tex]
Equilibrium constant is given as:
[tex]K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]
[tex]2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]
When
a) K > 1, the concentration of products is greater than the concentration of reactants
b) K < 1, the concentration of reactants is greater than the concentration of products
c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products
Thus as [tex]K_{eq}[/tex] is [tex]2.1\times 10^{-20}[/tex] which is less than 1,
the concentration of reactants is greater than the concentration of products
Why are there different theories about the effects of global warming?
What can be known about the salt sample that Gerry is looking at?
Answer:
That its small pointed. Pink(Himalayan salt)or white(normal salt)
Explanation:
Summa dees questions are so stupid, deys makin me salty.
Discuss any give ways by which
the falling moral standards of Ghanaian
youth can be minimised.
Answer:
The falling standards of Ghanaian youths can be minimized by proper upbringing of the children by their parents. The youths should be taught about what is wrong or right and there should be a corresponding reward for those who do good and exceptional in order to encourage others in towing that line and punishment should also be meted out to those who break the law. Mediocrity shouldn’t be celebrated and the elders should lead by example.
These will make the falling standards of Ghanaian youth get reduced.
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?
[tex]Co(NO_3)_2(aq)\rightarrow Co^{2+}(aq)+2NO_3^{-}(aq)[/tex]
Initial mole of Co(NO3)2 [tex]=\frac{mass}{molar mass}[/tex]
[tex]=\frac{5.00}{182.94} \\\\=0.02733mol[/tex]
Mole of Co(NO3)2 in final solution
[tex]=\frac{4.00}{100}\times 0.02733\\\\=0.04\times 0.02733\\\\= 0.001093mol[/tex]
Mole of NO3- in final solution = 2 x Mole of Co(NO3)2
[tex]=2\times 0.001093\\\\=0.002186mol[/tex]
Mass of NO3- in final solution is mole x Molar mass of NO3
[tex]=0.002186\times62.01\\\\=0.136g[/tex]
The final solution contains 0.24 g of nitrate ion.
Number of moles of Co(NO3)2 = 5.00 g/183 g/mol = 0.027 moles
Number of moles = concentration × volume
concentration = Number of moles /volume
Volume of solution = 100 mL or 0.1 L
concentration = 0.027 moles/0.1 L = 0.27 M
Using the dilution formula;
C1V1 = C2V2
C1 = 0.27 M
V1 = 4.00 mL
C2 = ?
V2 = 275. mL
C2 = C1V1/V2
C2 = 0.27 × 4.00/ 275
C2 = 0.0039 M
Number of moles of NO3- ion in Co(NO3)2 = 0.0039 M × 62 g/mol = 0.24 g
Learn more: https://brainly.com/question/1340582
What happens in a double replacement reaction
Answer: D
Explanation: The elements in two compunds switch places
A gas has volume of 800.0mL at -23.0°c and 300.0torr. What would the volume of the gas be at 227.0°c and 600.0torr of pressure
Answer:
Explanation:
use gas law eqation
P1 * V1 / T1 = P2 * V2 /T2
600*V1/227 = 300*800/23
V1 = 300*800*227 / 23*600 = ............ can you solve this and get the answer?
A pure sample of the R enantiomer of a compound has a specific rotation, [ α], of +20 °. A solution containing 0.2 g/mL of a mixture of enantiomers rotates plane polarized light by −2 ° in a 1 dm polarimeter. What is the enantiomeric excess (%ee) of the mixture?
Answer:
Explanation:
The specific rotation of the sample is -2 degrees/0.2 g/mL of mixture
This equals -10 degrees/g/mL of sample.
let the proportion of the R (+) enantiomer be x. The proportion of the S (-) enantiomer in the mixture will be given by (1-x).
specific rotation of the mixture = proportion of R enantiomer* its specific rotation + proportion of S enantiome * its specific rotation
i.e.
-10 = x *(+20) + (1-x)*(-20)
-10 = 20x-20 + 20x
-10+20 = 40x
+10 = 40 x
x=10/40 = 25%
Since the proportion of the other enantiomer is 1-x, it is 0.75 or 75%
So the mixture contains 25% R, 75% S, giving you an excess of 50%.
Answer:
10%
Explanation:
Enantiomeric excess is a way of describing how optically pure a mixture is by calculating the purity of the major enantiomer. It can range from 0%-100%. Enantiomeric excess ( ee ) can also be defined as the absolute difference between the mole fractions of two enantiomers.
Enantiomeric excess is also called optical purity. This is because chiral molecules cause the rotation of plane-polarized light and are said to be optically active. An enantiomerically pure sample has an enantiomeric excess of 100 percent
Enantiomeric excess = observed specific rotation/specific rotation of the pure enantiomer x 100
From the data given in the question;
observed specific rotation= -2°
specific rotation of the pure enantiomer = +20°
Therefore;
ee= 2/20 ×100
ee= 10%
Aspirin is usually packaged with
A. acetic anhydride
B. salicylic acid
C. buffering agents
Answer:
Aspirin is usually packaged with C. buffering agents.
Explanation:
How many moles of H2 are needed to produce 34.8 moles of NH3?
2 i hope this helps
:)✨✨✨✨✨✨