A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the material is 240 MPa. A factor of safety of 2.5 is desired. The maximum permissible internal pressure is most nearly: 90 kPa 230 kPa 430 kPa D. 570 kPa csauteol psotolem here Pcr 8. A structural steel tube with a 203 mm x 203 mm square cross section has an average wall thickness of 6.35 mm. The tube resists a torque of 8 N m. The average shear flow is most nearly
A. 100 N/m
B. 200 N/m
C. 400 N/m
D. 800 N/m

Answers

Answer 1

Answer:

1) 2304 kPa

2) B. 200 N/m

Explanation:

The internal pressure of the of the tank  can be found from the following relations;

Resisting wall force F = p×(1/4·π·D²)

σ×A = p×(1/4·π·D²)

Where:

σ = Allowable stress of the tank

A = Area of the wall of the tank = π·D·t

t = Thickness of the tank = 15 mm. = 0.015 m

D = Diameter of the tank = 25 m

p = Maximum permissible internal pressure pressure

∴ σ×π·D·t = p×(1/4·π·D²)

p = 4×σ×t/D = 4 × 240 ×0.015/2.5 = 5.76 MPa

With a desired safety factor of 2.5, the permissible internal pressure = 5.76/2.5 = 2.304 MPa

2) The formula for average shear flow is given as follows;

[tex]q = \dfrac{T}{2 \times A_m}[/tex]

Where:

q = Average shear flow

T = Torque = 8 N·m

[tex]A_m[/tex] = Average area enclosed within tube

t = Thickness of tube = 6.35 mm = 0.00635 m

Side length of the square cross sectioned tube, s = 203 mm = 0.203 m

Average area enclosed within tube, [tex]A_m[/tex] = (s - t)² = (0.203 - 0.00635)² = 0.039 m²

[tex]\therefore q = \dfrac{8}{2 \times 0.039} = 206.9 \, N/m[/tex]

Hence the average shear flow is most nearly 200 N/m.

Answer 2

Following are the solution to the given question:

Calculating the allowable stress:

[tex]\to \sigma_{allow} = \frac{\sigma_y}{FS} \\\\[/tex]

              [tex]= \frac{240}{2.5} \\\\= 96\\\\[/tex]

Calculating the Thickness:

[tex]\to t =15\ mm = \frac{15\ }{1000}= 0.015\ m\\\\[/tex]

The stress in a spherical tank is defined as

[tex]\to \sigma = \frac{pD}{4t}\\\\\to 96 = \frac{p(25)}{4(0.015)}\\\\\to p = 0.2304\;\;MPa\\\\\to p = 230.4\;\;kPa\\\\\to p \approx 230\;\;kPa\\\\[/tex]

[tex]\bold{\to A= 203^2= 41209\ mm^2} \\\\[/tex]

Calculating the shear flow:

[tex]\to q=\frac{T}{2A}[/tex]

      [tex]=\frac{8}{2 \times 41209 \times 10^{-6}}\\\\=\frac{8}{0.082418}\\\\=97.066\\\\[/tex]

[tex]\to q=97 \approx 100 \ \frac{N}{m}\\[/tex]

Therefore, the final answer is "".

Learn more:

brainly.com/question/15744940


Related Questions

Under normal operating conditions, the electric motor exerts a torque of 2.8 kN-m.on shaft AB. Knowing that each shaft is solid, determine the maximum shearing stress in a) shaft AB b) shaft BC c) shaft CD (25 points) Given that the torque at B

Answers

Answer:

Explanation:

The image attached to the question is shown in the first diagram below.

From the diagram given ; we can deduce a free body diagram which will aid us in solving the question.

IF we take a look at the second diagram attached below ; we will have a clear understanding of what the free body diagram of the system looks like :

From the diagram; we can determine the length of BC by using pyhtagoras theorem;

SO;

[tex]L_{BC}^2 = L_{AB}^2 + L_{AC}^2[/tex]

[tex]L_{BC}^2 = (3.5+2.5)^2+ 4^2[/tex]

[tex]L_{BC}= \sqrt{(6)^2+ 4^2}[/tex]

[tex]L_{BC}= \sqrt{36+ 16}[/tex]

[tex]L_{BC}= \sqrt{52}[/tex]

[tex]L_{BC}= 7.2111 \ m[/tex]

The cross -sectional of the cable is calculated by the formula :

[tex]A = \dfrac{\pi}{4}d^2[/tex]

where d = 4mm

[tex]A = \dfrac{\pi}{4}(4 \ mm * \dfrac{1 \ m}{1000 \ mm})^2[/tex]

A = 1.26 × 10⁻⁵ m²

However, looking at the maximum deflection  in length [tex]\delta[/tex] ; we can calculate for the force [tex]F_{BC[/tex] by using the formula:

[tex]\delta = \dfrac{F_{BC}L_{BC}}{AE}[/tex]

[tex]F_{BC} = \dfrac{ AE \ \delta}{L_{BC}}[/tex]

where ;

E = modulus elasticity

[tex]L_{BC}[/tex] = length of the cable

Replacing 1.26 × 10⁻⁵ m² for A; 200 × 10⁹ Pa for E ; 7.2111 m for [tex]L_{BC}[/tex] and 0.006 m for [tex]\delta[/tex] ; we have:

[tex]F_{BC} = \dfrac{1.26*10^{-5}*200*10^9*0.006}{7.2111}[/tex]

[tex]F_{BC} = 2096.76 \ N \\ \\ F_{BC} = 2.09676 \ kN[/tex]     ---- (1)

Similarly; we can determine the force [tex]F_{BC}[/tex] using the allowable  maximum stress; we have the following relation,

[tex]\sigma = \dfrac{F_{BC}}{A}[/tex]

[tex]{F_{BC}}= {A}*\sigma[/tex]

where;

[tex]\sigma =[/tex] maximum allowable stress

Replacing 190 × 10⁶ Pa for [tex]\sigma[/tex] ; we have :

[tex]{F_{BC}}= 1.26*10^{-5} * 190*10^{6} \\ \\ {F_{BC}}=2394 \ N \\ \\ {F_{BC}}= 2.394 \ kN[/tex]     ------ (2)

Comparing (1) and  (2)

The magnitude of the force [tex]F_{BC} = 2.09676 \ kN[/tex] since the elongation of the cable should not exceed 6mm

Finally applying the moment equilibrium condition about point A

[tex]\sum M_A = 0[/tex]

[tex]3.5 P - (6) ( \dfrac{4}{7.2111}F_{BC}) = 0[/tex]

[tex]3.5 P - 3.328 F_{BC} = 0[/tex]

[tex]3.5 P = 3.328 F_{BC}[/tex]

[tex]3.5 P = 3.328 *2.09676 \ kN[/tex]

[tex]P =\dfrac{ 3.328 *2.09676 \ kN}{3.5 }[/tex]

P = 1.9937 kN

Hence; the maximum load P that can be applied is 1.9937 kN

Effluents from metal-finishing plants have the potential of discharging undesirable quantities of metals, such as cadmium, nickel, lead, manganese, and chromium, in forms that are detrimental to water and air quality. A local metal-finishing plant has identified a wastewater stream that contains 5.15 wt% chromium (Cr) and devised the following approach to lowering risk and recovering the valuable metal. The wastewater stream is fed to a treatment unit that removes 95% of the chromium in the feed and recycles it to the plant. The residual liquid stream leaving the treatment unit is sent to a waste lagoon. The treatment unit has a maximum capacity of 4500 kg wastewater/h. If wastewater leaves the finishing plant at a rate higher than the capacity of the treatment unit, the excess (anything above 4500 kg/h) bypasses the unit and combines with the residual liquid leaving the unit, and the combined stream goes to the waste lagoon.
(a) Without assuming a basis of calculation, draw and label a flowchart of the process. (b) Waste water leaves the finishing plant at a rate m_ 1 ? 6000 kg/h. Calculate the flow rate of liquid to
the waste lagoon, m_ 6?kg/h?, and the mass fraction of Cr in this liquid, x6(kg Cr/kg). (c) Calculate the flow rate of the liquid to the waste lagoon and the mass fraction of Cr in this liquid for m_1 varying from 1000 kg/h to 10,000 kg/h in 1000 kg/h increments. Generate a plot of x6 versus m_ 1 .
(Suggestion: Use a spreadsheet for these calculations.) (d) The company has hired you as a consultant to help them determine whether or not to add capacity to the treatment unit to increase the recovery of chromium. What would you need to know to make this determination? (e) What concerns might need to be addressed regarding the waste lagoon?

Answers

Answer:

Explanation:

The solution of all the four parts is provided in the attached figures

A rectangular bar of length L has a slot in the central half of its length. The bar has width b, thickness t, and elastic modulus E. The slot has width b/3. The overall length of the bar is L = 570 mm, and the elastic modulus of the material is 77 GPa. If the average normal stress in the central portion of the bar is 200 MPa, calculate the overall elongation δ of the bar.

Answers

Answer:

The correct answer to the following question will be "1.23 mm".

Explanation:

The given values are:

Average normal stress,

[tex]\sigma=200 \ MPa[/tex]

Elastic module,

[tex]E = 77 \ GPa[/tex]

Length,

[tex]L = 570 \ mm[/tex]

To find the deformation, firstly we have to find the equation:

⇒  [tex]\delta=\Sigma\frac{N_{i}L_{i}}{E \ A_{i}}[/tex]

⇒     [tex]=\frac{P(\frac{L}{H})}{E(bt)} +\frac{P(\frac{L}{2})}{E (bt)(\frac{2}{3})}+\frac{P(\frac{L}{H})}{Ebt}[/tex]

On taking "[tex]\frac{PL}{Ebt}[/tex]" as common, we get

⇒     [tex]=\frac{\frac{PL}{Ebt}}{[\frac{1}{4}+\frac{3}{4}+\frac{1}{4}]}[/tex]

⇒     [tex]=\frac{5PL}{HEbt}[/tex]

Now,

The stress at the middle will be:

⇒  [tex]\sigma=\frac{P}{A}[/tex]

⇒     [tex]=\frac{P}{(\frac{2}{3})bt}[/tex]

⇒     [tex]=\frac{3P}{2bt}[/tex]

⇒  [tex]\frac{P}{bt} =\frac{2 \sigma}{3}[/tex]

Hence,

⇒  [tex]\delta=\frac{5 \sigma \ L}{6E}[/tex]

On putting the estimated values, we get

⇒     [tex]=\frac{5\times 200\times 570}{6\times 77\times 10^3}[/tex]

⇒     [tex]=\frac{570000}{462000}[/tex]

⇒     [tex]=1.23 \ mm[/tex]  

Consider a series RC circuit at the left where C = 6 µ F, R = 2 MΩ, and ε = 20 V. You close the switch at t = 0. Find (a) the time constant for the circuit, (b) the half-life of the circuit, (c) the current at t = 0, (d) the voltage across the capacitor at t = 0, and (e) the voltage across the resistor after a very long time.

Answers

Answer:

(a) 12 seconds (b) t = 8.31 seconds (c) 10µ A (d) V = 20 V (e) V =0

Explanation:

Solution

Given that:

C = 6 µ which is = 6 * 10^ ⁻6

R = 2 MΩ, which is = 2 * 10^ 6

ε = 20 V

(a) When it is at the time constant we have the following:

λ = CR

= 6 * 10^ ⁻6 * 2 * 10^ 6

λ =12 seconds

(b) We solve for the half life of the circuit which is given below:

d₀ = d₀ [ 1- e ^ ⁺t/CR

d = decay mode]

d₀/2 =  d₀  1- e ^ ⁺t/12

2^⁻1 = e ^ ⁺t/12

Thus

t/12 ln 2

t = 12 * ln 2

t = 12 * 0.693

t = 8.31 seconds

(c) We find the current at t = 0

So,

I = d₀/dt

I = d₀/dt e ^ ⁺t/CR

= CE/CR e ^ ⁺t/CR

E/R e ^ ⁺t/CR

Thus,

at t = 0

I  E/R = 20/  2 * 10^ 6

= 10µ A

(d) We find the voltage across the capacitor at t = 0 which is shown below:

V = IR

= 10 * 10^ ⁻6 * 2 * 10^ 6

V = 20 V

(e)  We solve for he voltage across the resistor.

At t = 0

I = 0

V =0

Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P

Answers

Answer:

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

Explanation:

The complete statement of this question is "Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P = 450 kN"

Each bolt is subjected to shear forces. In this case, safety factor is the ratio of the ultimate shear strength to maximum allowable shear stress. That is to say:

[tex]n = \frac{S_{uts}}{\tau_{max}}[/tex]

Where:

[tex]n[/tex] - Safety factor, dimensionless.

[tex]S_{uts}[/tex] - Ultimate shear strength, measured in pascals.

[tex]\tau_{max}[/tex] - Maximum allowable shear stress, measured in pascals.

The maximum allowable shear stress is consequently cleared and computed: ([tex]n = 4.2[/tex], [tex]S_{uts} = 320\times 10^{6}\,Pa[/tex])

[tex]\tau_{max} = \frac{S_{uts}}{n}[/tex]

[tex]\tau_{max} = \frac{320\times 10^{6}\,Pa}{4.2}[/tex]

[tex]\tau_{max} = 76.190\times 10^{6}\,Pa[/tex]

Since each bolt has a circular cross section area and assuming the shear stress is not distributed uniformly, shear stress is calculated by:

[tex]\tau_{max} = \frac{4}{3} \cdot \frac{V}{A}[/tex]

Where:

[tex]\tau_{max}[/tex] - Maximum allowable shear stress, measured in pascals.

[tex]V[/tex] - Shear force, measured in kilonewtons.

[tex]A[/tex] - Cross section area, measured in square meters.

As connection consist on five bolts, shear force is equal to a fifth of the applied load. That is:

[tex]V = \frac{P}{5}[/tex]

[tex]V = \frac{450\,kN}{5}[/tex]

[tex]V = 90\,kN[/tex]

The minimum allowable cross section area is cleared in the shearing stress equation:

[tex]A = \frac{4}{3}\cdot \frac{V}{\tau_{max}}[/tex]

If [tex]V = 90\,kN[/tex] and [tex]\tau_{max} = 76.190\times 10^{3}\,kPa[/tex], the minimum allowable cross section area is:

[tex]A = \frac{4}{3} \cdot \frac{90\,kN}{76.190\times 10^{3}\,kPa}[/tex]

[tex]A = 1.640\times 10^{-3}\,m^{2}[/tex]

The minimum allowable cross section area can be determined in terms of minimum allowable bolt diameter by means of this expression:

[tex]A = \frac{\pi}{4}\cdot D^{2}[/tex]

The diameter is now cleared and computed:

[tex]D = \sqrt{\frac{4}{\pi}\cdot A}[/tex]

[tex]D =\sqrt{\frac{4}{\pi}\cdot (1.640\times 10^{-3}\,m^{2})[/tex]

[tex]D = 0.0457\,m[/tex]

[tex]D = 45.7\,mm[/tex]

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

We have that the minimum allowable bolt diameter is mathematically given as

d = 26.65mm

From the question we are told

Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of Assuming P to be P = 425 kN.

Diameter

Generally the equation for the stress   is mathematically given as

[tex]\mu= 320/4.2 \\\\\mu= 76.190 N/mm^2[/tex]

Therefore

Force = Stress * area

Force = P/2

F= 425,000 N / 2 = 212,500 N

Hence area of each bolt is given as

212,500 = 76.190*( 5* area of each bolt)

area of each bolt = 557.815

Since

area of each bolt=\pi*d^2/4

\pi*d^2/4 = 557.815

d = 26.65mm

For more information on diameter visit

https://brainly.com/question/8552546

2) Consider schedules S3, S4, and S5 below. Determine whether each schedule is strict, cascadeless, recoverable, or non-recoverable. You need to explain your reason.



S3: r1(x), r2(z), r1(z), r3(x), r3(y), w1(x), c1, w3(y), c3, r2(y), w2(z),w2(y),c2


S4: r1(x), r2(z), r1(z), r3(x), r3(y),w1(x),w3(y), r2(y),w2(z),w2(y), c1,c2, c3


S5: r1(x), r2(z), r3(x), r1(z), r2(y), r3(y), w1(x), c1, w2(z), w3(y), w2(y), c3, c2

Answers

Answer:

Explanation:

Consider schedules S3, S4, and S5 below. Determine whether each schedule is strict, cascadeless, recoverable, or non-recoverable. You need to explain your reason.

S3: r1(x), r2(z), r1(z), r3(x), r3(y), w1(x), c1, w3(y), c3, r2(y), w2(z),w2(y),c2

S4: r1(x), r2(z), r1(z), r3(x), r3(y),w1(x),w3(y), r2(y),w2(z),w2(y), c1,c2, c3

S5: r1(x), r2(z), r3(x), r1(z), r2(y), r3(y), w1(x), c1, w2(z), w3(y), w2(y), c3, c2

Strict schedule:

A schedule is strict if it satisfies the following conditions:

Tj reads a data item X after Ti has written to X and Ti is terminated means aborted or committed.

Tj writes a data item X after Ti has written to X and Ti is terminated means aborted or committed.

S3 is not strict because In a strict schedule T3 must read X after C1 but here T3 reads X (r3(X)) before Then T1 has written to X (w1(X)) and T3 commits after T1.

S4 is not strict because In a strict schedule T3 must read X after C1, but here T3 reads X (r3(X)) before T1 has written to X (w1(X)) and T3 commits after T1.

S5 is not strict because T3 reads X (r3(X)) before T1 has written to X (w1(X))

but T3 commits after T1. In a strict schedule T3 must read X after C1.

Cascadeless schedule:

Cascadeless schedule follows the below condition:

Tj reads X only? after Ti has written to X and terminated means aborted or committed.

S3 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits.

S4 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits.

S5 is not cascadeless schedule because T3 reads X (r3(X)) before T1 commits or T2 reads Y (r2(Y)) before T3 commits.

But while come to the definition of cascadeless schedules S3, S4, and S4 are not cascadeless, and T3 is not affected if T1 is rolled back in any of the schedules, that is,

T3 does not have to roll back if T1 is rolled back. The problem occurs because these

schedules are not serializable.

Recoverable schedule:

Schedule that follows the below condition:

-----Tj commits after Ti if Tj has?read any data item written by Ti.

Ci > Cj means that Ci happens before Cj. Ai denotes abort Ti. To test if a schedule is

recoverable one has to include abort operations. Thus in testing the recoverability abort

operations will have to used in place of commit one at a time. Also the strictest condition is

------where a transaction neither reads nor writes to a data item, which was written to by a transaction that has not committed yet.

If A1?>C3>C2, then schedule S3 is recoverable because rolling back of T1 does not affect T2 and

T3. If C1>A3>C2. schedule S3 is not recoverable because T2 read the value of Y (r2(Y)) after T3 wrote X (w3(Y)) and T2 committed but T3 rolled back. Thus, T2 used non- existent value of Y. If C1>C3>A3, then S3 is recoverable because roll back of T2 does not affect T1 and T3.

Strictest condition of schedule S3 is C3>C2.

If A1?>C2>C3, then schedule S4 is recoverable because roll back of T1 does not affect T2 and T3. If C1>A2>C3, then schedule S4 is recoverable because the roll back of T2 will restore the value of Y that was read and written to by T3 (w3(Y)). It will not affect T1. If C1>C2>A3, then schedule S4 is not recoverable because T3 will restore the value of Y which was not read by T2.

Design a decimal arithmetic unit with two selection variables, V1, and Vo, and two BCD digits, A and B. The unit should have four arithmetic operations which depend on the values of the selection variables as shown below. V1=0011, V0=0101 and output functions are as follows;
1- A+9's complement of B
2- A+B
3- A+10's complement of B
4- A+1 (add 1 to A)
(You can see question number 3 in the attached file)

Answers

Ucsaaaaauxx627384772938282’cc ed un e uff ridicolizzarla +golfista

The drum has a mass of 50 kg and a radius of gyration about the pin at O of 0.23 o k m = . If the 15kg block is moving downward at 3 / m s , and a force of P N =100 is applied to the brake arm, determine how far the block descends from the instant the brake is applied until it stops. Neglect the thickness of the handle. The coefficient of kinetic friction at the brake pad is 0.5 k = .

Answers

Note: The diagram referred to in this question is attached as a file below.

Answer:

The block descended a distance of 9.75m from the instant the brake is applied until it stops.

Explanation:

For clarity and easiness of expression, the calculations and the Free Body Diagram are contained in the attached file. Check the attached file below.

The block descended a distance of 9.75 m

The basic behind equal driving is to

Answers

Follow traffic signs , Keep distance between cars , Be patient in traffic.

The force of T = 20 N is applied to the cord of negligible mass. Determine the angular velocity of the 20-kg wheel when it has rotated 4 revolutions starting from rest. The wheel has a radius of gyration of kO = 0.3 m.

Answers

Image of wheel is missing, so i attached it.

Answer:

ω = 14.95 rad/s

Explanation:

We are given;

Mass of wheel; m = 20kg

T = 20 N

k_o = 0.3 m

Since the wheel starts from rest, T1 = 0.

The mass moment of inertia of the wheel about point O is;

I_o = m(k_o)²

I_o = 20 * (0.3)²

I_o = 1.8 kg.m²

So, T2 = ½•I_o•ω²

T2 = ½ × 1.8 × ω²

T2 = 0.9ω²

Looking at the image of the wheel, it's clear that only T does the work.

Thus, distance is;

s_t = θr

Since 4 revolutions,

s_t = 4(2π) × 0.4

s_t = 3.2π

So, Energy expended = Force x Distance

Wt = T x s_t = 20 × 3.2π = 64π J

Using principle of work-energy, we have;

T1 + W = T2

Plugging in the relevant values, we have;

0 + 64π = 0.9ω²

0.9ω² = 64π

ω² = 64π/0.9

ω = √64π/0.9

ω = 14.95 rad/s

Describe what you have been taught about the relationship between basic science research, and technological innovation before this class. Have you been told that it is similar to the linear model? Is your view of this relationship different after studying this unit's lectures and readings? Explain why in 3-4 sentences

Answers

Answer:

With the Breakthrough of Technology, the rate at which things are done are becoming much more easy. but without basic science, innovation towards technology cannot occur, so the both work hand in hand in the world of technology today.

Explanation:

Technological innovation and Basic science research plays a major role in the world of science and technology today, while we all want technology innovation the more, without basic science, innovation cannot come in place,

Just as we are going further in technology, breakthroughs and growth are been made which helps on the long run in science research which in turn has made things to be done much better and easily.

Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The water and its container are heated to 70oC. Assuming no evaporation, what then will be the depth of the water column if the coefficient of thermal expansion for the glass is 3.8*10-6 mm/mm peroC ?

Answers

Answer:

[tex]\mathbf{h_2 =1021.9 \ mm}[/tex]

Explanation:

Given that :

The initial volume of water [tex]V_1[/tex] = 1000.00 mL = 1000000 mm³

The initial temperature of the water  [tex]T_1[/tex] = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water [tex]T_2[/tex] = 70° C

The coefficient of thermal expansion for the glass is  ∝ = [tex]3.8*10^{-6 } mm/mm \ per ^oC[/tex]

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature [tex]T_1 = 10 ^ 0C[/tex]  the density of the water is [tex]\rho = 999.7 \ kg/m^3[/tex]

At temperature [tex]T_2 = 70^0 C[/tex]  the density of the water is [tex]\rho = 977.8 \ kg/m^3[/tex]

The mass of the water is  [tex]\rho V = \rho _1 V_1 = \rho _2 V_2[/tex]

Thus; we can say [tex]\rho _1 V_1 = \rho _2 V_2[/tex];

⇒ [tex]999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2[/tex]

[tex]V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }[/tex]

[tex]V_2 = 1022.40 \ mL[/tex]

[tex]v_2 = 1022400 \ mm^3[/tex]

Thus, the volume of the water after heating to a required temperature of  [tex]70^0C[/tex] is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

[tex]V_1 = A_1 *h_1[/tex]

The area of the water before heating is:

[tex]A_1 = \dfrac{V_1}{h_1}[/tex]

[tex]A_1 = \dfrac{1000000}{1000}[/tex]

[tex]A_1 = 1000 \ mm^2[/tex]

The area of the heated water is :

[tex]A_2 = A_1 (1 + \Delta t \alpha )^2[/tex]

[tex]A_2 = A_1 (1 + (T_2-T_1) \alpha )^2[/tex]

[tex]A_2 = 1000 (1 + (70-10) 3.8*10^{-6} )^2[/tex]

[tex]A_2 = 1000.5 \ mm^2[/tex]

Finally, the depth of the heated hot water is:

[tex]h_2 = \dfrac{V_2}{A_2}[/tex]

[tex]h_2 = \dfrac{1022400}{1000.5}[/tex]

[tex]\mathbf{h_2 =1021.9 \ mm}[/tex]

Hence the depth of the heated hot  water is [tex]\mathbf{h_2 =1021.9 \ mm}[/tex]

The ABC Corporation manufactures and sells two products: T1 and T2. 20XX budget for the company is given below:

Projected Sales Units Price T1 60,000 $165 T2 40,000 $250

Inventories in Units January 1, 20XX December 31, 20XX T1 20,000 25,000 T2 8,000 9,000

The following direct materials are used in the two products: Amount used per unit Direct Material Unit T1 T2 A pound 4 5 B pound 2 3 C each 0 1

Anticipated Inventories Direct Material Purchase Price January 1, 2012 December 31, 2012 A $12 32,000 lb. 36,000 lb. B $5 29,000 lb. 32,000 lb. C $3 6,000 units 7,000 units

Projected direct manufacturing labor requirements and rates for 20XX are as follows: Hours per Unit Rate per Hour T1 2 $12 T2 3 $16

4

Manufacturing overhead is allocated at the rate of $20 per direct manufacturing labor-hour. Marketing and distribution costs are projected to be $100,000 and $ 300,000, respectively.

a. What is the total expected revenue (in dollars) for 20XX? b. What is the expected production level (in units) both for T1 and T2? c. What is the total direct material purchases (in dollars) for each type of direct material? d. What is the total direct manufacturing labor cost (in dollars)? e. What is the total overhead cost (in dollars)? f. What is the total cost of goods sold (in dollars)? g. What is the total expected operating income (in dollars) for 20XX?

Answers

Answer:

The ABC Corporation

a) Total Expected Revenue (in dollars) for 20XX:

Revenue from T1 = 60,000 x $165 = $26,400,000

Revenue from T2 = 40,000 x $250 = $10,000,000

Total Revenue from T1 and T2 = $36,400,000

b) Production Level (in units) for T1 and T2

                                           T1                       T2

Total Units sold             160,000           40,000

Add Closing Inventory   25,000             9,000

Units Available for sale 185,000           49,000

less opening inventory  20,000             8,000

Production Level          165,000 units 41,000 units

c) Total Direct Material Purchases (in dollars):

Cost of direct materials used    T1                T2

A:       (165,000 x 4 x $12)   $7,920,000   $2,460,000 (41,000 x 5 x $12)

B:       (165,000 x 2 x $5)       1,650,000          615,000 (41,000 x 3 x $5)

C:                                                           0          123,000 (41,000 x 1 x$3)

Total cost                            $9,570,000     $3,198,000 Total = $12,768,000

Cost of direct per unit = $58 ($9,570,000/165,000) for T1 and $78 ($3,198,000/41,000) for T2

Cost of direct materials used for production $12,768,000

Cost of closing direct materials:

                 A  (36,000 x $12)  $432,000

                 B (32,000 x $5)        160,000

                 C (7,000 x $3)            21,000             $613,000

Cost of direct materials available for prodn   $13,381,000

Less cost of beginning direct materials:

                 A  (32,000 x $12)        $384,000

                 B  (29,000 x $5)            145,000

                 C  (6,000 x $3)                18,000        $547,000

Cost of direct materials purchases               $12,834,000

d) The Total Direct Manufacturing Labor Cost (in dollars):

                                             T1                         T2

Direct labor per unit              2 hours                  3 hours

Direct labor rate per hour    $12                        $16

Direct labor cost per unit   $24                          $48

Production level              165,000 units        41,000 units

Labor Cost ($)                $3,960,000        $1,968,000

Total labor cost  $5,928,000 ($3,960,000 + $1,968,000)

e) Total Overhead cost (in dollars):

Overhead rate  = $20 per labor hour

Overhead cost per unit: T1 = $40 ($20 x 2) and T2 = $60 ($20 x 3)

T1 overhead = $20 x 2  x 165,000) = $6,600,000

T2 overhead = $20 x 3 x 41,000) =    $2,460,000

Total Overhead cost =                        $9,060,000

Cost of goods produced:

Cost of opening inventory of materials  = $547,000

Purchases of directials materials             12,834,000

less closing inventory of materials     =      $613,000

Cost of materials used for production    12,768,000

add Labor cost                                           5,928,000

add Overhead cost                                    9,060,000

Total production cost                            $27,756,000

f) Total cost of goods sold (in dollars):

Cost of opening inventory =          $3,928,000

Total Production cost             =    $27,756,000

Cost of goods available for sale  $31,684,000

Less cost of closing inventory       $4,724,000

Total cost of goods sold            $26,960,000

g) Total expected operating income (in dollars)

Sales Revenue:  T1 and T2  $36,400,000

Cost of goods sold                 26,960,000

Gross profit                             $9,440,000

less marketing & distribution      400,000

Total Expected Operating Income = $9,040,000

Explanation:

a) Cost of beginning inventory of finished goods:

T1, (Direct materials + Labor + Overhead) X inventory units =

T1 = 20,000 x ($58 + 24 + 40) = $2,440,000

T2 = 8,000 ($78 + 48 + 60) = $1,488,000

Total cost of beginning inventory = $3,928,000

b) Cost of closing Inventory of finished goods:

T1 = 25,000 x ($58 + 24 + 40) = $3,050,000

T2 = 9,000 ($78 + 48 + 60) = $1,674,000

Total cost of closing inventory = $4,724,000

Purely resistive loads of 24 kW, 18 kW, and 12 kW are connected between the neutral
and the red, yellow and blue phases respectively of a 3-0, four-wire system. The line
voltage is 415 V. Calculate:
i. the current in each line conductor (i.e., IR ,Iy and IB); and
ii. the current in the neutral conductor.

Answers

Answer:

(i) IR = 100.167 A Iy = 75.125∠-120 IB = 50.083 ∠+120 (ii) IN =43.374∠ -30°

Explanation:

Solution

Given that:

Three loads  24 kW, 18 kW, and 12 kW are connected between the neutral.

Voltage = 415V

Now,

(1)The current in each line conductor

Thus,

The Voltage Vpn = vL√3

Gives us, 415/√3 = 239.6 V

Then,

IR = 24 K/ Vpn ∠0°

24K/239.6 ∠0°= 100.167 A

For Iy

Iy = 18k/239. 6

= 75.125A

Thus,

Iy = 75.125∠-120 this is as a result of the 3- 0 system

Now,

IB = 12K /239.6

= 50.083 A

Thus,

IB is =50.083 ∠+120

(ii) We find the current in the neutral conductor

which is,

IN =Iy +IB +IR

= 75.125∠-120 + 50.083∠+120 +100.167

This will give us the following summation below:

-37.563 - j65.06 - 25.0415 +j 43.373 + 100.167

Thus,

IN = 37.563- j 21.687

Therefore,

IN =43.374∠ -30°

What's the "most common" concern with using variable frequency drives (VFDs)? 1) carrier frequency 2) harmonic distortion 3) hertz modulation

Answers

Also I want the answer please

The common" concern with using variable frequency drives (VFDs) is C. hertz modulation.

What is variable frequency drive?

It should be noted that a variable frequency drive simply means a type of motor drive that us used in mechanical drive system.

In this case, common" concern with using variable frequency drives (VFDs) is hertz modulation

Learn more about frequency on:

brainly.com/question/6985885

#SPJ9

Use a delta-star conversion to simplify the delta BCD (40 , 16 , and 8 ) in the
bridge network in Fig. f and find the equivalent resistance that replaces the network
between terminals A and B, and hence find the current I if the source voltage is 52 V.​

Answers

Answer:

Current, I = 4A

Explanation:

Since the connection is in delta, let's convert to star.

Simplify BCD:

[tex] R1 = \frac{40 * 8}{40 + 16 + 8} = \frac{320}{64} = 5 ohms [/tex]

[tex] R2 = \frac{16 * 8}{40 + 16 + 8} = \frac{128}{64} = 2 ohms [/tex]

[tex] R3 = \frac{40 * 16}{40 + 16 + 8} = \frac{640}{64} = 10 ohms [/tex]

From figure B, it can be seen that 6 ohms and 6 ohms are connected in parallel.

Simplify:

[tex] \frac{6 * 6}{6 + 6} = \frac{36}{12} = 3 \ohms [/tex]

Req = 10 ohms + 3 ohms

Req = 13 ohms

To find the current, use ohms law.

V = IR

Where, V = 52volts and I = 13 ohms

Solve for I,

[tex] I = \frac{V}{R} = \frac{52}{13} = 4A[/tex]

Current, I = 4 A

Refrigerant-134a enters a 28-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5.5 m/s. The refrigerant gains heat as it flows and leaves the pipe at 180 kPa and 40°C. The specific volumes of R-134a at the inlet and exit are 0.1142 m3/kg and 0.1374 m3/kg. Determine (a) the volume flow rate of the refrigerant at the inlet, (b) the mass flow rate of the refrigerant, and (c) the velocity and volume flow rate at the exit.

Answers

Answer:

(a) The volume flow rate of the refrigerant at the inlet is 0.3078 m3/s

(b) The mass flow rate of the refrigerant is 2.695 kg/s

(c) The velocity and volume flow rate at the exit is 6.017 m/s

Explanation:

According to the given data we have the following:

diameter of the pipe=d=28 cm=0.28 m

inlet pressure P1=200 kPa

inlet temperature T1=20°C

inlet velocity V1=5.5 m/s

Exit pressure P2=180 kPa

Exit Temperature T2=40°C

a. To calculate the volume flow rate of the refrigerant at the inlet we would have to use the following formula:

V1=AV1

=π/4(0.28∧2)5

V1=0.3078 m3/s

b. To calculate the mass flow rate of the refrigerant we would have to use the following formula:

m=p1 V1

m=V1/v1

=0.3078/0.11418

=2.695 kg/s

c. To calculate the velocity and volume flow rate at the exit we would have to use the following formula:

m=m1=m2

V1/v1=V2/v2

V2=(v2/v1)v1

=(0.13741/0.11418)5

=6.017 m/s

Scheduling can best be defined as the process used to determine:​

Answers

Answer:

Overall project duration

Explanation:

Scheduling can best be defined as the process used to determine a overall project duration.

Under the normal sign convention, the distributed load on a beam is equal to the:_______A. The rate of change of the bending moment with respect to the shear force. B. The second derivative of the bending moment with respect to the length of the beam. C. The rate of change of the bending moment with respect to the length of the beam. D. Negative of the rate of change of the shear force with respect to the length of the beam.

Answers

Answer:

Under the normal sign convention, the distributed load on a beam is equal to the: O The second derivative of the bending moment with respect to the length of the beam O Negative of the rate of change of the shear force with respect to the length of the beam.

Sorry if the answer is wrong

A cylinder of metal that is originally 450 mm tall and 50 mm in diameter is to be open-die upset forged to a final height of 100 mm. The strength coefficient is 230 MPa and the work hardening exponent is 0.15 while the coefficient of friction of the metal against the tool is 0.1. If the maximum force that the forging hammer can deliver is 3 MN, can the forging be completed

Answers

Answer:

Yes, the forging can be completed

Explanation:

Given h = 100 mm, ε = ㏑(450/100) = 1.504

[tex]Y_f = 230 \times 1.504^{0.15} = 244.52[/tex]

V = π·D²·L/4 = π × 50²×450/4 = 883,572.93 mm³

At h = 100 mm, A = V/h = 883,572.93 /100 = 8835.73 mm²

D = √(4·A/π) = 106.07 mm

[tex]K_f[/tex] = 1 + 0.4 × 0.1 × 106.07/100 = 1.042

F = 1.042 × 244.52 × 8835.73 = 2252199.386 N =2.25 MN

Hence the required force = 2.25 MN is less than the available force = 3 MN therefore, the forging can be completed.

Suppose you used the pipette to make 10 additions to a flask, and suppose the pipette had a 10% random error in the amount delivered with each delivery. Use equation 1 on page 25 to calculate the percent error in the total volume delivered to the flask using the number of clicks you were permitted to make. Report that total percentage below.
Here is the equation: random error of average= error in one measurement/n^1/2

Answers

Answer:

The total percentage is 3.16237%

Explanation:

Solution

Now,

We have to know what a random error is.

A random error is an error in measured caused by factors or elements which varies from one measurement to another.

The random error is shown as follows:

The average random error  is = the error found in one measurement/n^1/2

Where

n =Number ( how many times the experiment was done)

Now that we added 10 times we have that,

n → 10

Thus,

The error in one measurement = 10%

So,

The average random error = 10 %/(10)^1/2

= (10)^1/2 %

√10%

The total percentage is = 3.16237%

The temperature of a flowing gas is to be measured with a thermocouple junction and wire stretched between two legs of a sting, a wind tunnel test fixture. The junction is formed by butt-welding two wires of different material. For wires of diameter D = 125 m and a convection coefficient of h = 700 W/m^2 K, determine the minimum separation distance between the two legs of the sting, L=L1+L2, to ensure that the sting temperature does not influence the junction temperature and, in turn, invalidate the gas temperature measurement. Consider two different types of thermocouple junctions consisting of (i) copper and constantan wires and (ii) chromel and aluminel wires. Evaluate the thermal conductivity of copper and constantan at T300 K. Use kCh =19 W/mK and kA = l29 W/mK for the thermal conductivities of the chromel and alumel wires, respectively.

Answers

Answer:

minimum separation distance between the two legs of the sting L = L 1 + L 2  therefore    L = 9.48 + 4.68  = 14.16 mL = 1.14 m

Explanation:

D ( diameter ) = 125 m

convection coefficient of  h = 700 W/m^2

Calculate THE CROSS SECTIONAL AREA

Ac = [tex]\frac{\pi }{4} * D^2[/tex]  = [tex]\frac{\pi }{4} * ( 125 )^2[/tex] = 0.79 * 15625 = 12343.75 m^2

perimeter

p = [tex]\pi * D[/tex]  = 3.14 * 125 = 392.5 m

at 300k temperature the thermal conductivity of copper and constantan from the thermodynamic property table are :

Kcu = 401 w/m.k

Kconstantan = 23 W/m.k

To calculate the length of copper wire of the thermocouple junction

L 1 = 4.6 ([tex]\frac{Kcv Ac}{h P}[/tex]) ^ 1/2 = 4.6 [tex](\frac{401 *12343.75 }{700 *392.5})^\frac{1}{2}[/tex]

L 1 = 4.6 ( 4949843.75 / 274750 )^1/2

L 1 = 9.48 m

calculate length of constantan wire

L 2 = 4.6 [tex](\frac{kcons*Ac}{hp} )^\frac{1}{2}[/tex]

     = 4.6 ( (23 * 12343.75) / ( 700 * 392.5) ) ^1/2

L 2 = 4.6 ( 283906.25 / 274750 ) ^ 1/2

L 2 = 4.68 m

I)  therefore the minimum separation distance between the two legs of the sting L = L 1 + L 2

L = 9.48 + 4.68  = 14.16 m

ii)  Evaluating the thermal conductivity of copper and constantan

Kc ( thermal conductivity of chromel) = 19 w/m.k

Ka ( thermal conductivity of alumel ) = 29 W/m.k

distance between the legs L = L 1 + L 2

THEREFORE

L = 4.6 ( (Kcn * Ac ) / ( hp ) )^1/2  +  4.6 ( (Kac * Ac)/(hp) )^1/2

L = 4.6 [tex](\frac{Ac}{hp} )^\frac{1}{2} [ (Kcn)^\frac{1}{2} + (Kal)^\frac{1}{2} ][/tex]

L = 4.6 ( 12343.75 /( 700 * 392.5) )^1/2   * [ 19^1/2  + 29^1/2 ]

L = 4.6 ( 12343.75 / 274750 ) ^1/2  * 5.39

L = 1.14 m

The internal loadings at a critical section along the steel drive shaft of a ship are calculated to be a torque of 2300 lb⋅ft, a bending moment of 1500 lb⋅ft, and an axial thrust of 2500 lb. If the yield points for tension and shear are σY= 100 ksi and τY = 50 ksi, respectively, determine the required diameter of the shaft using the maximum-shear-stress theory

Answers

Answer:

Explanation:

Given that:

Torque T = 2300 lb - ft

Bending moment M = 1500 lb - ft

axial thrust P = 2500 lb

yield points for tension  σY= 100 ksi

yield points for shear   τY = 50 ksi

Using maximum-shear-stress theory

[tex]\sigma_A = \dfrac{P}{A}+\dfrac{Mc}{I}[/tex]

where;

[tex]A = \pi c^2[/tex]

[tex]I = \dfrac{\pi}{4}c^4[/tex]

[tex]\sigma_A = \dfrac{P}{\pi c^2}+\dfrac{Mc}{ \dfrac{\pi}{4}c^4}[/tex]

[tex]\sigma_A = \dfrac{2500}{\pi c^2}+\dfrac{1500*12c}{ \dfrac{\pi}{4}c^4}[/tex]

[tex]\sigma_A = \dfrac{2500}{\pi c^2}+\dfrac{72000c}{\pi c^3}}[/tex]

[tex]\tau_A = \dfrac{T_c}{\tau}[/tex]

where;

[tex]\tau = \dfrac{\pi c^4}{2}[/tex]

[tex]\tau_A = \dfrac{T_c}{\dfrac{\pi c^4}{2}}[/tex]

[tex]\tau_A = \dfrac{2300*12 c}{\dfrac{\pi c^4}{2}}[/tex]

[tex]\tau_A = \dfrac{55200 }{\pi c^3}}[/tex]

[tex]\sigma_{1,2} = \dfrac{\sigma_x+\sigma_y}{2} \pm \sqrt{\dfrac{(\sigma_x - \sigma_y)^2}{2}+ \tau_y^2}[/tex]

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi c ^3} \pm \sqrt{\dfrac{(2500 +72000)^2}{2 \pi c^3}+ \dfrac{55200}{\pi c^3}} \ \ \ \ \ ------(1)[/tex]

Let say :

[tex]|\sigma_1 - \sigma_2| = \sigma_y[/tex]

Then :

[tex]2\sqrt{( \dfrac{2500c + 72000}{2 \pi c^3})^2+ ( \dfrac{55200}{\pi c^3})^2 } = 100(10^3)[/tex]

[tex](2500 c + 72000)^2 +(110400)^2 = 10000*10^6 \pi^2 c^6[/tex]

[tex]6.25c^2 + 360c+ 17372.16-10,000\ \pi^2 c^6 =0[/tex]

According to trial and error;

c = 0.75057 in

Replacing  c into equation (1)

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} \pm \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}}[/tex]

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} + \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}} \ \ \ OR \\ \\ \\ \sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} - \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}}[/tex]

[tex]\sigma _1 = 22193 \ Psi[/tex]

[tex]\sigma_2 = -77807 \ Psi[/tex]

The required diameter d  = 2c

d = 1.50 in   or   0.125 ft

list everything wrong with 2020

Answers

Everything wrong with 2020 is WW3 that dump trump decided to start , Australia fires , Kobe passed away than Pop smoke :( corona virus got really big , quarantine started , riots & protesting started because of that dumb who’re racist cop ! Hope this helps

Answer:

George  Floyd (BLACK  LIFES  MATTER)

C O V I D - 19

Quarantine  

no sports

wearing a mask

and a whole lot of other stuff

Explanation:

An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)

Answers

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

The yield strength for an alloy that has an average grain diameter, d1, is listed above as Yield Stress 1 . At a grain diameter of d2, the yield strength increases Yield Stress 2. At what grain diameter, in mm, will the yield strength be 217 MPa

Answers

Complete Question:

Grain diameter 1 (mm) = 4.4E-02

Yield stress 1 (MPa) = 131

Grain diameter 2 (mm) = 7.7E-03

Yield Stress 2 (MPa) = 268

The yield strength for an alloy that has an average grain diameter, d1, is listed above as Yield Stress 1 . At a grain diameter of d2, the yield strength increases Yield Stress 2. At what grain diameter, in mm, will the yield strength be 217 MPa

Answer:

d = 1.3 * 10⁻² m

Explanation:

According to the Hall Petch equation:

[tex]\sigma_y = \sigma_0 + k/\sqrt{d} \\[/tex]

At [tex]d_{1} = 4.4 * 10^{-2} mm[/tex], [tex]\sigma_{y1} = 131 MPa = 131 N/ mm^2[/tex]

[tex]131 = \sigma_0 + k/\sqrt{4.4 * 10^{-2}} \\k = 27.45 - 0.2096 \sigma_0[/tex]

At [tex]d_{2} = 7.7 * 10^{-3} mm[/tex], [tex]\sigma_{y2} = 131 MPa = 268 N/ mm^2[/tex]

[tex]268 = \sigma_0 + (27.45 - 0.2096 \sigma_0)/\sqrt{7.7 * 10^{-3}} \\23.5036 = 27.47 - 0.1219 \sigma_0\\ \sigma_0 = 32.45 N/mm^2[/tex]

k = 27.45 - 0.2096(32.45)

k = 20.64

At [tex]\sigma_y = 217 MPa[/tex], reapplying Hall Petch law:

[tex]\sigma_y = \sigma_0 + k/\sqrt{d} \\[/tex]

[tex]217 =32.45 + 20.64/\sqrt{d} \\217 - 32.45 = 20.64/\sqrt{d}\\184.55 = 20.64/ \sqrt{d} \\\sqrt{d} = 20.64/184.55\\\sqrt{d} = 0.11184\\d = 0.013 mm[/tex]

d = 1.3 * 10⁻² m


A particle oscillates between the points x=40 mm and x=160 mm with
an acceleration a =
k(100 - x), where a and x are expressed in mm/s2 and
respectively, and k is a constant. The velocity of the particle is 18 mm/s when x = 100 mm
and is zero at both x = 40 mm and x = 160 mm. Determine (a) the value of k,
(b) the velocity when x = 120 mm.​

Answers

Answer:

(a) k = 0.09 s⁻¹

(b) The velocity= ± 16.97 mm/s

Explanation:

(a) Given that the acceleration = a = k(100 - x)

Therefore;

[tex]a = \dfrac{dv}{dt} = \dfrac{dv}{dx} \times \dfrac{dx}{dt} = \dfrac{dv}{dx} \times v = k(100 - x)[/tex]

When x = 40 mm, v = 0 mm/s hence;

[tex]\int\limits^v_0 {v } \, dv = \int\limits^x_{40} {k(100 - x)} \, dx[/tex]

[tex]\dfrac{1}{2} v^2 = k \cdot \left [100\cdot x-\frac{1}{2}\cdot x^{2} \right ]_{x}^{40}[/tex]

[tex]\dfrac{1}{2} v^2 = -\dfrac{ k\cdot \left (x^{2}-200\cdot x+6400 \right ) }{2}[/tex]

At x = 100 mm, v = 18 mm/s hence we have;

[tex]\dfrac{1}{2} 18^2 = -\dfrac{ k\cdot \left (100^{2}-200\times 100+6400 \right ) }{2} = 1800\cdot k[/tex]

[tex]\dfrac{1}{2} 18^2 =162 = 1800\cdot k[/tex]

k = 162/1800 = 9/100 = 0.09 s⁻¹

(b) When x = 120 mm, we have

[tex]\dfrac{1}{2} v^2 = -\dfrac{ 0.09\times \left (120^{2}-200\times 120+6400 \right ) }{2} = 144[/tex]

Therefore;

v² = 2 × 144 = 288

The velocity, v = √288 = ±12·√2 = ± 16.97 mm/s.

An isentropic steam turbine processes 5.5 kg/s of steam at 3 MPa, which is exhausted at 50 kPa and 100°C. Five percent of this flow is diverted for feedwater heating at 500 kPa. Determine the power produced by this turbine. Use steam tables.

Answers

Answer:

The answer is 1823.9

Explanation:

Solution

Given that:

m = 5.5 kg/s

= m₁ = m₂ = m₃

The work carried out by the energy balance is given as follows:

m₁h₁ = m₂h₂ +m₃h₃ + w

Now,

By applying the steam table we have that<

p₃ = 50 kPa

T₃ = 100°C

Which is

h₃ = 2682.4 kJ/KJ

s₃ = 7.6953 kJ/kgK

Since it is an isentropic process:

Then,

p₂ =  500 kPa

s₂=s₃ = 7.6953 kJ/kgK

which is

h₂ =3207.21 kJ/KgK

p₁ = 3HP0

s₁ = s₂=s₃ = 7.6953 kJ/kgK

h₁ =3854.85 kJ/kg

Thus,

Since 5 % of this flow diverted to p₂ =  500 kPa

Then

w =m (h₁-0.05 h₂ -0.95 )h₃

5.5(3854.85 - 0.05 * 3207.21  - 0.95 * 2682.4)

5.5( 3854.83 * 3207.21 - 0.95 * 2682.4)

5.5 ( 123363249.32 -0.95 * 2682.4)

w=1823.9

A phone charger requires 0.5 A at 5V. It is connected to a transformer with 100 % of efficiency whose primary contains 2200 turns and is connected to 220-V household outlet.
(a) How many turns should there be in the secondary?
(b) What is the current in the primary?
(c) What would be the output current and output voltage values if number of secondary turns (N2) doubled of its initial value?

Answers

Answer:

Explanation:

a ) for transformer which steps down voltage , if V₁ and V₂ be voltage of primary and secondary coil and n₁ and n₂ be the no of turns of wire in them

V₁ /V₂ = n₁ / n₂

Here V₁ = 220 V , V₂ = 5V , n₁ = 2200 n₂ = ?

220 /5 = 2200 / n₂

n₂ = 2200 x 5 / 220

= 50

b )

for 100 % efficiency

input power = output power

V₁ I₁ = V₂I₂

I₁ and I₂ are current in primary and secondary coil

220 x I₁ = 5 x .5

I₁ = .01136 A .

c )

If n₂ = 100

V₁ /V₂ = n₁ / n₂

220 / V₂ = 2200 / 100

V₂ = 10 V

V₁ I₁ = V₂I₂

220 x .01136 = 10 I₂

I₂ = .25 A.

A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected in series in order that the same current shall be supplied from 240 V, 50 Hz mains. Ignore the resistance of the inductor and calculate: i. the inductance of the inductor; ii. the impedance of the circuit; iii. the phase difference between the current and the applied voltage.

Answers

Answer:

(i) The inductance of the inductor is = 43.43 mH (ii) the impedance of the circuit is = 16∠58.61° Ω (iii) the phase difference for current and the voltage applied is Q = 58.61°

Explanation:

Solution

Given that:

I= 5 A

V = 125V

Resistance R= Not known yet

Thus

To find the resistance we have the following formula which is shown below:

R = V/I

=125/15

R =8.333Ω

Now,

Voltage = 240

Frequency = 50Hz

Current (I) remain at = 15A

Z= not known (impedance)

so,

To find the impedance we have the formula which is shown below:

Z = V/I =240/15

Z= 16Ω⇒ Z = R + jXL

Z = 8.333 + jXL = 16

Thus

√8.333² + XL² = 16²

8.333² + XL² = 16²

XL² = 186.561

XL = 13.658Ω

Now

We find the inductance of the Inductor and the impedance of the circuit.

(i) In solving for the inductance of the inductor, a formula is applied here, which is shown below:

L =  XL/w

=13.658/ 2π * 50

=13.658/314.15 = 0.043 = 43.43 mH

Note: w= 2πf

(ii) For the impedance of the circuit we have the following:

z = 8.333 + j 13.658

z = 16∠58.61° Ω

(iii) The next step is to find the phase difference between the applied voltage and current.

Q =  this is the voltage across the inductor in a series of resonant circuit.

Q can also be called the applied voltage

Thus,

Q is described as an Impedance angle

Therefore, Q = 58.81°

Other Questions
Clarify what the phrase, Perfect had been alive withthe news... means. Eight less than a number is six more than twice the same number.I need the number. what are the domain and range of the function on the graph Use the distributive property to write the expression without parentheses. Then simplify the result, if possible.1/3(6x+23)+1/3 Which equation does not represent a linear function of x?a.y = -3 over 4 xb.y = x over 2c.y = - 3 + 2xd.y = 3x2 - 2 The amount of increase or decrease in revenue that is expected from a particular course of action as compared with an alternative is termed: Group of answer choices manufacturing margin contribution margin differential cost differential revenue Flag this Question Question 21 pts Partridge Co. can further process Product J to produce Product D. Product J is currently selling for $21 per pound and costs $15.75 per pound to produce. Product D would sell for $37 per pound and would require an additional cost of $9.25 per pound to produce. What is the differential cost of producing Product D What is -3 1/2 4/9 = ??? what is the purpose of document inspector Amanda has at most $40 to spend on flowers. She wants to buy a pair of red rose flowers for $18 dollars and spend the rest on lily flower. Each lily flower costs $11. Write an inequality for the number of lily flowers she can purchase Why did King write "Letter from Birmingham Jail"? (10 points)To inform his audience of the racial inequalitiesTo entertain his audience with his experiencesTo convince his audience to take action what is the parents of rack Is the following sentence a sentence beginning with a prepositional phrase? Against the wall, I sat curled up in a ball like an armadillo, as a stream of tears ran down my face. what is 15 divided by 82? Find the equation of the circle whose center and radius are given. center ( 7, -3), radius = 7 PLZ HELP MEEE!!!!!!!!!!!!!!! Identify which of the following is NOT equivalent to 2 3/4 Need help ASAP please!! Ill mark you brainliest! What is the answer??? What is the area of the deck, not including the garden, in Plan A? (Typethe numeric answer only). * If 0 < f 90 and cos(22f 1) = sin(7f + 4), what is the value of f? f = 3 f = 4 f = 5 f = 6