Answer:
816.33 kg
Explanation:
To solve this problem we'll need to keep in mind the formula for the kinetic energy of an object:
E = 0.5 * m * v²Where E is the kinetic energy, m is the object's mass and v its velocity.
We input the data given by the problem:
500000 J = 0.5 * m * (35 m/s)²And solve for m:
m = 816.33 kg26. Find the volume of 111.6 grams of NH3 gas.
Answer:
It is 148.82 L
Explanation:
I need more points. And I hope this helps.
Someone please help me I’m so stuck I cannot find the empty ones that were not filled in :(. I’m really confused
Answer:
Positive charges: 2
Negative charges: 1
Overall charge: +1
Explanation:
In Diagram B we have the chemical element Helium (He). You can see in the Periodic Table that He has an atomic number of 2 and an atomic mass of approximately 4.
The atomic number is equal to the number of protons, so He has 2 protons. The protons are the positive charges in the atom, so the number of positive charges is 2. That is invariable, if the number of protons - or the atomic number - of an atom changes, it changes its identity.
In the drawing, we can see that the nucleus is composed of 2 protons (2 'p' particles) and 2 neutrons (2 'n' particles). The atomic mass is calculated as the number of protons and neutrons, so 2 protons+ 2 neutrons = 4.
The surrounding particle with an 'e' is an electron. So, we have 1 electron. Electrons are negative charges, so the number of negative charges is 1.
Now, we can calculate the overall charge. We add the positive charges (protons) and negative charges (electrons). Each proton has a +1 charge, whereas each electron has a -1 charge. Finally, we perform the addition:
Overall charge= (number of protons x charge) + (number of electrons x charge) = (2 x (+1)) + (1 x (-1)) = (+2) + (-1) = +1
What does cellular respiration do?
Break down sugar and release energy for an
organism to use
Create sugar filled with energy
Deter predators
Form glucose from hydrogen, oxygen, and carbon
:D
help asap
List four kinds of energy. Give a brief definition of each.
Answer:
Mechanical Energy- Energy that result from movement or the location of the object. Is the sum of kinetic and potential energy.
Thermal Energy- Thermal energy or heat energy reflects the temperature difference between two systems.
Nuclear Energy- is energy resulting from changes in the atomic nuclei or from nuclear reactions.
Chemical Energy- results from chemical reactions between atoms or molecules.
More:
Kinetic energy- is the energy of motion of a body. It ranges from 0 to a positive value.
Electromagnetic energy- (or radiant energy) is energy from light or electromagnetic waves.
Sonic energy- is the energy of sound waves. Sound waves travel through the air or another medium.
Gravitational energy- energy associated with gravity involves the attraction between two objects based on their mass.
Ionization energy- is the form of energy that binds electrons to the nucleus of its atom, ion, or molecule.
Potential energy- is the energy of an object's position.
Explanation:
Hope this helps
P4 +502 — P4010
What is the limiting reactant if you are using 25.0 grams of phosphorus and 50.0 grams of oxygen?
A.) O2
B.) P4
C.) P4O10
D.) P4O2
Answer:
B.) P4
Explanation:
Step 1: Convert 25.0 grams of phosphorus into moles of phosphorous:
25 g P4 x 1 mol P4/123.90 g P4 = 0.202 mol P4
Step 2: Convert 0.202 mol P4 into moles of O2 using their stoichiometric ratios:
0.202 mol P4 x 5 mol O2/1 mol P4 = 1.01 mol O2
Step 3: Convert 1.01 mol O2 into grams of O2:
1.01 mol O2 x 31.98 g O2/1 mol O2 = 32.3 g O2
Because 25.0 grams of phosphorous only needs 32.3 grams of oxygen to react, phosphorous will be the limiting reactant, as after the 25.0 grams of phosphorous is used up, there will still be 17.7 grams of oxygen leftover (excess reactant).
Because the reaction cannot occur without more phosphorous to react with the 17.7 grams of oxygen remaining, P4 is the limiting reactant.
Answer: B.) P4
Explanation:
Step 1: Convert 25.0 grams of phosphorus into moles of phosphorous:25 g P4 x 1 mol P4/123.90 g P4 = 0.202 mol P4
Step 2: Convert 0.202 mol P4 into moles of O2 using their stoichiometric ratios:0.202 mol P4 x 5 mol O2/1 mol P4 = 1.01 mol O2
Step 3: Convert 1.01 mol O2 into grams of O2:1.01 mol O2 x 31.98 g O2/1 mol O2 = 32.3 g O2
Because 25.0 grams of phosphorous only needs 32.3 grams of oxygen to react, phosphorous will be the limiting reactant, as after the 25.0 grams of phosphorous is used up, there will still be 17.7 grams of oxygen leftover (excess reactant).
Because the reaction cannot occur without more phosphorous to react with the 17.7 grams of oxygen remaining, P4 is the limiting reactant.
Learn more: https://brainly.com/question/6421464
Carbon monoxide is a colorless, odorless gas that binds irreversibly to hemoglobin in our blood, causing suffocation and death. CO is formed during incomplete combustion of carbon. One way to represent this equilibrium is: CO(g)C(s) 1/2 O2(g) We could also write this reaction three other ways, listed below. The equilibrium constants for all of the reactions are related. Write the equilibrium constant for each new reaction in terms of K, the equilibrium constant for the reaction above.
The question is missing some parts. Here is the complete question.
Carbon monoxide is a colorless, odorless gas that binds irreversibly to hemoglobin in our blood, causing suffocation and death. CO is formed during incomplete combustion of carbon. One way to represent this equilibrium is:
[tex]2CO_{(g)}[/tex] ⇄ [tex]2C_{(s)}+O_{2}_{(g)}[/tex]
we could also write this reaction three other ways listed below. The equilibrium constant for all of the reactions are related. Write the equilibrium constant for each new reaction in terms of K, the equilibrium constant for the reaction above.
1) [tex]2C_{(s)}+O_{2}_{(g)}[/tex] ⇄ [tex]2CO_{(g)}[/tex] K₁ =
2) [tex]C_{(s)}+1/2O_{2}_{(g)}[/tex] ⇄ [tex]CO_{(g)}[/tex] K₂ =
3) [tex]CO_{(g)}[/tex] ⇄ [tex]C_{(s)}+1/2O_{2}_{(g)}[/tex] K₃ =
Answer: 1) [tex]K_{1}=\frac{1}{K}[/tex]
2) [tex]K_{2}=\frac{1}{K^{1/2}}[/tex]
3) [tex]K_{3}=K^{1/2}[/tex]
Explanation: A chemical reaction can be reversible, i.e., can proceed in both directions: to the right of the arrow (forward) or towards the left of the arrow (backward).
When the rates of forward and backward reactions are the same, the reaction is in equilibrium. In that state, we can determine the equilibrium constant, [tex]K_{c}[/tex].
For the first way to represent equilibrium of CO formed, the [tex]K_{c}[/tex] is calculated
[tex]2CO_{(g)}[/tex] ⇄ [tex]2C_{(s)}+O_{2}_{(g)}[/tex]
[tex]K=\frac{[O_{2}]}{[CO]^{2}}[/tex]
in which the symbol [ ] is concentration of the compound.
In equilibrium constant, solids are not included.
Equilibrium constants for the other reactions:
1) [tex]2C_{(s)}+O_{2}_{(g)}[/tex] ⇄ [tex]2CO_{(g)}[/tex]
[tex]K_{1}=\frac{[CO]^{2}}{[O_{2}]}[/tex]
Comparing K₁ and K, the first one is the inverse of K, so writing in terms of K
[tex]K_{1}=\frac{1}{K}[/tex]
2) [tex]C_{(s)}+1/2O_{2}_{(g)}[/tex] ⇄ [tex]CO_{(g)}[/tex]
[tex]K_{2}=\frac{[CO]}{[O_{2}]^{1/2}}[/tex]
In terms of K, K₂ is
[tex]K_{2}=\frac{1}{K^{1/2}}[/tex]
3) [tex]CO_{(g)}[/tex] ⇄ [tex]C_{(s)}+1/2O_{2}_{(g)}[/tex]
[tex]K_{3}=\frac{[O_{2}]^{1/2}}{[CO]}[/tex]
This constant in terms of K will be
[tex]K_{3}=K^{1/2}[/tex]
In conclusion, K₁, K₂ and K₃ in terms of K is [tex]\frac{1}{K}[/tex],[tex]\frac{1}{K^{1/2}}[/tex] and [tex]K^{1/2}[/tex], respectively.
An analytical chemist is titrating of a solution of ethylamine with a solution of . The of ethylamine is . Calculate the pH of the base solution after the chemist has added of the solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of solution added. g
Answer:
pH=11.
Explanation:
Hello!
In this case, since the data is not given, it is possible to use a similar problem like:
"An analytical chemist is titrating 185.0 mL of a 0.7500 M solution of ethylamine(C2HNH2) with a 0.4800 M solution of HNO3.ThepK,of ethylamine is 3.19. Calculate the pH of the base solution after the chemist has added 114.4 mL of the HNO3 solution to it"
Thus, for the reaction:
[tex]C_2H_5NH_2+H^+\rightleftharpoons C_2H_5NH_4^+[/tex]
Tt is possible to compute the remaining moles of ethylamine via the following subtraction:
[tex]n_{ethylamine}=0.1850L*0.7500mol/L=0.1365mol\\\\n_{acid}=0.1144L*0.4800mol/L=0.0549mol\\\\n_{ethylamine}^{remaining}=0.1365mol-0.0549mol=0.0816mol[/tex]
Thus, the concentration of ethylamine in solution is:
[tex][ethylamine]=\frac{0.0816mol}{0.1850L+0.1144L}=0.2725M[/tex]
Now, we can also infer that some salt is formed, and has the following concentration:
[tex][salt]=\frac{0.0549mol}{0.1850L+0.1144L}=0.1834M[/tex]
Therefore, we can use the Henderson-Hasselbach equation to compute the resulting pOH first:
[tex]pOH=pKb+log(\frac{[salt]}{[base]} )\\\\pOH=3.19+log(\frac{0.1834M}{0.2725M})\\\\pOH=3.0[/tex]
Finally, the pH turns out to be:
[tex]pH=14-pOH=14-3\\\\pH=11[/tex]
NOTE: keep in mind that if you have different values, you can just change them and follow the very same process here.
Best regards!
Which ecosystem is most resilient to change due to its high diversity?
mountain meadow
stormwater pond
coral reef
arctic fundra
Answer:
coral reef
Explanation:
Ve. In what layer do weather balloons fly?
Earth layers
Answer:
stratosphere
Explanation:
How many moles are there in 7.24 grams of calcium carbonate? With work shown
Answer:
0.0723371390261859
• as it sits on top of a building that is 50 meters tall.
• as it is half-way through a fall off a building that is 50 meters tall and travelling 19.8 meters per second.
• as it is just about to hit the ground from a fall off a building that is 50 meters tall and travelling 28 m/s
What is the potential energy of the ball as it is half-way through the fall (25 meters high)?
Pleaseee I need help and it is urgent
Answer:
1)4180j
2)15000kj
Explanation:
[tex]1) E=100*(30-20)*4.18=4180j\\2)Q=.5*30*1000=15000kj[/tex]
1. A solution is always a mixture (true or false)
im not sure what the answer is so if anyone could help me that would be great
(ps im in 5th grade)
Answer:
yes solution is always a mixture but not all mixtures are solution
Explanation:
A solution.is a homogeneous mixture of substance that have uniform composition throughout
And a mixture hVe twoo or more substances that are not chemically.combine
what organelle acts as a barrier of the cell?
Answer:
cell membrane
Explanation:
it controls what comes and goes out of a cell
Answer:
Cell membrane
Explanation:
It separates the interior of all cells from the outside environment (the extracellular space) which protects the cell from its environment.
Is nitric acid a strong or weak acid. Explain your answer.
Answer:
There are only a few (7) strong acids, so many people choose to memorize them. All the other acids are weak. The strong acids are hydrochloric acid, nitric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, perchloric acid, and chloric acid.Explanation:
그것은 당신의 교육에 도움이 되기를 바랍니다
2. How does an atom become an Ion
how many moles are in 1.505x10^24 molecules of surcrose
Answer:
2.499 moles of sucrose
Explanation:
Divide by Avogadro's number
It takes 38.6 kJ of energy to vaporize 1.00 mol of ethanol (MW: 46.07 g/mol). What will be ΔSsys for the vaporization of 8.00 g of ethanol at 79.6 °C
Answer:
[tex]\Delta S_{sys}=0.020kJ=20J[/tex]
Explanation:
Hello!
In this case, given the required energy to vaporize 1.00 mol of ethanol as the enthalpy of vaporization:
[tex]\Delta H_{vap}=\frac{38.6kJ}{1.00mol}=38.6kJ/mol[/tex]
We can compute the entropy of the system for the vaporization of 8.00 g of ethanol, by first computing the moles:
[tex]n_{et}=8.00g*\frac{1mol}{46.07g} =0.174mol[/tex]
And then setting up the following expression:
[tex]\Delta S_{sys}=\frac{n_{et}*\Delta H_{vap}}{T}[/tex]
Whereas the temperature is in kelvins; thus, we obtain:
[tex]\Delta S_{sys}=\frac{0.174mol*38.6\frac{kJ}{mol} }{79.6+273.15K}\\\\\Delta S_{sys}=0.020kJ=20J[/tex]
Best regards!
The entropy of the system ([tex]\Delta S_{sys}[/tex]) for the vaporization of 8.00 grams of ethanol at 79.6 °C is 0.0190 kilojoules.
Given the following data:
Quantity of energy = 38.6 kJNumber of moles of ethanol = 1 moleMolar mass of ethanol = 46.07 g/molMass of ethanol = 8 gramsTemperature = 79.6 °CConversion:
Temperature = [tex]79.6 + 273 = 352.6 \;K[/tex]
To find the entropy of the system ([tex]\Delta S_{sys}[/tex]) for the vaporization of 8.00 grams of ethanol at 79.6 °C:
First of all, we would determine the heat of vaporization.
[tex]Heat\; of \;vaporization = \frac{Energy}{moles} \\\\Heat\; of \;vaporization = \frac{38.6}{1}[/tex]
Heat of vaporization = 38.6 kJ/mol.
Next, we would determine the number of moles in 8.00 grams of ethanol:
[tex]Number\;of\;moles = \frac{mass}{molar\;mass}\\\\Number\;of\;moles = \frac{8}{46.07}\\\\Number\;of\;moles = 0.1737 \;moles[/tex]
Mathematically, the entropy of a system ([tex]\Delta S_{sys}[/tex]) is given by the formula:
[tex]\Delta S_{sys} = \frac{n\Delta H }{T}[/tex]
Where:
n is the number of moles.T is the temperature.[tex]\Delta H[/tex] is the heat of vaporization.Substituting the given parameters into the formula, we have;
[tex]\Delta S_{sys} = \frac{0.1737 \times 38.6 }{352.6}\\\\\Delta S_{sys} = \frac{6.7048 }{352.6}\\\\\Delta S_{sys} = 0.0190 \;kJ[/tex]
Read more: https://brainly.com/question/6366973
Do you agree / disagree - Light is always the same, even when it is emitted by different light sources (like the sun and a light bulb).
Answer:
She's right that there's a difference, and you are right that it's all just electromagnetic waves!
The key to this is that there is no such thing as "white light" when you really get down to it. Each light emits a range of wavelengths of light. If they have a sufficiently even distribution of wavelengths, we tend to call that light "white," but we can only use that term informally.
Both the sun and the light bulb emit so-called "Blackbody radiation." This is the particular spectrum of light that's associated with the random thermal emissions of a hot object. Cool objects tend to emit more of their energy in the longer wavelengths like reds and IRs, while hotter objects emit more energy in the shorter wavelengths like blues and UV.
Blackbody graphic
(Note, there are other possible emission spectra, but those are associated with different materials doing the emissions and, for the purposes of this discussion, they aren't too important. We can just claim the emissions are all blackbody)
If you notice, as you get hotter, a larger portion of the energy is emitted in the blue, violet, and ultraviolet. That's how you get a sunburn from the sun. It's harder to get a sunburn from an artificial light, not because it's artificial, but because those lights are almost always cooler than the sun. They don't have as much UV content. Instead, they have more red and yellow, which incidentally is why pictures taken indoors look very yellow. If you use a strobe, however, all those yellow hues go away because a strobe light is very warm, with lots of blues.
You can get a sunburn from artificial light, of course. Tanning beds are the obvious example, but there are other interesting ones. When you're a jeweler working in platinum, for instance, you need to wear UV protective gear (like glasses or even sunscreen). Platinum's melting point is so hot that it actually emits quite a lot of UV light and can give you a sunburn!
Other than these spectra, there is nothing different between light from an artificial source and light from the sun. Photons are photons.
Explanation:
PLEASS MARK ME AS BRAINLIEST
#STAY SAFE
Coach Scott hits a baseball with his bat to help his players with fielding
practice. The bat exerts a force on the ball, and the ball exerts an equal
and opposite force back on the bat.
A. Newton’s first law
B. Newton’s second law
C. Newton’s third law
Answer:
The ball exerts an equal and opposite force on the bat. This is the reaction force. Such an interaction pair is another example of Newton's Third Law. The baseball forces the bat in one direction and the bat forces the ball in the opposite direction.
It is often possible to change a hydrate into an anhydrous compound by heating it to drive off the water (dehydration). Write an equation that shows the dehydration of manganese(II) sulfate pentahydrate . Use an asterisk to enter the dot.
Answer:
MnSO4.5H2O(s) ---------> MnSO4(s) + 5H2O(g)
Explanation:
The dehydration of a hydrate implies that the water of crystallization is lost. Water of crystallization is included in the crystal structure as it is formed and is incorporated into the structure of the compound.
Now the equation for the dehydration of manganese(II) sulfate pentahydrate is;
MnSO4.5H2O(s) ---------> MnSO4(s) + 5H2O(g)
The MnSO4 is now said to be anhydrous.
Draw the structures of organic compounds A and B. Indicate stereochemistry where applicable The starting material is ethyne, a carbon carbon triple bond where each carbon is bonded to a hydrogen. Step 1 is N a N H 2 followed by 1 equivalent of C H 3 C H 2 C H 2 B r to form compound A. Compound A reacts with hydrogen and lindlar's catalyst to form compound B. COmpound B reacts with H 2 O and H 3 O Plus to form a 5 carbon chain with a hydroxy substituent on carbon 2.
Answer:
See explanation below
Explanation:
In this case we have the starting reactant which is the ethine, In the first step reacts with NaNH₂, a strong base. This base will substract the hydrogen from one of the carbon of the ethine, and form a carbanion. This will react with the propane bromide, displacing the bromine and forming a 5 carbon chain with the triple bond on the carbon 1 and 2.
In the second step, reacts with the lindlar catalyst to do a reduction, and form a double bond between carbon 1 and 2. In essence, compound A is similar to compound B.
Finally B reacts with water in acid and makes a addition reaction, and form an alcohol.
The whole process can be seen in the picture below.
Hope this helps
Choose the statement that best describes the effect of temperature on atoms and molecules.
A temperature decrease results in particles having more collisions with other particles
Solids have more kinetic energy than gases.
Decreasing temperature can cause a liquid to become a gas
increases in temperature cause partides to speed up and have more collisions.
Answer:
option D is correct answer of this question
Answer:
Explanation:
As the temperature of a liquid rises, the average speed of its molecules rises as well. The molecules in a liquid move faster as the temperature rises, increasing the liquid's kinetic energy. Heating liquids will demonstrate this property in experiments.
formula for calculating pressure
Answer:
The formula for pressure is P = F/A, in which P is pressure, F is force, and A is area.
Explanation:
Determine the number of molecules in 0.0500 mole of boron tribromide
(show work)
Answer:
There are 0.5 moles
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:
Thus there are 0.5 moles
Explanation:
analyze how animals benefit from the process of photosynthesis in plants
Answer:
Animals benefit from photosynthesis, because they consume the plants and therefore the sugars stored in the plants from the process of photosynthesis for energy
Explanation:
20 POINTS! NEED HELP!!!
When naming covalent bonds, do all of the following except?
1. use prefixes
2. write the left-most element first
3. add -ide to the end of the 2nd element
4. write the metal first
Answer:
number 2
Explanation:
even though i have never done this i still got it right
Because metals do not form covalent bonds, when naming covalent bonds, all the given rules apply except write the metal first; option 4.
What are covalent bonds?Covalent bonds are bonds formed by the sharing of valence electrons between the atoms involved in the bonding.
In naming covalent bonds, the following rules are applied:
Name the non-metal furthest to the left on the periodic table by its elemental name.Name the other non-metal by its elemental name and an -ide ending.Use the prefixes mono-, di-, tri-, tetra etc. to indicate the number of that element in the molecule.If the first prefix is mono, it is not written add -ide to the end of the second elementFor example, CO₂, is carbon dioxide.
Therefore, when naming covalent bonds, all the given rules apply except write the metal first because metals do not form covalent bonds.
Learn more about covalent bonds at: https://brainly.com/question/12407985
A balloon is filled with 30L of helium gas at 1atm.What is the volume when balloon rises to an attitude where the pressure is only 0.25 atm?
Answer:
[tex]V_2=120L[/tex]
Explanation:
Hello!
In this case, since Helium is undergoing a volume-pressure change, according the Boyle's law, we infer the following equation is used:
[tex]P_1V_1=P_2V_2[/tex]
Thus, since we are not given the volume at 0.25 atm, we can solve for V2 to do so:
[tex]V_2=\frac{P_1V_1}{P_2}[/tex]
Thus, we plug in to obtain:
[tex]V_2=\frac{1atm*30L}{0.25atm}=120L[/tex]
Best regards!
The final volume of the balloon at the given altitude is 120 L.
The given parameters;
initial volume of the balloon, V₁ = 30 Linitial pressure, P₁ = 1 atmfinal pressure of the balloon, P₂ = 0.25 atmThe final volume of the balloon at the given altitude is calculated by applying Boyles law as follows;
[tex]P_1 V_1 = P_2 V_2\\\\V_2 = \frac{P_1V_1}{P_2} \\\\V_2 = \frac{30 \times 1 }{0.25} \\\\V_2 = 120 \ L[/tex]
Thus, the final volume of the balloon at the given altitude is 120 L.
Learn more here:https://brainly.com/question/1696010
Which of the following is not something that should be considered when creating a debt payment plan?
a. In general, the larger the debt, the longer you should plan to take to pay it off.
b. Higher interest rates create more cost than lower interest rates on a similar debt.
C. Making a payment larger than required or expected will help pay off the debt sooner.
d. The longer you take to pay off your debt, the more you will be paying in interest and other
fees
Answer:
a. In general, the larger the debt, the longer you should plan to take to pay it off.
When paying off debt consider the interest rates. C., and D. are just facts.
In general, the larger the debt, the longer you should plan to take to pay it off. The correct option is a.
What is debt payment plan?A debt payment plan is a way to pay off debts gradually. It usually entails consistent payments toward the balance due on each loan.
The total amount of debt, interest rates, minimum payments, and the time frame for repayment should all be taken into account while making a debt payment plan.
You can lower the amount of interest you pay over time by making a payment that is greater than what is required or anticipated in order to assist you pay off the debt sooner.
The longer it takes you to pay off your debt, the more vital it is to bear in mind.
In general, when making a debt payment plan, you shouldn't take into account the fact that the debt will take longer to pay off the larger it is.
Thus, the correct option is a.
For more details regarding payment plan, visit:
https://brainly.com/question/13981679
#SPJ6
what is valence electron configuration for group 4A (14)
Answer:
The group 14 elements all have ns2np2 valence electron configurations. All form compounds in which they formally lose either the two np and the two ns valence electrons or just the two np valence electrons, giving a +4 or +2 oxidation state, respectively
Explanation:
Answer:
The group 14 elements all have ns2np2 valence electron configurations. All form compounds in which they formally lose either the two np and the two ns valence electrons or just the two np valence electrons, giving a +4 or +2 oxidation state, respectively.
Explanation: