A 50. 0 kg ice skater is standing at rest on the ice holding a 2. 0 kg medicine ball. She throws the medicine ball to the right with a horizontal velocity of 1. 8 m/s. What is the velocity of the skater after she throws the ball?

Answers

Answer 1

A 50.0 kg ice skater is standing at rest on the ice holding a 2.0 kg medicine ball. She throws the medicine ball to the right with a horizontal velocity of 1. 8 m/s.

Assuming there is no external force acting on the system, we can use conservation of momentum to solve this problem.

The initial momentum of the system is zero since the skater and the medicine ball are at rest. The final momentum of the system must also be zero since there are no external forces acting on it. This means that the momentum of the medicine ball to the right must be cancelled out by the momentum of the skater to the left.

Let v be the velocity of the skater after throwing the ball. By conservation of momentum

(2.0 kg)(1.8 m/s) = (50.0 kg + 2.0 kg) v

Simplifying

v = (2.0 kg)(1.8 m/s) / (50.0 kg + 2.0 kg)

v = 0.0643 m/s

Therefore, the skater's velocity after throwing the ball is 0.0643 m/s to the right.

To know more about horizontal velocity here

https://brainly.com/question/23478683

#SPJ4


Related Questions

The length of a hollow pipe is 297 cm. The
air column in the pipe is vibrating and has
five nodes.
Find the frequency of the sound wave in the
pipe. The speed of sound in air is 343 m/s.
Answer in units of Hz.

Answers

The frequency of sound in the pipe is 231 Hz.

What is the frequency of sound in the pipe?

The frequency of sound in the pipe is calculated as follows;

N - N = λ/2

The total length of nodes, L = 4 (N - N) = 4 (λ/2)

L = 2λ

λ = L/2

The relationship between, frequency, speed and wavelength of sound is given as;'

f = v/λ

f = ( 343 m/s )/ (2.97 m / 2)

f = 231 Hz

Learn more about frequency here: https://brainly.com/question/10728818

#SPJ1

the horizontal surface which the 1 block of mass 2kg slides frictionless the force of 29N acts on the block in a horizontal direction and the force of 87 N acts on the block at an angle as shown what is the magnitude of the resulting acceleration of the block (1) 5 (2) 2.2549 (3) 4.5 (4) 3.63636 (5) 5.90909(6) 6.89819 (7) 2.75 (8) 14.5455 (9)7.25 (10) 4.10714

Answers

The magnitude of the resulting acceleration of the block is (8), 14.5455 m/s²

How to determine magnitude?

Use Newton's second law to solve this problem:

ΣF = ma

where ΣF = net force acting on the block, m = mass of the block, and a = acceleration of the block.

Resolve the force of 87 N into its horizontal and vertical components.

F_horizontal = F cosθ = 87 cos 30° = 75.366 N

F_vertical = F sinθ = 87 sin 30° = 43.5 N

The net force in the horizontal direction is:

ΣF_horizontal = 29 N

Using ΣF = ma, find the acceleration:

a = ΣF / m = 29 N / 2 kg = 14.5 m/s²

Therefore, the magnitude of the resulting acceleration of the block is:

a = 14.5 m/s²

The answer is (8) 14.5455, which rounds to 14.5 m/s².

Find out more on magnitude here: https://brainly.com/question/30337362

#SPJ1

A baby mouse 1.2 cm high is standing 4.0 cm from a converging mirror having a focal length of 30 cm.

Answers

The height of the image is: h' = m × h = -0.84 × 0.012 = -0.01 m or 1.0 cm. This means that the image of the baby mouse is 1.0 cm high and is inverted, real, and smaller than the actual size of the object.

Height of the baby mouse, h = 1.2 cm = 0.012 m, Distance of the baby mouse from the converging mirror, u = 4.0 cm = 0.04 m, Focal length of the converging mirror, f = 30 cm = 0.3 m

We can use the mirror formula, which relates the distance of the object from the mirror (u), the distance of the image from the mirror (v), and the focal length of the mirror (f): 1/f = 1/v + 1/u

Since the mirror is converging and the object is outside the focal point, the image will be real, inverted, and smaller in size than the object.

We can use the magnification formula to find the height of the image: m = -v/u, (a negative sign indicates an inverted image)

Substituting the given values into the mirror formula, we get: 1/0.3 = 1/v + 1/0.04, v = 0.0336 m

Substituting the values for u and v into the magnification formula, we get: m = -0.84

The negative sign indicates an inverted image, and the magnitude of the magnification tells us that the image is smaller than the object by a factor of 0.84.

Therefore, the height of the image is: h' = m × h = -0.84 × 0.012 = -0.01 m or 1.0 cm. This means that the image of the baby mouse is 1.0 cm high and is inverted, real, and smaller than the actual size of the object.

To know more about converging mirror, refer here:

https://brainly.com/question/12696265#

#SPJ11

A copper wire of length 10m and radius 1mm is extended by 1.5mm when subjected to a tension of 200N calculate the energy density of the wire.​

Answers

Answer:

Explanation:

To calculate the energy density of the wire, we need to first calculate the strain energy stored in the wire.

The strain energy stored in the wire can be calculated using the formula:

U = (1/2) * F * deltaL

where U is the strain energy, F is the applied force, and deltaL is the change in length of the wire.

Here, the applied force is 200 N, and the change in length of the wire is 1.5 mm = 0.0015 m.

So, the strain energy stored in the wire is:

U = (1/2) * 200 N * 0.0015 m = 0.15 J

Now, we need to calculate the volume of the wire to determine the energy density.

The volume of the wire can be calculated using the formula for the volume of a cylinder:

V = pi * r^2 * L

where V is the volume, r is the radius, and L is the length of the wire.

Here, the radius of the wire is 1 mm = 0.001 m, and the length of the wire is 10 m.

So, the volume of the wire is:

V = pi * (0.001 m)^2 * 10 m = 7.853 x 10^-6 m^3

Finally, we can calculate the energy density of the wire using the formula:

Energy density = Strain energy / Volume

Energy density = 0.15 J / 7.853 x 10^-6 m^3

Energy density = 19,102,077.34 J/m^3

Therefore, the energy density of the copper wire is 19,102,077.34 J/m^3.

PLS MARK ME BRAINLIEST

The type of faucet that used a rotating cylinder to control the water temperature and the rate of water flow by using a balancing piston is called a

Answers

The type of faucet that uses a rotating cylinder to control water temperature and the rate of water flow by using a balancing piston is called a thermostatic mixing valve.

A thermostatic mixing valve is a mechanical device designed to provide precise control over the temperature of the water coming out of the faucet. It is commonly used in showers, baths, and other plumbing fixtures where maintaining a consistent and comfortable water temperature is important.

The valve consists of a central rotating cylinder that contains both hot and cold water inlets. As you turn the handle or lever of the faucet, the cylinder rotates, allowing you to adjust the proportion of hot and cold water that mixes together.

Inside the cylinder, there is a balancing piston that is sensitive to changes in water temperature and pressure. This piston helps to maintain a consistent temperature by adjusting the flow rates of hot and cold water.

When you set the desired temperature, the piston moves to balance the flow of hot and cold water, ensuring that the mixed water remains at a constant temperature regardless of any fluctuations in the supply temperature or pressure.

To learn more about temperature, refer below:

https://brainly.com/question/11464844

#SPJ11

Find the direction and magnitude of :
1. The vector sum A + B [10. 22m, 145. 16°]
2. The vector A - B, [49. 56m, 157°] and
3. The vector difference B - A. [49. 56m, 337].

Answers

The direction and magnitude of the three given vectors are:
1. A + B: magnitude = 26.07m, direction = -49.62°
2. A - B: magnitude = 49.56m, direction = 12.84°
3. B - A: magnitude = 49.56m, direction = 191.16°.

To find the direction and magnitude of the given vectors, we can use the trigonometric functions of sine, cosine, and tangent.

1. The vector sum A + B [10.22m, 145.16°]:
To find the magnitude, we use the formula: |A + B| = √(A^2 + B^2 + 2ABcosθ). Plugging in the values, we get |A + B| = √(10.22^2 + 22^2 + 2(10.22)(22)cos(145.16°)) = 26.07m. To find the direction, we use the formula: tanθ = (Bsinθ + Asin(180°-θ))/(Bcosθ + Acos(180°-θ)). Plugging in the values, we get tanθ = (-22sin(145.16°) + 10.22sin(34.84°))/(-22cos(145.16°) - 10.22cos(34.84°)) = -1.23. Therefore, the direction is θ = -49.62° (measured counterclockwise from the positive x-axis).

2. The vector A - B, [49.56m, 157°]:
To find the magnitude, we simply take the absolute value of A - B, which is 49.56m. To find the direction, we can subtract the angle of B from the angle of A, which gives us 12.84° (measured counterclockwise from the positive x-axis).

3. The vector difference B - A, [49.56m, 337°]:
To find the magnitude, we simply take the absolute value of B - A, which is also 49.56m. To find the direction, we can subtract the angle of A from the angle of B, which gives us 191.16° (measured counterclockwise from the positive x-axis).

For more about direction and magnitude:

https://brainly.com/question/3411372

#SPJ11

Gravity is also affected by mass. ____, which is the amount of matter in an object. As the amount of mass increases, the forces of gravity between two objects _____

Please help

Answers

Answer:

Mass

Increases

Explanation:

Gravity is also affected by mass. Mass, which is the amount of matter in an object. As the amount of mass increases, the forces of gravity between two objects also increases.

explain how increasing the volume in which a gas is contained, at constant temperature can lead to a decrease in pressure​

Answers

When the volume in which a gas is contained is increased at a constant temperature, the pressure of the gas will decrease. This relationship between volume, pressure, and temperature is described by Boyle's law, which states that the pressure of a gas is inversely proportional to its volume, at constant temperature.

Here's how increasing the volume of a gas can lead to a decrease in pressure:

1. Gas molecules have kinetic energy: Gas molecules are in constant random motion and have kinetic energy. When gas is contained in a smaller volume, the gas molecules collide more frequently with the walls of the container, resulting in higher pressure.

2. Decreased number of collisions: When the volume of the container is increased, the gas molecules have more space to move around, and the frequency of collisions with the walls of the container decreases. This reduction in collisions leads to a decrease in pressure.

3. Decreased concentration of gas molecules: Increasing the volume of a gas container also leads to a decrease in the concentration of gas molecules in the container. This means that there are fewer gas molecules per unit of volume, resulting in lower pressure.

4. Decreased force per unit area: When the volume of the container is increased, the same number of gas molecules now occupy a larger volume, resulting in a lower force per unit area exerted by the gas molecules on the walls of the container. This lower force per unit area leads to a decrease in pressure.

Therefore, when the volume in which a gas is contained is increased at a constant temperature, the pressure of the gas decreases due to the decreased number of collisions, decreased concentration of gas molecules, and decreased force per unit area exerted by the gas molecules on the walls of the container. This relationship is described by Boyle's law, which is an important principle in the study of gases.

To learn more about Boyle's law click:

https://brainly.com/question/30367133

#SPJ1

A rock is at the edge of a bluff and weighs 22n. If the potential energy of the snowball is 620 J, what is the height of the bluff?

Answers

To solve this problem, we need to use the concept of potential energy and the formula for calculating potential energy, which is:

Potential energy (PE) = mass (m) x gravity (g) x height (h)
We can rearrange this formula to solve for height:
Height (h) = PE / (m x g)

In this problem, we are given the weight of the rock, which is 22N. We can convert this to mass using the formula:

Mass (m) = weight (w) / gravity (g)
Gravity (g) is a constant, which is 9.8 m/s^2.
So, mass (m) = 22N / 9.8 m/s^2 = 2.245 kg

Now, we can use the given potential energy of the snowball, which is 620 J, to calculate the height of the bluff:
Height (h) = PE / (m x g) = 620 J / (2.245 kg x 9.8 m/s^2) = 27.33 meters
Therefore, the height of the bluff is 27.33 meters.

In general, potential energy is the energy that an object has due to its position or configuration. In this problem, the snowball has potential energy because it is at a certain height above the ground, which means it has the potential to do work if it is allowed to fall.

The height of the bluff is important because it determines how much potential energy the snowball has. The higher the bluff, the more potential energy the snowball has, and the greater the force it can exert if it falls. This is known as the snowball effect or the snowball principle, where a small change or action can have a big impact if it is allowed to snowball or accumulate over time.

To know more about potential energy   refer here

https://brainly.com/question/24284560#

#SPJ11

Each airport has a runway that is about 500 m long.
when it lands, the speed of the aeroplane is 40 m/s.
explain why the airline should not use an aeroplane that has more mass and
needs a higher speed for landing.

Answers

An airport with a 500 m long runway should not use an aeroplane with a higher mass and landing speed because it can pose safety risks.

A higher mass requires more braking force to slow down the plane, and a higher landing speed means that the plane will travel a longer distance before coming to a stop.

These factors can make it difficult for the aeroplane to safely decelerate within the limited runway length, increasing the chances of a runway overrun or accident.

Braking force and mass: When an airplane lands, it needs to decelerate to a complete stop. The deceleration is achieved by applying braking force through the aircraft's landing gear.

A higher mass aircraft requires more braking force to slow down due to its increased inertia. If the runway is not long enough to provide sufficient space for the aircraft to decelerate, the increased mass can make it more challenging to bring the aircraft to a safe stop within the available distance.

Landing distance and speed: The landing speed of an aircraft is the speed at which it touches down on the runway. Higher landing speeds typically require more distance for the aircraft to come to a stop.

This distance is influenced by various factors, including aircraft weight, wind conditions, runway condition, and braking efficiency. If an airplane with a higher landing speed lands on a shorter runway, it will require a longer distance to decelerate to a safe stop.

Runway overrun and accidents: When an airplane is unable to decelerate within the available runway length, it can lead to a runway overrun. A runway overrun occurs when an aircraft is unable to stop on the runway and continues off the end of the runway, potentially causing damage to the aircraft, injuries, or even fatalities.

Additionally, the lack of sufficient deceleration can increase the chances of accidents, such as collisions with obstacles or other aircraft on the ground.

To learn more about inertia, refer below:

https://brainly.com/question/3268780

#SPJ11

What do you measure when you find a substance’s temperature?

Answers

Answer:

The Average kinetic Energy of all the atoms and molecules of substance

Explanation:

You would measure the kinetic energy of the atoms or molecules in the system.

I hope that this helps

Tesla is made by Nikola Tesla.
True Or False ?
Write With The Reason.​

Answers

Answer:False

Explanation:

Tesla was founded in 2003 by American entrepreneurs Martin Eberhard and Marc Tarpenning and was named after Serbian American inventor Nikola Tesla. Therefore it was not made by Nikola Tesla

6.
a certain ball was measured to have a momentum of 38 kg•m/s when traveling at 8m/s, how much mass does this ball contain?
а.
304 kg
b
5 lb
304 ib
d
4.75 kg

Answers

The ball contains 4.75 kg of mass. To solve this question we will use the formula of momentum, that is, p=mv

To answer this question, we can use the formula for momentum:

p = mv

where p is the momentum, m is the mass, and v is the velocity.

We are given that the ball has a momentum of 38 kg•m/s when travelling at 8m/s. Therefore, we can plug in these values and solve for m:

38 kg•m/s = m * 8 m/s

To solve for m, we can divide both sides by 8 m/s:

m = 38 kg•m/s / 8 m/s

Simplifying this expression, we get:

m = 4.75 kg

Therefore, the ball contains 4.75 kg of mass.

Know more about momentum here:
https://brainly.com/question/30677308

#SPJ11

If a cannonball were launched from the surface of Earth, it would eventually fall to the ground. However, if the cannonball was moving fast enough, it would move forward fast enough that it would never fall all the way to the ground, as shown in the animation. If the cannonball in the diagram were launched even faster, what would happen to its motion?

Answers

If a cannonball were launched from the surface of Earth at an even faster speed: its motion would be significantly impacted.

As the cannonball's speed increases, it would move forward more quickly, causing the rate at which it falls towards the ground to be countered by its horizontal motion. If the cannonball reaches a critical speed known as the "orbital velocity," it will enter a stable orbit around the Earth. In this state, the cannonball's forward motion will balance the force of gravity, preventing it from falling back to the ground.

Instead, it will continuously travel around the Earth in a circular or elliptical path. If the cannonball were to be launched at an even higher speed, beyond the escape velocity, it would eventually break free from Earth's gravitational pull and continue moving away from our planet, potentially entering into an orbit around another celestial body or traveling through space indefinitely.

To know more about motion, refer here:

https://brainly.com/question/29255792#

#SPJ11

how far apart would two 100 kg persons need to be so that the force they exert on each other is equal to 1n? you can assume they are point masses, having mass but no size.

Answers

Two 100 kg point masses would need to be separated by a distance of 1.4 meters in order to experience a force of 1N between them.

This is because the force between two masses is inversely proportional to the square of their distance from each other. In other words, the farther apart two masses are, the weaker the force between them. The equation for this is F=G*m1*m2/r^2, where G is the gravitational constant, m1 and m2 are the respective masses, and r is the distance between them.

When m1 and m2 are 100 kg and F is 1N, it can be solved to find r = 1.4 meters.

Know more about gravitational  here

https://brainly.com/question/3009841#

#SPJ11

The frequency of a slinky spring wave is 5 hertz with a wavelength of 0.8 meters. What is its velocity?

Answers

Answer:The frequency of a slinky spring wave is 5 hertz with a wavelength of 0.8 meters. What is its velocity?The speed can be found with a very simple equation: c = λ f = 0.8 ⋅ 5 = 4 m/s .

Explanation:

The speed can be found with a very simple equation: c = λ f = 0.8 ⋅ 5 = 4 m/s .

As you've learned, several phrases can be used to describe wave motion. Such
phrases include how often, how much time, how fast, how high, and how long.
Which of these phrases would be the most appropriate phrase for describing the period of a wave?​

Answers

Out of the various phrases used to describe wave motion, the most appropriate phrase for describing the period of a wave would be "how often."

The period of a wave refers to the time it takes for one complete cycle of the wave to occur. This means that it measures how often the wave completes its cycle.

Therefore, "how often" is the most relevant phrase to use when describing the period of a wave.

It's important to note that the other phrases mentioned - how much time, how fast, how high, and how long - are all relevant to different aspects of wave motion.

"How much time" is related to the duration of the wave, "how fast" refers to the speed at which the wave travels, "how high" refers to the amplitude of the wave, and "how long" can refer to both the duration and the length of the wave.

Understanding the various phrases used to describe wave motion is important for accurately communicating information about waves.

When discussing waves, it's essential to use the appropriate terminology to ensure that the content loaded is clear and precise.

To know more about wave motion refer here

https://brainly.com/question/12512349#

#SPJ11

A force compresses a bone by 1. 0 mm. A second bone has the same cross-sectional area but twice the length as the first. By how much would the same force compress this second bone

Answers

The second bone has the same cross-sectional area and material as the first bone, the same force would create the same stress in both bones.

To solve this problem, we need to consider the relationship between stress, strain, and Young's modulus. Stress is the force applied divided by the cross-sectional area, strain is the change in length divided by the original length, and Young's modulus is a material property that relates stress and strain.

1. Calculate stress (σ) for the first bone:
σ = Force / Cross-sectional area

2. Calculate strain (ε) for the first bone:
ε = Compression / Original Length
ε = 1.0 mm / Original Length

3. Find Young's modulus (Y) for the bone material:
Y = σ / ε

4. Calculate the strain (ε') on the second bone, using the same force and Young's modulus:
ε' = σ / Y

5. Calculate the compression (ΔL) of the second bone, given that its length is twice the first bone:
ΔL = ε' * (2 * Original Length)

However, since the second bone is twice as long, it would experience a greater strain and, as a result, a larger compression. By calculating the compression of the second bone using the relationship between stress, strain, and Young's modulus, you can determine how much the same force would compress the second bone.

For more about cross-sectional area:

https://brainly.com/question/20532494

#SPJ11

an expert marksman aims a high-speed rifle directly at the center of a nearby target. assuming the rifle sight has been accurately adjusted for more distant targets, how will the bullet strike the target?

Answers

If an expert marksman aims a high-speed rifle directly at the center of a nearby target, assuming that the rifle sight has been accurately adjusted for more distant targets, the bullet will not hit the center of the target.

This is because the bullet will follow a curved path due to the effects of gravity and air resistance. These effects become more significant as the distance between the rifle and the target decreases. Therefore, the bullet will hit the target at a point below the center.

To compensate for this, the marksman needs to adjust the aim of the rifle slightly higher than the center of the target. This adjustment is known as "holdover," and it depends on several factors, including the distance between the rifle and the target, the weight and velocity of the bullet, and the effects of the environment, such as wind and temperature.

Therefore, to hit the center of the target at a nearby distance, the expert marksman needs to adjust the aim of the rifle slightly higher than the center of the target, compensating for the effects of gravity and air resistance on the bullet's trajectory.

To learn more about rifle click on,

https://brainly.com/question/10952871

#SPJ4

PLEASE HELP!!


AR stands for Radio Detection And Ranging. How does this technology work?



1: Radio waves are sent by a transmitter and the receiver picks them up at location down-range.



2: Radio waves are sent by a transmitter and reflect back to a receiver when they run into an object

Answers

AR, or Radar, is a technology that uses radio waves to detect and locate objects in its vicinity. Radio waves are sent by a transmitter and reflect back to a receiver when they run into an object. The correct option is 2.

A radar system typically consists of a transmitter that emits high-frequency radio waves, a receiver that detects the reflected waves, and a processor that interprets the data received.

When the radio waves encounter an object, they bounce off of it and return to the radar's receiver. The time it takes for the waves to bounce back and the characteristics of the returning signal are analyzed by the processor to determine the object's location, speed, and direction of movement.

Radar technology is widely used in a range of applications, including air traffic control, weather forecasting, military surveillance, and maritime navigation. It has also been adapted for use in automotive safety systems, such as collision avoidance and adaptive cruise control.

In summary, radar technology works by emitting radio waves from a transmitter, which bounce off of objects and are detected by a receiver. The characteristics of the reflected waves are analyzed to determine the location and movement of the objects in the radar's vicinity. The correct option is 2.

To know more about radio waves refer here:

https://brainly.com/question/28874040#

#SPJ11

which of the following is incorrect

Answers

Calcium reacts with water to form calcium is an incorrect statement. Option A

What is incorrect?

When calcium reacts with water, it forms calcium hydroxide and hydrogen gas, according to the following equation:

Ca + 2H2O → Ca(OH)2 + H2

Therefore, the correct statement should be: Calcium reacts with water to form calcium hydroxide and hydrogen gas.

B. Magnesium reacts very slowly with water but faster with warm water is a correct statement.

C. Iron will not react with water in the absence of air is a correct statement.

D. Sodium reacts with water is a correct statement. When sodium reacts with water, it forms sodium hydroxide and hydrogen gas, according to the following equation:

2Na + 2H2O → 2NaOH + H2

E. Copper reacts with steam is an incorrect statement. Copper does not react with steam, but it reacts with hot concentrated sulfuric acid to form copper(II) sulfate, sulfur dioxide gas, and water, according to the following equation:

Cu + 2H2SO4 → CuSO4 + SO2 + 2H2O

Learn more about elements:https://brainly.com/question/13025901

#SPJ1

Missing parts;

Which of the following statements is incorrect?

A. Calcium reacts with water to form calcium

B. Magnesium reacts very slowly with water but faster with warm water

C. Iron will not react with water in the absence of air

D. Sodium reacts with water

E. Copper reacts with steam


4. 2 Water vapour is a gas. Explain the difference and similarities between water in the vapour
form and in the liquid form in terms of the kinetic molecular theory (KMT). ​

Answers

The kinetic molecular theory (KMT) describes the behavior of particles in a substance.

According to KMT, particles in both water vapor and liquid water are in constant motion and have kinetic energy. However, the particles in water vapor have more kinetic energy than those in liquid water because they are at a higher temperature.

As a result, the particles in water vapor are farther apart and have a higher average speed than the particles in liquid water. Additionally, water vapor and liquid water have different arrangements of particles.

In water vapor, the particles are not closely packed and are free to move, while in liquid water, the particles are tightly packed and have less freedom of movement.

To know more about kinetic molecular theory, refer here:

https://brainly.com/question/15013597#

#SPJ11

What would be the linear velocity of a boy's toes doing a cartwheel who is 2.1 m long from the tip of his toes to the end of his fingers and who is experiencing a centripetal force of 5.0 m/s2?

Answers

The linear velocity of the boy's toes during a cartwheel is 2.29 m/s. This demonstrates the relationship between centripetal force, radius, and velocity in circular motion.

To determine the linear velocity of a boy's toes during a cartwheel, we can use the formula for centripetal force and the formula for linear velocity. Centripetal force is given by [tex]F = mv^2/r[/tex], where m is the mass of the object, v is its velocity, and r is the radius of the circular motion.

In this case, the boy's toes are moving in a circular path during the cartwheel and are experiencing a centripetal force of 5.0 m/s².

To find the linear velocity of the boy's toes, we need to first calculate the radius of the circular path they are following. The length of the boy from his toes to the end of his fingers is 2.1 m, so the radius of the circular path is half this length, or 1.05 m.

Using the formula for centripetal force, we can solve for the velocity of the boy's toes as follows:

[tex]F = mv^2/r[/tex]

[tex]5.0 \;m/s^2 = m v^2 / 1.05 \;m[/tex]

[tex]v^2 = (5.0 \;m/s^2) \times 1.05 m[/tex]

[tex]v = \sqrt{(5.25)} m/s[/tex]

v = 2.29 m/s (rounded to two decimal places)

Therefore, the linear velocity of the boy's toes during a cartwheel is 2.29 m/s. This demonstrates the relationship between centripetal force, radius, and velocity in circular motion.

To know more about velocity refer here:

https://brainly.com/question/19979064#

#SPJ11

Turn on the timer and click the green circular button to start a wave pulse. Stop the timer when the wave pulse first hits the end of the string (when the final bead first starts to move). Do this a couple times to get a precise measurement of the time it took the wave pulse to cross the string. What is the wave velocity

Answers

The wave velocity is calculated by dividing the wave pulse's total distance travelled by the length of time it takes to cross the string.

What is Wave velocity?

Wave velocity is the speed at which a wave travels through a medium. It is the distance that a wave travels in a given amount of time and is typically measured in meters per second (m/s). The velocity of a wave is determined by the properties of the medium through which it is traveling, such as the density, elasticity, and temperature of the medium.

To find the wave velocity, we need to measure the time it took for the wave pulse to travel across the string and the distance it traveled. By dividing the distance by the time, we can calculate the velocity of the wave.

To learn more about Wave velocity, visit;

https://brainly.com/question/13867834

#SPJ4

A generator can develop a maximum voltage of 1.2 * 10 ^ 2

b. If a 1200-W space heater is powered by this generator and the generator has an I max of 1.10 A, what is the effective current through the heater?

a. What is the effective voltage of the generator?

Answers

To solve the problem, we need to use the equation P = VI, where P is power in watts, V is voltage in volts, and I is current in amperes.

b. First, we can use the equation P = VI to find the current through the heater:
1200 W = V * 1.10 A
Solving for V, we get:
V = 1200 W / 1.10 A
V = 1090.91 V
So the effective voltage through the heater is 1090.91 V.

a. To find the effective voltage of the generator, we can use the maximum voltage it can develop. Since the generator can develop a maximum voltage of 1.2 * 10^2, this means that the effective voltage will be lower than that, depending on the load being powered. The effective voltage can be found by multiplying the maximum voltage by the generator's power factor, which is typically around 0.8 to 0.9 for most generators. So the effective voltage would be:
Effective voltage = 1.2 * 10^2 V * 0.8
Effective voltage = 96 V to 108 V (depending on the power factor)
So the effective voltage of the generator is likely to be between 96 V and 108 V, depending on the power factor.

For more questions on: equation

https://brainly.com/question/11904811

#SPJ11

If you look through the lens toward the mirror, where will you see the image of the matchstick?.

Answers

Without knowing the specific setup of the lens and mirror, it is difficult to determine where the image of the matchstick will appear.

If you look through a lens toward a mirror, you will see the image of the matchstick at a virtual position behind the mirror.

It will depend on the positions and orientations of the lens and mirror, as well as the distance between them and the object being observed.

Here's the explanation:

1. Lens: The lens refracts or bends light rays as they pass through it. The specific characteristics of the lens, such as its shape and curvature, determine how the light is focused.

2. Mirror: The mirror reflects light rays that strike its surface. The image formed by a mirror is a result of the reflection of light.

When you look through the lens toward the mirror, the light from the matchstick first passes through the lens. The lens refracts the light and changes its direction. This refracted light then strikes the mirror.

The mirror reflects the light rays back toward the lens. The lens then refracts these reflected light rays again. The lens can act as a converging or diverging lens, depending on its shape and curvature.

In this scenario, if the lens is a converging lens (convex lens), it bends the light rays in such a way that they converge after passing through the lens. This convergence of light rays forms a virtual image behind the mirror.

Therefore, when you look through the lens toward the mirror, you will see the virtual image of the matchstick behind the mirror, in the area where the reflected light rays converge after passing through the lens. The exact position and characteristics of the image will depend on the specific lens and mirror configuration.

To know more about matchstick refer here

https://brainly.com/question/22015093#

#SPJ11

A meter-stick supports two masses at either end as shown. A single string hanging from the


ceiling to the stick will be used to suspend all three. Assuming the meter-stick has a mass of


100 grams, calculate the correct marking on the stick which will enable the system to remain


horizontal. (Let g = 10m/s2. )

Answers

The correct marking on the stick which will enable the system to remain horizontal is 48.5 cm from the left end of the meter stick.

Since the system is in equilibrium, the sum of the torques acting on it must be zero. We can choose any point as the axis of rotation, but it is convenient to choose the left end of the meter stick. In that case, the torques due to the masses m₁ and m₂ are:

τ₁ = m₁ g (x - L/2)

τ₂ = m₂ g (L/2 - x)

where L is the length of the meter stick, and g is the acceleration due to gravity.

The torque due to the meter stick itself is:

τ₃ = (1/2) M g (L/2)

where M is the mass of the meter stick.

Since the system is in equilibrium, the sum of these torques must be zero:

τ₁ + τ₂ + τ₃ = 0

Substituting the expressions for τ₁, τ₂, and τ₃, we get:

m₁ g (x - L/2) + m₂ g (L/2 - x) + (1/2) M g (L/2) = 0

Simplifying and solving for x, we get:

x = (m₁ - M/3) L / (m₁ + m₂ + M/3)

Substituting the given values, we get:

x = (m₁ - 0.1) 1 / (m₁ + m₂ + 0.1/3)

We don't know the values of m₁ and m₂, but we know that the system is in equilibrium, so the weight of m₁ plus the weight of m₂ plus the weight of the meter stick must be equal to zero:

m₁ g + m₂ g + M g = 0

Substituting M = 0.1 kg and g = 10 m/s², we get:

m₁ + m₂ = 1

We can now substitute m₂ = 1 - m₁ in the expression for x:

x = (m₁ - 0.1) / (1 + 0.1/3 - m1)

To find the value of m₁ that makes x equal to L/2 (the midpoint of the meter stick), we set x = L/2 and solve for m₁:

L/2 = (m₁ - 0.1) / (1 + 0.1/3 - m₁)

Simplifying, we get:

2(m₁ - 0.1) = (1 + 0.1/3 - m₁)

Solving for m₁, we get:

m₁ = 0.485 kg

To know more about meter-stick, here

brainly.com/question/15298079

#SPJ4

a thin wire lies along the curve given by r(t) = cos(t), 0, sin(t) , 0 ≤ t ≤ , and has mass density (x, y, z) = 4 − z kg/m3. find the total mass and the center of mass of the wire. m _____ kg

Answers

To find the total mass of the wire, we need to integrate the mass density over the length of the wire. The length of the wire is given by:

L = ∫₀^π ∥r'(t)∥ dt

where r(t) = (cos(t), 0, sin(t)) is the position vector of the wire at time t, and ∥r'(t)∥ is the magnitude of the velocity vector.

r'(t) = (-sin(t), 0, cos(t)) so ∥r'(t)∥ = sqrt(sin²(t) + cos²(t)) = 1

Therefore, L = ∫₀^π 1 dt = π.

What is the total mass and the center of mass of the wire?

Now, to find the mass, we need to integrate the mass density over the length of the wire:

m = ∫₀^π (4 - z) ∥r'(t)∥ dt

Since z = sin(t), we have:

m = ∫₀^π (4 - sin(t)) dt

Using the substitution u = cos(t), du = -sin(t) dt, we can write:

m = ∫₁^-1 (4 - √(1 - u²)) du

This integral can be evaluated using standard techniques, or with the help of a computer algebra system, to get:

m = 8.

To find the center of mass, we need to compute the weighted average of the position vector r(t), using the mass density as the weight function:

CM = (1/m) ∫₀^π r(t) (4 - sin(t)) ∥r'(t)∥ dt

= (1/8) ∫₀^π (cos(t), 0, sin(t)) (4 - sin(t)) (1) dt

= (1/8) ∫₀^π (4 cos(t) - sin(t) cos(t), 0, 4 sin(t)) dt

= (1/8) (8, 0, 0)

= (1, 0, 0)

Therefore, the total mass of the wire is 8 kg, and its center of mass is located at (1, 0, 0).

Learn more about  mass of the wire from

https://brainly.com/question/28496633

#SPJ1

let us recall what is a magnet? How does it work?

Answers

Answer:

The magnets are surrounded by an invisible magnetic field that contains stored-up, or potential, energy. When attempting to push two like-sided poles together, the stored-up energy becomes movement, or kinetic energy, and forces them apart. The same principle happens when two unlike poles come together.

What type of reaction is being shown in this energy diagram?
Energy
Reactants
to
Activation
Energy
ħ₁.
Products
Time

Answers

Answer: thermodynamics energy

Other Questions
in the progression from smaller to larger components of the lymphatic pathway, the lymphatic join one of two collecting . the four components of emotional intelligence are: emotional self-awareness, emotional self-management, social awareness, and what? a. time management b. coping with failure c. believing in yourself d. relationship management Write a Short essay answering Do you think the United States involvement in Vietnam was justified? Mateo produces a street sign graphic on his computer that is 4 inches by 5 inches. He enlarges the graphic by a scale factor of 3 to print. Then Mateo enlarges the image by a scale factor of 4 before sending it to the machinist.What are the dimensions of the sign? Write the smaller dimension first and the larger dimension second. Discuss the policies that African economies need to put in placeto enhance participation in the Global Value Chain [12 marks] 14. The distance between (x, 2) and (0, 6) is 5 units. Use the Distance Formula to determinethe value of x. Show all your work. Historian Gary Gerstle describes the contradiction of the U. S. Exercising imperial impulses as it does in the Spanish American War. What is the contradiction? How is this question later played out in the status of Puerto Ricans after the war? How does Luis Muoz Rivera describe living this contradiction? aleks math please answer Discuss the the characteristics of recruitment (selection), data collection, transcription, and analysis of the qualitative research process. Byron told kenny that he didnt think that the men who bombed the church were sick at all (like momma thought), but that he thought "they just let hate eat them up and turn them into monsters." do you agree or disagree? what do you think momma meant by the word "sick." explain. If the height is h, the leaf scar is l, how can you model the pattern using an equation?i need explanation please The speed of sound in a fluid can be calculated using the following equation: where speed of sound in bulk modulus fluid density in what is the appropriate unit for b if the preceding equation is to be homogeneous in units? _____________ Given that a function, g, has a domain of -20 x 5 and a range of -5 g(x) 45 and that g(0) = -2 and g(-9) = 6, select the statement that could be true for g. A. g(-4) = -11 B. g(0) = 2 C. g(7) = -1 D. g(-13) = 20 PLEASE HELPWrite a report explaining the basic belief system of either Hinduism or Islam, touching on the religions symbols, ceremonies, and views on deity Based on the graph, which statement is correct about the solution to the system of equations for lines A and B? (1 point) a (4, 2) is the solution to line A but not for line B b (4, 2) is the solution to both lines A and B c (0, 0) is the solution to both lines A and B d (0, 0) is the solution to line A but not for line B Need help to find the zeros for this quadratic equation pleaseeee Consider the five civilizations you studied in this unit. Write a paragraph for each civilization. Each of your five paragraphs should address these points:geographical locationtime span of the civilizationimportant achievementsimportant leaders or rulersend or decline Given the circle below with secants KLM and ONM . If =13,=12LM=13,NM=12 and KL is 33 less than ON, find the length of ON . Round to the nearest tenth if necessary. Helpp pleasee!!!!!!!! which of the following statements is true of missionary salespeople?multiple choicethey are usually trained by wholesalers, retailers, or other intermediaries.they work for customers, trying to strengthen the consumer movement.they are sometimes called merchandisers or detailers.they primarily work for retailers.they seek out new customers for their companies' products and sell to them personally.