Answer:
3/5
Step-by-step explanation:
because there are more red than blue and the fraction is 3/5 and the probability to pick a red worm is a lot higher than the blue. well there are 4 red worms and 1 blue so it would be 3 red worms out of 5 in total. this is more than 1 blue over 5. 3/5 is more than 1/5
hope this helped
Answer: 3/5
Step-by-step explanation:
Since 4 red gummies you have four out of 5 chance of getting red gummies. Without replacement there are now 4 gummies left and 3 red gummies. There for 3 out of 4 chance of getting another red gummy. Since at same time multiply. 4/5*3/4 = 12/20
Which can be simplified to 3/5
!Please help!
When representing a frequency distribution with a bar chart, which of these bars will be the shortest?
A. A bar representing a frequency of 24
B. A bar representing a frequency of 48
C. A bar representing a frequency of 36
D. A bar representing a frequency of 12
Answer:
D
Step-by-step explanation:
12 is lowest.
A bar chart is one of the most commonly used representations or visually translate groups of data.
We have given that,
When representing a frequency distribution with a bar chart.
What is the frequency distribution?
frequency distribution, a graph or data set organized to show the frequency of occurrence of each possible outcome of a repeatable event observed many times.
It is drawn in such a way that the x-axis of the graph would represent the items and the y-axis will be for the frequency.
Out of the choices given, the shortest among the bars will be that would frequency is only 36.
Hence, the answer to this item is the letter C.
To learn more about the frequency distribution visit:
https://brainly.com/question/1094036
#SPJ2
The function h(t) = -4.92f^2 + 17.69f + 575 is used to model the height of an object being tossed from a tall building, where h(t) is the height in meters and t is the time in seconds. What are the domain and range?
Answer:
rounded to 3 decimal places ...
domain: [0, 12.757]range: [0, 590.901]Step-by-step explanation:
The function can be put into vertex form:
h(t) = -4.92(t -(1769/984))^2 +575 +4.92(1769/984)^2
h(t) ≈ -4.92(t -1.79776)^2 +590.90122
The value of h(t) is zero for ...
t = √(590.90122/4.92) +1.79776 ≈ 12.75686
For practical purposes, the domain of the function is those values of t between the time the object is tossed and the time it hits the ground. That is, the domain is ...
0 ≤ t ≤ 12.75686
The range is the set of useful vertical heights, so extends from 0 to the maximum height, given by the vertex.
The range is 0 ≤ h(t) ≤ 590.90122.
_____
Alternate interpretation of the question
The function h(t) is defined for all values of t, so that could be considered the domain.
The function h(t) only gives values less than its vertex value, so the range could be considered to extend from negative infinity to that maximum.
Borland, Inc., has a profit margin of 5.6 percent on sales of $13.6 million. If the firm has debt of $6.4 million and total assets of $9.8 million, what is the firm’s ROA?
Answer:
ROA = 7.77 percent
Step-by-step explanation:
Borland, Inc., has a profit margin of 5.6 percent on sales of $13.6 million
Thus, profit = 5.6% of $13.6 million
profit = 5.6 / 100 * $13.6 million = $0.7616 million
Profit is same as net income
Formula for ROA (return on asset) = net income/ total asset
total asset as given = $9.8 million
Thus, ROA = $0.7616/ $9.8 = 0.0777
ROA in percentage = 0.0777*100 = 7.77
Thus, ROA is 7.77 percent .
3/11 ÷ 3/11
and
9/10 ÷ 3/5
PLZ HELP ME
Answer:
3/11 divided by 3/11 is 1
9/10 divided by 3/5 is 1 1/2 (1.5)
Step-by-step explanation:
Answer:
1
1.5
Step-by-step explanation:
3/11 ÷ 3/11 = 1
9/10 ÷ 3/5 = 3/2 ≈ 1.5
SL Part 1: Function Families > 01: Graphs and Functions
22. Find the constant of variation k for the direct variation.
х
f(x)
2
-1
7
-3.5
Ok= -2
Ok=0
Ok=0.5
Ok= -0.5
An observer at the top of a 532 foot cliff measures the angle of depression from the top of the cliff to a point on the ground to be 4 degrees. What is the distance from the base of the cliff to the point on the ground? Round to the nearest foot.
Answer:
Distance from the base of the cliff to the point on the ground = 7608 feet
Step-by-step explanation:
Given: Height of the cliff is 532 feet, angle of depression from the top of the cliff to a point on the ground is equal to 4 degrees.
To find: distance from the base of the cliff to the point on the ground
Solution:
In ΔABC,
[tex]\angle ACB=4^{\circ}[/tex] (Alternate interior angles)
For any angle [tex]\theta[/tex], [tex]\tan \theta =[/tex] side opposite to angle/side adjacent to angle
[tex]\tan C=\frac{AB}{BC}[/tex]
Put [tex]AB=532\,,\,\angle C=4^{\circ}[/tex]
[tex]\tan 4^{\circ}=\frac{532}{BC}\\\\BC=\frac{532}{\tan 4^{\circ}}\\\\=7607.95\\\\\approx 7608\,\,feet[/tex]
Distance from the base of the cliff to the point on the ground = 7608 feet
Determine whether the study depicts an observational study or an experiment.
A study is conducted to determine if there is a relationship between stomach cancer and alcohol consumption.alcohol consumption. Everyone treated at a hospital for stomach cancer was asked Everyone treated at a hospital for stomach cancer was asked about their alcohol consumption.
a. The study is an experiment because the researchers control one variable to determine the effect on the response variable.
b. The study is an observational study because the researchers control one variable to determine the effect on the response variable.
c. The study is an observational study because the study examines individuals in a sample, but does not try to influence the response variable.
d. The study is an experiment because the study examines individuals in a sample, but does not try to influence the variable of interest.
Answer:
Option c
Step-by-step explanation:
The study is an observational study. An observational study is made when the researchers collect data based on what they see, hear or observe without any form of manipulation or treatment plan from the researchers. Thus, in this case, the study is an observational study because the study examines individuals in a sample, but does not try to influence the response variable/influence their responses.
Venera sent a chain letter to her friends, asking them to forward the letter to more friends.
The relationship between the elapsed time t, in months, since Venera sent the letter, and the number of
people, P(t), who receive the email is modeled by the following function:
3t+7
P(t) = 2
Complete the following sentence about the monthly rate of change in the number of people who receive
the email.
Round your answer to two decimal places.
Every month, the number of people who receive the email is multiplied by a factor of
Answer:
It is multiplied by a factor of 8
Step-by-step explanation:
Every month, the number of people who receive the email is multiplied by a factor of 8.
What is an exponent?Let b is the base and x is the power of the exponent function and a is the leading coefficient. The exponent is given as
y = a(b)ˣ
Venera sent a chain letter to her friends, asking them to forward the letter to more friends.
The relationship between the elapsed time t, in months, since Venera sent the letter, and the number of people, P(t), who receive the email is modeled by the following function:
[tex]\rm P(t) = 2^{3t+7}[/tex]
Every month, the number of people who receive the email is multiplied by a factor will be
For t = 2, we have
P(2) = 2³⁽²⁾⁺⁷
P(2) = 2¹³
For t = 3, we have
P(3) = 2³⁽³⁾⁺⁷
P(3) = 2¹⁶
Then the factor will be
⇒ P(3) / P(2)
⇒ 2¹⁶ / 2¹³
⇒ 2³
⇒ 8
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ2
find the perimeter of of the shaded figure. ? units
Answer:
38 Units
Step-by-step explanation:
7 each down each side
10 each across top and bottom
2 more for each indent on bottom
7+7+10+10+2+2
14+20+4
38
Consider the following.x = t − 2 sin(t), y = 1 − 2 cos(t), 0 ≤ t ≤ 8πSet up an integral that represents the length of the curve.8π0 dtUse your calculator to find the length correct to four decimal places.
The length of the parametric curve (call it C ) is given by
[tex]\displaystyle\int_C\mathrm ds=\int_0^{8\pi}\sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]x=t-2\sin t\implies\dfrac{\mathrm dx}{\mathrm dt}=1-2\cos t[/tex]
[tex]y=1-2\cos t\implies\dfrac{\mathrm dy}{\mathrm dt}=2\sin t[/tex]
Now,
[tex]\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2=5-4\cos t[/tex]
so that the arc length integral reduces to
[tex]\displaystyle\int_0^{8\pi}\sqrt{5-4\cos t}\,\mathrm dt[/tex]
which has an approximate value of 53.4596.
What is the distance between the following points?
Answer:
square root of 72
Step-by-step explanation:
Answer:
(c) square root of 72
Step-by-step explanation:
khan academy answer :)
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
D. It would be less steep
Step-by-step explanation:
The first graph moves at a rate of 5/1 which is a greater fraction than 3/4
The second graph is shallow due to the close points in x and y that are able to be conducted The first Graph rapidly increases at a way higher rate making it VERY steepWhile both are linear the second strays away in terms of plot linesWhich of the following best forms the figure shown
Answer:
2 rays that meet at an endpoint
Step-by-step explanation: A ray starts with a dot, or point and continues on forever with an arrow. There are two rays in that drawing that start at the same endpoint.
Answer:
2 rays that meet at an endpoint.
Step-by-step explanation:
A ray is straight but has one endpoint and the other end go on infinitely.
A line is straight and goes on infinitely.
A line segment is straight and has two endpoints.
The picture shows two rays meeting at an endpoint.
A city has 5 new houses for every 7 old houses. If there are 45 new houses in the city, how many old houses are there?
Answer:
63
Step-by-step explanation:
Make a ratio:
5 : 7 = 45 : x
x = 63
What are the factors of 2x + 3x 54? Select two options
2x - 9
2x6
2x + 6
X-6
x+6
Answer:
(2x -9)(x +6)Step-by-step explanation:
Perhaps you're factoring ...
2x² +3x -54
= 2x² +12x -9x -54 . . . . rewrite 3x appropriately
= 2x(x +6) -9(x +6) . . . . factor pairs of terms
= (2x -9)(x +6) . . . . . . . . finish the factoring
The factors are (2x -9) and (x +6).
my last question and im done, please help!
Answer:
2 acute and one right.
Step-by-step explanation:
plz mark brainliest!
Answer:
2 acute 1 right, you asked for ASAP so theres no explanation
You cant mix right and obtuse, and you cant have more than 1 obtuse in a triangle. There has to be at least 2 acute angles.
The local swim team is considering offering a new semi-private class aimed at entry-level swimmers, but needs at minimum number of swimmers to sign up in order to be cost effective. Last year's data showed that during 8 swim sessions the average number of entry-level swimmers attending was 15. Suppose the instructor wants to conduct a hypothesis test. The alternative hypothesis for this hypothesis test is: "the population mean is less than 15". The sample size is 8, LaTeX: \sigmaσ is known, and alpha =.05, the critical value of z is _______. Group of answer choices
Answer:
The signficance level is 0.05 and then based in the alternative hypothesis we can find a critical value who accumulates 0.05 of the area in the normal standard curve in the left and we got:
[tex] z_{\alpha/2}= -1.64[/tex]
Step-by-step explanation:
[tex]n=8[/tex] the same size given
[te]\sigma[/tex] the population deviation is known
For this case we want to test if the population mean is less than 15 and that represent the alternative hypothesis and the complement would be the null hypothesis. So then the system of hypothesis are:
Null hypothesis: [tex]\mu \geq 15[/tex]
Alternative hypothesis: [tex]\mu <15[/tex]
The signficance level is 0.05 and then based in the alternative hypothesis we can find a critical value who accumulates 0.05 of the area in the normal standard curve in the left and we got:
[tex] z_{\alpha/2}= -1.64[/tex]
A ball travels on a parabolic path in which the height (in feet) is given by the expression $-25t^2+75t+24$, where $t$ is the time after launch. At what time is the height of the ball at its maximum?
Answer:
The height of the ball is at it's maximum 1.5 units of time after launch.
Step-by-step explanation:
Suppose we have a quadratic function in the following format:
[tex]h(t) = at^{2} + bt + c[/tex]
If t is negative, the maximu value of h(t) will happen at the point
[tex]t_{MAX} = -\frac{b}{2a}[/tex]
In this question:
[tex]h(t) = -25t^{2} + 75t + 24[/tex]
So
[tex]a = -25, b = 75, c = 24[/tex]
Then
[tex]t_{MAX} = -\frac{b}{2a} = -\frac{75}{2*(-25)} = 1.5[/tex]
The height of the ball is at it's maximum 1.5 units of time after launch.
You are situated 300 feet from the base of Tower Glitz Plaza watching an external elevator descend down the side of the building. At a certain instant the elevator is 500 feet away from you, and its distance from you is decreasing at a rate of 16 ft/sec. How fast is the elevator descending at that instant?
Answer:
18.66 ft/s
Step-by-step explanation:
The distance between you and the elevator is given by:
[tex]h=\sqrt{x^2+y^2}[/tex]
The rate of change for the distance between you and the elevator is given by:
[tex]\frac{dh}{dt}=\frac{dh}{dy}*\frac{dy}{dt}[/tex]
[tex]-16=\frac{dh}{dy}*\frac{dy}{dt}[/tex]
[tex]\frac{dh}{dy}=\frac{d}{dy} (\sqrt{x^2+y^2})\\[/tex]
Applying the chain rule:
[tex]u=x^2+y^2\\\frac{dh}{dy}=\frac{d\sqrt u}{du} *\frac{du}{dy}\\\frac{dh}{dy}=\frac{1}{2\sqrt u} *2y\\\frac{dh}{dy}=\frac{y}{\sqrt {(x^2+y^2)}}[/tex]
Therefore, at x=300 and y = 500, dy/dt is:
[tex]-16=\frac{y}{\sqrt {(x^2+y^2)}}*\frac{dy}{dt}\\-16=\frac{500}{\sqrt {(300^2+500^2)}}*\frac{dy}{dt}\\\frac{dy}{dt}=-18.66\ ft/s[/tex]
The elevator is descending at 18.66 ft/s.
Bernard bought 8gal of paint. Convert the volume to liters. Round to the nearest tenth
Answer:
In one gallon of paint there are about 3.8 liters so 8 gallons is about 30.3 liters.
Suppose that weekly income of migrant workers doing agricultural labor in Florida has a distribution with a mean of $520 and a standard deviation of $90. A researcher randomly selected a sample of 100 migrant workers. What is the probability that sample mean is less than $510
Answer:
[tex] z=\frac{510-520}{\frac{90}{\sqrt{100}}}= -1.11[/tex]
And we can find the probability using the normal standard distribution table and with the complement rule we got:
[tex]P(z<-1.11)= 0.1335[/tex]
Step-by-step explanation:
For this problem we have the following parameters:
[tex] \mu = 520, \sigma = 90[/tex]
We select a sample size of n =100 and we want to find this probability:
[tex] P(\bar X <510) [/tex]
The distribution for the sample mean using the central limit theorem would be given by:
[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]
And we can solve this problem with the z score formula given by:
[tex] z=\frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
And if we find the z score formula we got:
[tex] z=\frac{510-520}{\frac{90}{\sqrt{100}}}= -1.11[/tex]
And we can find the probability using the normal standard distribution table and with the complement rule we got:
[tex]P(z<-1.11)= 0.1335[/tex]
1. An LG Dishwasher, which costs $800, has a 20% chance of needing to be replaced in the first 2 years of purchase. A two-year extended warrantee costs $112.10 on a dishwasher. What is the expected value of the extended warranty assuming it is replaced in the first 2 years?
2. Approximately 10% of all people are left-handed. Consider a grouping of fifteen (15) people.
a. State the random variable.
b. Write the probability distribution.
c. Draw a histogram.
d. Describe the shape of the histogram.
e. Find the mean.
f. Find the variance.
g. Find the standard deviation.
Step-by-step explanation:
The expected value of the extended warrant is calculated as follow.
Value of Waranty
= 800 x 20% − 112.10
= 800 x 20/100 − 112.10
= 47.9
The expected value of the extended warranty assuming it is replaced in the first 2 years is given as follow.
Expected value=800-112.10=>687.90
Therefore, required expected value of extended warranty is 687.90
2.
Given information:
Number of Trials (n) = 15
Probability of Success (p) = 0.10
a) Let X represents the number of left-handed people.
b) The probability distribution follows binomial distribution.
X ∼ Binomial distribution
The probability distribution is given as follow.
P(X = x) = ^nCx(p)^x(1 − p)^n − x
c)The histogram is given as follow. (See attachment)
d) The shape of histogram is skewed right.
e) The mean is calculated as follow.
Mean
=n x p
= 15 x 0.10
= 1.5
f) The variance is calculated as follow.
Variance
= n x p x q
= 15 x 0.10 x 0.90
= 1.35
g) The standard deviation is calculated as follow.
Standard deviation
=√n x p x q
=√15 x 0.10 x 0.90
= 1.162
ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.
Answer:
a
Step-by-step explanation:
because as absolute value gets smaller the line gets steeper
r
Please answer this correctly
Answer:
416
Step-by-step explanation:
plz mark brainliest!
Answer:
385
Step-by-step explanation:
use l x w
14x19
16x3
7x10
385
The width of the rectangle is 2 more than the length. The area of the rectangle is 63 square inches. How long is the width?
Answer:
9 inches
Step-by-step explanation:
Area of rectangle= length ×width
Let the length of the rectangle be x inches.
Width of rectangle= (x +2) inches
since the width is 2 more than the length.
63= x(x+2)
63= x(x) +2x
Bringing constant to one side,
x² +2x -63= 0
(x +9)(x-7) = 0 (factorise)
x+9= 0 or x-7= 0
x= -9 or x= 7
(reject)
width of rectangle
= 7+2
= 9 inches
*We reject x= -9 since the length of the rectangle cannot be a negative number.
Which expession is equivalent to -3(6c + 2) + 5c
Answer:
-13c-6
Step-by-step explanation:
-3(6c + 2) + 5c
Distribute
-18c -6 +5c
Combine like terms
-13c-6
Answer:
-13c -6
Step-by-step explanation:
-3 (6c) -3x2+5c
multiply 6 by -3
-18c-3x2+5c
multiply -3 by 2
-18c -6+ 5c
add 18c and 5c
-13c -6
the average mark of candidates in an aptitude test was 138.5 with a standard deviation of 10.6. three scores extracted from the test are 178,122,100.what is the average of the extracted scores that are extreme value
Answer:
The average of the extracted scores = 133.33
Step-by-step explanation:
Given data the average mark of candidates in an aptitude test was 138.5 with a standard deviation of 10.6
mean of the aptitude test = 138.5
Standard deviation of the aptitude test = 10.6
Given three scores extracted from the test are 178,122,100
The average of the extracted scores = ∑x / n
The average of the extracted scores
= [tex]\frac{178 +122 +100}{3}[/tex]
= 133.33
Final answer:-
The average of the extracted scores = 133.33
J.D. Power and Associates conducts vehicle quality surveys to provide automobile manufacturers with consumer satisfaction information about their products (Vehicle Quality Survey, January 2010 ). Using a sample of vehicle owners from recent vehicle purchase records, the survey asks the owners a variety of questions about their new vehicles, such as those shown below. For each question, state whether the data collected are categorical or quantitative and indicate the measurement scale being used.
a. What price did you pay for the vehicle?
b. How did you pay for the vehicle? (Cash, Lease, or Finance)
c. How likely would you be to recommend this vehicle to a friend? (Definitely Not, Probably Not, Probably Will, and Definitely Will)
d. What is the current mileage?
e. What is your overall rating of your new vehicle? A 110 -point scale, ranging from I for
unacceptable to 10 for truly exceptional, was used.
Answer:
Categorical data includes
b. How did you pay for the vehicle? (Cash, Lease, or Finance)
c. How likely would you be to recommend this vehicle to a friend? (Definitely Not, Probably Not, Probably Will, and Definitely Will)
e. What is your overall rating of your new vehicle? A 1 to 10 point scale, ranging from I for unacceptable to 10 for truly exceptional, was used.
Quantitative data includes
a. What price did you pay for the vehicle?
d. What is the current mileage?
Step-by-step explanation:
Categorical data refers to the kind of data in which the variables are grouped based on a particular quality, ticking a particular box or satisfying some specific requirements.
It uses one or more qualitative property/properties to assign variables into a limited, usually fixed groups or categories. Note that the qualitative property might be a grouped data of numerical values. As long as there are easily separable and recognizable groups, it is categorical data.
This is also called qualitative data.
Quantitative data is a data that is strictly about numerical values. A dataset that consists of numerical values of the members of the dataset. Deals almost exclusively with numbers, usually ungrouped.
So, examining the given datasets one at a time
a. What price did you pay for the vehicle?
The answer to this question is a numerical value and for various customers, it builds up a dataset of strictly numerical values. Hence, this resulting data is a quantitative data.
b. How did you pay for the vehicle? (Cash, Lease, or Finance)
The answers to this question can only take 3 forms; Cash, Lease or Finance, indicating that all the variables in the dataset can only take on limited, fixed number of groups/categories. Hence, this dataset is a categorical data.
c. How likely would you be to recommend this vehicle to a friend? (Definitely Not, Probably Not, Probably Will, and Definitely Will)
The answers to this question too can take on 4 limited, fixed categories or groups, Hence, it's easy to see that this dataset is also categorical data.
d. What is the current mileage?
The answer to this question is a numerical value. Various answers from numerous persons would lead to a data of numbers. Hence, this is a quantitative data.
e. What is your overall rating of your new vehicle? A 1 to 10 point scale, ranging from I for unacceptable to 10 for truly exceptional, was used.
Limited, fixed categories or groups (10 groups) are also available for this data, hence, it is easily a categorical data.
Hope this Helps!!!
Solve for a.
ab + c = d
Answer:
a=(d-c)/d
Step-by-step explanation:
ab+c=d
ab=d-c
a= (d-c)/b
(a) Use a linear approximation to estimate f(0.9) and f(1.1). f(0.9) ≈ f(1.1) ≈ (b) Are your estimates in part (a) too large or too small? Explain. The slopes of the tangent lines are negative, but the tangents are becoming steeper. So the tangent lines lie below the curve f. Thus, the estimates are too large. The slopes of the tangent lines are negative, but the tangents are becoming steeper. So the tangent lines lie below the curve f. Thus, the estimates are too small. The slopes of the tangent lines are positive, but the tangents are becoming less steep. So the tangent lines lie above the curve f. Thus, the estimates are too large. The slopes of the tangent lines are positive, but the tangents are becoming less steep. So the tangent lines lie above the curve f. Thus, the estimates are too small.
Answer:
(Missing part of the question is attached)
[tex]L(x)=2x+3[/tex]
Estimates are too large.
Step-by-step explanation:
Suppose the only information we know about the function is:
[tex]f(1)=5[/tex]
where the graph of its derivative is shown in the attachment
(a)If the function [tex]f\\[/tex] is differentiable at point [tex]x=1[/tex] , the tangent line to the graph of [tex]f[/tex] at 1 is given by the equation:
[tex]y=f(1) +f'(1)(x-1)[/tex]
So we call the linear function:
[tex]L(x)=f(1) +f'(1)(x-1)[/tex]
We know the [tex]f(1)=5[/tex] as it is given in the question, and [tex]f'(1)=2[/tex] from the graph attached. Substitute in the equation of [tex]L(x)[/tex].
[tex]L(x)=5+2(x-1)\\L(x)=5+2x-2\\L(x)=2x+3\\[/tex]
(b)At x=1, [tex]f'(x)[/tex] is positive but it is decreasing. However. if we draw the tangent lines, we see that the tangent lines are becoming less steeper, so the tangent lines lie above the curve [tex]f[/tex]. Thus, The estimates are too large.