When 52 ml of nitric acid is taken, then the temperature increases by 41.34 C.
The reaction between nitric acid and magnesium is shown as,
Mg + 2HNO₃ → H₂ + Mg(NO₃)₂
Given
Volume of nitric acid = 52 ml
Molarity of nitric acid = 0.75 M
Mass of solid magnesium= 0.849 gm
Enthalpy of the reaction is = -462.0 kJ/mol
First, the moles of nitric acid are calculated as,
Moles = molarity × volume
= 0.75 M × 52 ÷ 1000
= 0.039 mol
Secondly, the moles of magnesium is calculated as,
Moles = mass ÷ molar mass
= 0.849 ÷ 24.30
= 0.0349
In the reaction, nitric acid is the limiting reagent that affects and controls the formation of magnesium ions.
2 mol HNO₃ → 1 mol Mg ions
1 mol of HNO₃ = 0.5 mol Mg ions
So, 0.039 mol of HNO₃ will result in 0.0195 moles of Mg ions.
It is known that 1 mol of magnesium ion releases 462.0 kJ/mol.
Therefore, the heat is calculated as:
= 462 × 10³ J/mol × 0.0195 mol
= 9009 J
Lastly, the increase in the temperature is given as:
q = mcΔT
9009 J = (52+0.849) × 4.184 J/ g°C × Δ T
9009 = 217.92 × ΔT
ΔT = 9009 ÷ 217.92 °C
= 41.34 °C
Therefore, the temperature increases by 41.34 °C.
Learn more about temperature, here:
https://brainly.com/question/15267055
#SPJ4
ch 17 for a certain reaction Delta H = -255 Kj and Delta S rxn is 211 Kj. calculate Delta G at 55 C.
a. 11.9 3
b. 69.5 3
c. -267
d. -324
For a certain reaction, the delta G value is -324.
How to calculate the delta G value of a reaction?Hi! To calculate Delta G for the reaction at 55°C using the given Delta H and Delta S values, follow these steps:
1. Convert the temperature from Celsius to Kelvin: 55°C + 273.15 = 328.15 K.
2. Use the Gibbs free energy equation: ΔG = ΔH - TΔS, where ΔG is the change in Gibbs free energy, ΔH is the change in enthalpy, T is the temperature in Kelvin, and ΔS is the change in entropy.
3. Plug in the values: ΔG = -255 kJ - (328.15 K * 0.211 kJ/K), as ΔS is given in kJ, not J.
Calculating ΔG:
ΔG = -255 kJ - (328.15 K * 0.211 kJ/K) ≈ -255 kJ - 69.24 kJ ≈ -324.24 kJ.
So, the closest answer is:
d. -324
To know more about Delta G:
https://brainly.com/question/1381624
#SPJ11
You need to prepare a buffer solution of pH 3.972 from a 10.0 mL of 0.355 M solution of weak acid whose pK, is 3.843. What volume of 0.385 M NaOH would you need to add. a. Calculate the ratio of conjugate base to acid in the desired buffer. b. Knowing that [A] + [HA] the concentration of HA and A 0.355 M, substitute in your answer from part a and calculate C. Calculate the moles of A d. What is the volume of NaOH from the moles of A
We need to add 4.86 mL of 0.385 M NaOH to 10.0 mL of 0.355 M weak acid to prepare a buffer solution of pH 3.972.
a. The Henderson-Hasselbalch equation for a buffer is:
pH = pKa + log([A-]/[HA])
where pKa is the acid dissociation constant of the weak acid, [A-] is the concentration of the conjugate base (NaA), and [HA] is the concentration of the weak acid. We can rearrange this equation to solve for [A-]/[HA]:
[A-]/[HA] = antilog(pH - pKa)
Substituting the given values, we get:
[A-]/[HA] = antilog(3.972 - 3.843) = antilog(0.129) = 0.900
Therefore, the required ratio of [A-] to [HA] is 0.900.
b. We know that [A-] + [HA] = 0.355 M. Substituting the ratio of [A-]/[HA] from part a, we get:
[A-] + [HA] = 0.355 M
0.900[HA] + [HA] = 0.355 M
[HA] = 0.168 M
[A-] = 0.187 M
c. The moles of A can be calculated by multiplying the concentration by the volume:
moles of A = [A-] x volume = 0.187 M x 0.010 L = 0.00187 moles
d. To calculate the volume of NaOH needed, we need to first determine the amount of NaOH required to react with the moles of A present. The balanced chemical equation for the reaction between NaOH and HA is:
HA + NaOH → NaA + H2O
We can see from the equation that 1 mole of HA reacts with 1 mole of NaOH to form 1 mole of NaA.
Therefore, we need to add the same number of moles of NaOH as there are moles of A:
moles of NaOH = 0.00187 moles
The volume of NaOH can be calculated by dividing the moles of NaOH by its concentration:
volume of NaOH = moles of NaOH / [NaOH] = 0.00187 moles / 0.385 M = 0.00486 L = 4.86 mL
to know more about buffer refer here:
https://brainly.com/question/22821585#
#SPJ11
alcohols generally require acid catalysis in order to undergo substitution by nucleophiles. the acid catalyst enhances the reaction by
a) increasing the solvent polarity
b) creating a better leaving group
c) neutralizing basic impurities
d) protecting the alcohol group
Alcohols generally require acid catalysis in order to undergo substitution by nucleophiles. The acid catalyst enhances the reaction by creating a better leaving group. Correct answer is option b.
In an alcohol substitution reaction, the hydroxyl (-OH) group of the alcohol is replaced by a nucleophile (such as a halide ion or an alkoxide ion).
However, the hydroxyl group is a poor leaving group due to its high electronegativity and strong bond to the carbon atom. Acid catalysis helps to make the leaving group better by protonating the oxygen atom of the alcohol, which creates a good leaving group (water).
The protonation also makes the carbon atom more electrophilic and more susceptible to attack by the nucleophile.
Therefore, the acid catalyst enhances the alcohol substitution reaction by creating a better leaving group. Answer: b) creating a better leaving group.
For more question on catalysis click on
https://brainly.com/question/1372992
#SPJ11
43) What is the chemical formula for iron(II) phosphate?A) Fe2PB) Fe2PO4C) Fe3P2D) Fe3(PO4)2
The chemical formula for iron(II) phosphate is (D) Fe₃(PO₄)₂.
Three iron(II) ions (Fe2+) and two phosphate ions (PO₄3-) with a negative three charge combine to form the inorganic molecule known as iron(II) phosphate. While "iron(III)" suggests a +3 oxidation state, the prefix "iron(II)" indicates that the iron ions have a +2 oxidation state.
One phosphorus atom and four oxygen atoms make up the polyatomic ion known as the phosphate, or PO₄3-. Two phosphate ions, each with a charge of -3 in iron(II) phosphate, counterbalance the three iron(II) ions' +6 charges.
Iron(II) phosphate is a compound made up of three iron(II) ions and two phosphate ions, as shown by its chemical formula, Fe₃(PO₄)₂. There are two phosphate ions present, as indicated by the subscript 2 following the parenthesis.
White or light green in color, iron(II) phosphate is a solid that is only weakly soluble in water. It can be made by combining sodium phosphate or ammonium phosphate with iron(II) chloride or iron(II) sulfate. As a food supplement, in the production of ceramics and fertilizers, as a building block for other iron compounds, and in other applications, iron(II) phosphate is frequently employed.
To know more about the iron(II) phosphate refer here :
https://brainly.com/question/15721987#
#SPJ11
compressed gases (class 2) are identified by label of different colors, depending on the danger they represent. group of answer choices true false
The statement "Compressed gases (class 2) are identified by labels of different colors depending on the danger they represent" is true.
It is because they are flammable, non-flammable, poisonous, corrosive, or compressed gas in general. It is important to handle these gases with caution, as they can pose a danger to human health and safety, as well as the environment. For example, compressed glass cylinders can rupture or explode under certain conditions, which can cause serious injuries or property damage.
Therefore, it is crucial to follow proper handling, storage, and transportation procedures for compressed gases, as well as to wear appropriate personal protective equipment when handling them.
To know more about the compressed gases refer here :
https://brainly.com/question/12105531#
#SPJ11
You need to produce a buffer solution that has a pH of 5.270. You already have a solution that contains 10.0 mmol (millimoles) of acetic acid. How many millimoles of sodium acetate will you need to add to this solution? The pKa of acetic acid is 4.752.
We will need to add approximately 33.01 millimoles of sodium acetate to the solution to achieve a pH of 5.270.
How to prepare a buffer solution?To determine how many millimoles of sodium acetate you need to add to produce a buffer solution with a pH of 5.270, we can use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
In this case, the pH is 5.270, the pKa of acetic acid is 4.752, [HA] is the concentration of acetic acid (10.0 mmol), and [A-] is the concentration of sodium acetate that we need to find.
Step 1: Rearrange the equation to solve for [A-]:
log([A-]/[HA]) = pH - pKa
Step 2: Plug in the values:
log([A-]/10.0) = 5.270 - 4.752
Step 3: Calculate the difference:
log([A-]/10.0) = 0.518
Step 4: Remove the log by using the inverse (antilog or 10^x) function:
[A-] = 10^(0.518) × 10.0
Step 5: Calculate the value of [A-]:
[A-] = 3.301 × 10.0
[A-] = 33.01 mmol
To know more about the Henderson-Hasselbalch equation:
https://brainly.com/question/13423434
#SPJ11
What is the method for finding populations at each energy level using Boltzmann statistics?
To find the populations at each energy level using Boltzmann statistics, follow these steps:
1. Determine the total number of particles (N) in the system.
2. Identify the energy levels (Ei) and their corresponding degeneracies (gi).
3. Calculate the Boltzmann factor for each energy level using the formula: Bi = exp(-Ei / kT), where Ei is the energy of the level, k is the Boltzmann constant, and T is the temperature.
4. Calculate the partition function (Z) by summing up the product of the degeneracies and the Boltzmann factors for all energy levels: Z = Σ(gi * Bi).
5. Finally, calculate the population (Ni) at each energy level using the formula: Ni = N * (gi * Bi) / Z.
In summary, to find the populations at each energy level using Boltzmann statistics, you need to determine the Boltzmann factors, calculate the partition function, and then use these values to find the populations at each energy level.
To know more about the Boltzmann statistics refer here :
https://brainly.com/question/13351360
#SPJ11
how do you distinguish between D and L enantiomers
To distinguish between D and L enantiomers, one can use a polarimeter to measure the rotation of polarized light. D enantiomers rotate the plane of polarized light to the right, or clockwise, while L enantiomers rotate it to the left, or counterclockwise. This is known as the optical activity of a compound.
D and L enantiomers are two types of stereoisomers that differ in their spatial orientation. The designation of D or L refers to the orientation of the asymmetric carbon atom in a molecule. The D enantiomer has its functional group on the right side of the molecule when the asymmetric carbon is oriented to the top, while the L enantiomer has its functional group on the left side.
Another method is to use a chiral column in chromatography, which separates the enantiomers based on their molecular shape and orientation. This technique is useful for separating racemic mixtures, which contain equal amounts of both D and L enantiomers. After separation, the enantiomers can be identified using spectroscopic techniques such as infrared or nuclear magnetic resonance spectroscopy.
In summary, the distinction between D and L enantiomers can be made using techniques such as polarimetry or chiral chromatography, which rely on differences in optical activity and molecular shape and orientation.
More on enantiomers: https://brainly.com/question/31009837
#SPJ11
ch 17 which distribution of six particles into three interconnected boxes has the highest entropy?
a. first two boxes full with 3 each
b. all three boxes full with 2 in each
c. first box with 6 in it
d. 1, 1, 4
Answer: gas liquid solid
Explanation:
Benzene can be nitrated with a mixture of nitric and sulfuric acids. Draw the 3-atom electrophile in the reaction. Include any formal charges.
When benzene is nitrated with a mixture of nitric and sulfuric acids, the electrophile that attacks the benzene ring is a nitronium ion, which has the chemical formula NO2+. This electrophile is generated in situ from the reaction between nitric acid and sulfuric acid, as shown below:
HNO3 + H2SO4 → NO2+ + HSO4- + H2O
The nitronium ion has a formal positive charge on the nitrogen atom (+1) and a formal negative charge on one of the oxygen atoms (-1), giving it an overall formal charge of 0. The three atoms that make up the nitronium ion are nitrogen (N), oxygen (O), and oxygen (O), arranged in a linear configuration. The nitrogen atom is the electrophilic center, as it is the site of positive charge and the atom that attacks the benzene ring in the nitration reaction.
To know more about nitration reaction:
https://brainly.com/question/1626142
#SPJ11
How does the larvae and pupae survive in water?
Please I need an answer immediately.
82) Electrophilic iodination of benzene requires which reagent in addition to I2?
Electrophilic iodination of benzene requires nitric acid reagent in addition to iodine.
Acids are defined as substances which on dissociation yield H+ ions , and these substances are sour in taste. Compounds such as HCl, H₂SO₄ and HNO₃ are acids as they yield H+ ions on dissociation.
According to the number of H+ ions which are generated on dissociation acids are classified as mono-protic , di-protic ,tri-protic and polyprotic acids depending on the number of protons which are liberated on dissociation.Acids can even react with benzene.
Learn more about acids,here:
https://brainly.com/question/29796621
#SPJ4
what is the [h3o ] and the ph of a benzoic acid-benzoate buffer that consists of 0.22 m c6h5cooh and 0.37 m c6h5coona? (ka of benzoic acid
The benzoic acid-benzoate buffer with a concentration of 0.22 M C₆H₅COOH and 0.37 M C₆H₅COONa has a pH of 4.64, and the concentration of hydronium ions is 4.39 x [tex]10^-^5[/tex] M.
How to find the pH of a solution?To solve this problem, we can use the Henderson-Hasselbalch equation:
pH = pKa + log([C₆H₅COO⁻]/[C₆H₅COOH])
where pKa of benzoic acid is 4.20.
First, we need to calculate the concentrations of C₆H₅COO⁻ and C₆H₅COOH in the buffer:
[C₆H₅COOH] = 0.22 M
[C₆H₅COO⁻] = 0.37 M
Next, we can substitute these values into the Henderson-Hasselbalch equation:
pH = 4.20 + log(0.37/0.22)
pH = 4.20 + 0.22
pH = 4.42
Therefore, the pH of the buffer is 4.42. To calculate the [H₃O⁺], we can use the equation:
pH + pOH = 14
pOH = 14 - pH
pOH = 14 - 4.42
pOH = 9.58
pOH = -log[OH⁻]
[OH⁻] = [tex]10^-^p^O^H[/tex]
[OH⁻] = [tex]10^-^9^.^5^8[/tex]
[OH⁻] = 2.28 x [tex]10^-^1^0[/tex]
Kw = [H₃O⁺][OH⁻] = 1.0 x [tex]10^-^1^4[/tex]
[H₃O⁺] = Kw/[OH⁻]
[H₃O⁺] = 1.0 x [tex]10^-^1^4[/tex] / 2.28 x [tex]10^-^1^0[/tex]
[H₃O⁺] = 4.39 x [tex]10^-^5[/tex] M
Therefore, the [H₃O⁺] is 4.39 x [tex]10^-^5[/tex] M.
Learn more about Henderson-Hasselbalch equation
brainly.com/question/30466186
#SPJ11
true or false If the theoretical yield of a reaction is 144 grams and the actual yield of the reaction is 72 grams, the percent yield of the reaction is 200%.
False. The percent yield of a reaction is calculated by dividing the actual yield by the theoretical yield and multiplying by 100%.
In this case, the percent yield would be calculated as (72 g/144 g) x 100% = 50%. A percent yield greater than 100% is not possible as it implies that more product was obtained than was predicted by the balanced chemical equation.
This could occur if there were errors in the measurements or if additional reactions occurred that produced more product than expected.
However, in most cases, a percent yield greater than 100% indicates an error in the calculation or a misunderstanding of the concept. It is important to note that percent yield can never be greater than 100%.
To know more about percent yield, refer here:
https://brainly.com/question/17042787#
#SPJ11
Explain how one's melting points results will be affected if the sample was heated too quickly (i.e. the power of Mel-Temp turned too high too quickly).
If the sample's melting point results will be affected if it is heated too quickly (i.e., the power of Mel-Temp is turned too high too quickly), the melting point observed may be inaccurately higher than the true value. This is because heating the sample too rapidly can cause the temperature to increase unevenly throughout the substance, leading to a premature observation of melting before the entire sample reaches its actual melting point. To obtain accurate melting point results, it is essential to heat the sample slowly and evenly, allowing the entire sample to reach its true melting point before recording the observation.
If the sample is heated too quickly, the melting point results can be affected in several ways. Firstly, the temperature of the sample may rise too rapidly, causing it to melt at a lower temperature than its actual melting point. This is because the sample does not have enough time to equilibrate and reach thermal equilibrium. Additionally, the rapid heating can cause the sample to decompose or react, leading to inaccurate results. Lastly, if the heating is too intense, it can damage the sample or the apparatus used for testing. Therefore, it is important to ensure that the sample is heated slowly and steadily to determine its melting point accurately.
Learn more about the melting points at https://brainly.com/question/40140
#SPJ11
39) Write the name for SnS.A) tin(I) sulfateB) tin(I) sulfideC) tin(II) sulfideD) tin(II) sulfateE) tin sulfide
The correct name for SnS is tin(II) sulfide. Therefore, option (C) is correct.
Tin(II) sulfide, represented by the chemical formula SnS, is a compound composed of tin and sulfur. In this compound, tin is in the +2 oxidation state, hence the name "tin(II)." Sulfur is present as the sulfide ion, which has a -2 charge.
Tin(II) sulfide is a binary ionic compound formed by the combination of these elements. It is a dark gray solid with a crystalline structure and finds applications in various fields, including semiconductors, solar cells, and optoelectronics.
Learn more about tin, here:
https://brainly.com/question/8007468
#SPJ12
SnS is correctly named as tin(II) sulfide. The Roman numeral II indicates that tin has an oxidation state of +2 and sulfide denotes the presence of sulfur with a -2 charge, allowing the compound to be charge balanced.
Explanation:The correct name for the compound SnS is tin(II) sulfide. This is determined by the use of Roman numerals, which denote the charge of the cation, and the suffix '-ide' used for anions. In this case, tin has a charge of +2, hence tin(II), and sulfur, as an anion, is referred to as sulfide.
Different examples of compound names using this nomenclature system include iron(III) sulfide, copper(II) selenide, and titanium(III) sulfate. The Roman numerals in parentheses indicate the oxidation state of the metal in the compound.
A compound with the formula SnS would be named tin(II) sulfide because the Roman numeral II indicates that tin has an oxidation state of +2 and sulfide denotes the presence of sulfur with a -2 charge. This shows the balance of charge in the compound.
Learn more about Chemical Naming here:https://brainly.com/question/36414392
#SPJ11
A second student makes a buffer by dissolving 0.100 mol of NaNO₂(s) in 100. mL of 1.00 M HNO₂(aq). Which is more resistant to changes in pH when a strong acid or a strong base is added, the buffer made by the second student or the buffer made by the first student. (0.100 M NaOH the student should add to 100. mL of 0.100 M HNO)
The buffer made by the second student is better able to maintain a stable pH in the presence of strong acid or strong base compared to the buffer made by the first student.
The buffer made by the second student is more resistant to changes in pH when a strong acid or strong base is added. This is because the second student's buffer has a higher concentration of the weak acid HNO₂ and its conjugate base NO₂⁻, which means there are more buffer molecules present to react with the added strong acid or strong base. Additionally, the second student's buffer has a higher initial pH due to the presence of the NaNO₂ salt, which increases the concentration of the conjugate base in the solution.
For more such questions on pH of a solution, visit:
brainly.com/question/30934747
#SPJ11
Given the following reactions
N₂ (g) + 2O₂ (g) → 2NO₂ (g)ΔH = 66.4 kJ
2NO (g) + O₂ (g) → 2NO₂ (g) ΔH = -114.2 kJ
the enthalpy of the reaction of the nitrogen to produce nitric oxide
N₂ (g) + O₂ (g) → 2NO (g)
is ________ kJ.
The enthalpy change for the reaction N₂(g) + O₂(g) → 2NO(g) is 162 kJ for the chemical reactions N₂(g) + 2O₂(g) → 2NO₂(g) ∆H = +66.4 kJ/mol and 2NO(g) + O₂(g) → 2NO₂(g) ∆H = -114.2 kJ/mol.
To find the enthalpy change of the given reaction, we can use Hess's law, which states that if a reaction occurs in a series of steps, the sum of the enthalpy changes of these steps is equal to the enthalpy change of the overall reaction.
We can start by reversing the first equation, which gives: 2NO₂(g) → N₂(g) + 2O₂(g) ΔH = −66.4 kJ. We can then multiply the second equation by 2, which gives: 4NO(g) + 2O₂(g) → 4NO₂(g) ΔH = −2 × (−114.2 kJ) = +228.4 kJ
Now, we can add these two equations together, canceling out the intermediate species NO and O₂: 2NO₂(g) + 2O₂(g) → 2NO(g) + 2O₂(g) + 228.4 kJ. Finally, we can cancel out the common O₂ on both sides of the equation: N₂(g) + O₂(g) → 2NO(g) ΔH = 228.4 kJ − 66.4 kJ = 162 kJ
Learn more about the enthalpy at
https://brainly.com/question/16720480
#SPJ4
The question is -
What is the enthalpy change (in kJ) for the reaction of nitrogen gas (N₂) with oxygen gas (O₂) to produce nitric oxide gas (NO), given the enthalpies of the following reactions:
N₂(g) + 2O₂(g) → 2NO₂(g) ∆H = +66.4 kJ/mol
2NO(g) + O₂(g) → 2NO₂(g) ∆H = -114.2 kJ/mol
How many liters of a 0.0550 M KCl solution contain 0.163 moles of KCl?
2.96 liters of a 0.0550 M KCl solution contain 0.163 moles of KCl using the formula moles of solute = molarity x volume of solution in liters.
To determine the volume of the 0.0550 M KCl solution that contains 0.163 moles of KCl, we can use the following formula: moles of solute = molarity x volume of solution in liters. Rearranging the formula to solve for volume, we get: volume of solution in liters = moles of solute/molarity
Substituting the given values, we have a volume of solution in liters = 0.163 moles / 0.0550 M the volume of solution in liters = 2.96 L (rounded to two significant figures). Therefore, 2.96 liters of the 0.0550 M KCl solution contain 0.163 moles of KCl.
Learn more about the solution at
https://brainly.com/question/4048262
#SPJ4
use 1-2 key peaks to justify what compound(s) that you think are present. does this suggest that your reaction worked? use 1 or two key ir peaks to justify your answer. what does this ir data indicate about the purity of the product? use 1 or two key ir peaks to justify your answer.
To determine the presence of compounds in a sample, one can look for key peaks in the IR spectrum. For example, a strong peak at around 3300 cm^-1 can indicate the presence of an alcohol functional group, while a peak at around 1700 cm^-1 can indicate the presence of a carbonyl group. By analyzing the IR spectrum and identifying these key peaks, we can make an educated guess as to what compounds are present in the sample.
If we were able to identify the key peaks for the desired product in our reaction, this would suggest that our reaction was successful in producing the intended compound. On the other hand, if we were unable to identify the key peaks for the desired product or if we saw unexpected peaks in the spectrum, this could indicate that the reaction did not work as intended.
In terms of the purity of the product, we can also look at the IR spectrum to identify any impurities or contaminants. For example, if we see multiple peaks in the spectrum or peaks that do not match the expected functional groups for our desired product, this could indicate the presence of impurities. On the other hand, if we see a clean spectrum with only the expected key peaks for our desired product, this would suggest that our product is pure.
Learn more about IR spectrum:
https://brainly.com/question/21134950
#SPJ11
What conditions should Muscarinic Agonists NOT be used with?
Muscarinic agonists are a class of drugs that stimulate the activity of the parasympathetic nervous system by binding to muscarinic acetylcholine receptors.
They should not be used in patients with certain medical conditions such as glaucoma, urinary tract obstruction, or gastrointestinal obstruction. In glaucoma, muscarinic agonists can cause pupil constriction and increase intraocular pressure, worsening the condition.
In urinary or gastrointestinal obstruction, muscarinic agonists can increase smooth muscle contraction, exacerbating the obstruction.
Muscarinic agonists should also be used with caution in patients with asthma or chronic obstructive pulmonary disease (COPD) as they can cause bronchoconstriction and worsen respiratory symptoms. Patients with a history of allergy to muscarinic agonists should also avoid these drugs.
For such more questions on Muscarinic agonists:
https://brainly.com/question/31589028
#SPJ11
Bonded Atoms: 5
Lone Pairs: 1
Electron Domain: 6
Ideal Bond Angle?
Hybridization?
Polar or NonPolar?
The molecule has six electron domains, consisting of five bonded atoms and one lone pair. The ideal bond angle is 90 degrees. The hybridization of the central atom would be sp3d2. The molecule may be polar or nonpolar depending on the nature and orientation of the bonded atoms and lone pair.
With 5 bonded atoms and 1 lone pair, the electron domain of the molecule is 6.
The ideal bond angle can be predicted using the VSEPR theory, which states that the electron domains in a molecule will arrange themselves to be as far apart as possible to minimize repulsion.
For a molecule with six electron domains, the ideal bond angle is 90 degrees.
The hybridization of the central atom can be determined using the number of electron domains present. In this case, the central atom has six electron domains, which corresponds to sp3d2 hybridization.
Whether the molecule is polar or nonpolar depends on the geometry of the molecule and the polarity of its bonds. Without knowing the specific molecule in question, it is difficult to determine whether it is polar or nonpolar.
Click the below link, to learn more about Bond Angle and hybridisation:
https://brainly.com/question/30230127
#SPJ11
For the reaction
if 5. 0 mol of CO2 are produced, how many moles of O2 were reacted?
a. None of these
b. 3. 3 mol
c. 12. 5 mol
d. 7. 5 mol
e. 6. 2 mol
If 5.0 mol of the CO₂ are produced, the number of the moles of the O₂ were reacted is 10 mol. The correct option is a. none of these.
The chemical equation is as :
CH₄ + 2O₂ → CO₂ + 2H₂O
The number of the moles of the CO₂ = 5 mol
The number of the moles of the CO₂ = mas / molar mass
The molar mass of the CO₂ = 44 g/mol
The 2 moles of the O₂ produced by the 1 mole of the CO₂
The number of the moles of the O₂ = 2 × 5 mol
The number of the moles of the O₂ = 10 mol.
The number of the moles of the O₂ required to produced 5 mol of the CO₂ is the 10 mol of the O₂. The correct option is a.
To learn more about moles here
https://brainly.com/question/19247935
#SPJ4
Calculate the amount of heat needed to melt 35.0 g of ice at 0°C. Express your answer in kilojoules.
The amount of heat needed to melt 35.0 g of ice at 0°C is 0.0117 kJ, by using the equation q = m * ΔHfus.
What is heat of fusion?Heat of fusion (ΔHfus) is the amount of heat energy required to change a substance from its solid state to its liquid state, or vice versa, without any change in temperature. It is the amount of energy required to overcome the intermolecular forces holding the particles in a solid together and allow them to move more freely as a liquid.
To calculate the amount of heat needed to melt 35.0 g of ice at 0°C, we need to use the following equation: q = m * ΔHfus
where q is the amount of heat needed, m is the mass of the substance being melted (in grams), and ΔHfus is the heat of fusion, which is the amount of heat required to melt one gram of a substance. For water, the heat of fusion is 334 J/g.
First, we need to convert the mass of ice from grams to kilograms:
m = 35.0 g = 0.035 kg
Upon substituting the values into the equation:
q = 0.035 kg * 334 J/g = 11.69 J
However, the question asks us to express our answer in kilojoules, so we need to convert J to kJ by dividing by 1000:
q = 11.69 J ÷ 1000 = 0.0117 kJ
To know more about Heat of fusion, visit:
https://brainly.com/question/14053504
#SPJ1
PLEASE ANSWER 30 POINTSS!!!! ANSWER QUICK!!!
How many moles of aluminum are needed to react completely with 213 g Cl2? (CI2:71 g/mol)
2AI + 3CI2 ---> 2AICI3
213g CI2--> mol AI
Answer:
3 moles of aluminum are needed to react completely with 213 g of Cl2.
Explanation:
First, we need to find the number of moles of Cl2 in 213 g.
mass of Cl2 = 213 g
molar mass of Cl2 = 71 g/mol
Number of moles of Cl2 = mass of Cl2/molar mass of Cl2
= 213/71
= 3 moles
Now, from the balanced chemical equation, we know that 2 moles of Al reacts with 3 moles of Cl2 to produce 2 moles of AICI3.
So, to react completely with 3 moles of Cl2, we need (2/3) x 3 = 2 moles of Al.
Therefore, to react completely with 213 g of Cl2, we need 2 moles of Al.
Note:
It is important to use the correct units and molar masses in the calculations to obtain accurate results.
a buffer solution is composed of 0.100 m ha, a weak monoprotic acid, and 0.310 m naa, the sodium salt of the acid. the solution has a ph of 3.80. what is the ka of the weak acid, ha?
If the solution has a pH of 3.80, then the Ka of the weak acid, HA, is approximately 1.22 x 10⁻³.
To determine the Ka of the weak acid HA, we can use the Henderson-Hasselbalch equation:
pH = pKa + log ([A⁻]/[HA])
Where pH is 3.80, [A-] is the concentration of NaA (0.310 M), and [HA] is the concentration of the weak acid (0.100 M).
3.80 = pKa + log (0.310/0.100)
To solve for pKa, subtract the log term from the pH:
pKa = 3.80 - log (0.310/0.100)
Calculate the pKa:
pKa ≈ 2.91
Now, to find Ka, use the relationship:
Ka = 10^(-pKa)
Ka ≈ 10^(-2.91)
Ka ≈ 1.22 x 10⁻³
The Ka of the weak acid, HA, is approximately 1.22 x 10⁻³.
Learn more about Henderson-Hasselbalch equation here: https://brainly.com/question/26746644
#SPJ11
true or false Since heat must be supplied to melt ice, the melting of ice is an endothermic process and so has a positive enthalpy value.
The statement "Since heat must be supplied to melt ice, the melting of ice is an endothermic process and so has a positive enthalpy value" is true.
Give examples of endothermic process.True. The melting of ice is an endothermic process because heat must be supplied to overcome the intermolecular forces holding the solid ice together and to break the bonds between the ice molecules. The melting of ice is an endothermic process because heat is absorbed from the surroundings to break the bonds between water molecules in the ice, allowing them to transition from a solid to a liquid state. As a result, the enthalpy change for this process is positive, indicating that energy has been absorbed.
To know more about Endothermic Process:
https://brainly.com/question/29555731
#SPJ11
(c) if enough grams of helium gas is added to the container at 20.0 oc to increase the pressure to 800 torr, what would be the partial pressure of the quilium?
The partial pressure of helium gas is 536 torr.
How the volume of the container remains constant?Assuming that the volume of the container remains constant and that the temperature is held constant at 20.0°C, the partial pressure of the helium gas can be calculated using the ideal gas law:
PV = nRT
where P is the total pressure of the gas mixture, V is the volume of the container, n is the number of moles of gas in the container, R is the gas constant, and T is the temperature in kelvins.
To find the partial pressure of helium gas, we need to know the total number of moles of gas in the container and the number of moles of helium gas. Since the volume and temperature are constant, the total number of moles of gas in the container remains the same. Therefore, we can use the following equation to relate the initial and final pressures of the gas mixture:
P₁V = nRT₁
where P₁ is the initial pressure of the gas mixture and T₁ is the initial temperature.
Solving for n, we get:
n = (P₁V)/(RT₁)
At 20.0°C, the value of the gas constant R is 0.08206 L·atm/(mol·K).
Using the given values, we get:
n = (760 torr)(10.0 L)/(0.08206 L·atm/mol·K)(293 K) = 31.5 mol
This is the total number of moles of gas in the container.
To find the number of moles of helium gas, we can use the fact that the initial pressure of the container is due to only nitrogen gas, and that the helium gas is added later. Therefore, the number of moles of helium gas can be calculated by subtracting the number of moles of nitrogen gas from the total number of moles of gas in the container:
n(He) = n(total) - n(N₂) = 31.5 mol - 10.5 mol = 21.0 mol
where n(N₂) is the number of moles of nitrogen gas in the container.
Now, we can use the ideal gas law to calculate the partial pressure of helium gas at a total pressure of 800 torr:
P(He) = (n(He)/n(total)) × P(total)
where P(total) is the total pressure of the gas mixture, and n(total) is the total number of moles of gas in the container.
Substituting the given values, we get:
P(He) = (21.0 mol/31.5 mol) × 800 torr = 536 torr
Therefore, the partial pressure of helium gas is 536 torr.
Learn more about helium gas
brainly.com/question/13645498
#SPJ11
Every few years, winds stop blowing for months at a time causing the ocean currents to slow down, and causing the nutrient-rich deep ocean cold water that usually wells up to slow down. As a result, fishermen off the coast of South America catch fewer fish during this phenomenon. What is this phenomenon called?
A. El Gulf Stream
B. La Ms. Shamsi
C. El Nina
D. El Nino
El Nino is a climate pattern that causes warmer than usual ocean temperatures in the tropical Pacific, affecting global weather patterns and reducing the productivity of fisheries off the coast of South America.
What is El Nino and how does it affect global weather patterns and fisheries off the coast of South America?
El Nino is a climate pattern that occurs every few years, typically lasting for several months to a year. It is characterized by warmer than usual ocean temperatures in the central and eastern tropical Pacific, which in turn affects global weather patterns.
During El Nino, winds that normally blow from east to west across the Pacific weaken or even reverse, causing changes in ocean currents and preventing nutrient-rich cold water from rising to the surface. This reduces the productivity of fisheries off the coast of South America and can lead to droughts, floods, and other extreme weather events around the world. The opposite of El Nino is La Nina, which is characterized by cooler than usual ocean temperatures and stronger trade winds.
To learn more about El Nino, visit: https://brainly.com/question/6838958
#SPJ1
a flask contains four gases: ch4, o2, c2h5, and n2. when the stopper is removed, which gas will diffuse the fastest?
When the stopper is removed, CH₄ (methane) will diffuse the fastest among the four gases in the flask because CH₄ has the lowest molar mass at 16 g/mol.
When considering the rate of diffusion for gases, we can use Graham's Law of Effusion, which states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. In other words, lighter gases diffuse faster than heavier gases.
Let's compare the molar masses of the four gases: CH₄ (methane), O₂ (oxygen), C₂H₅ (ethyl radical), and N₂ (nitrogen).
1. CH₄: 12 (C) + 4 (H) = 16 g/mol
2. O₂: 16 (O) × 2 = 32 g/mol
3. C₂H₅: 2 (C) × 12 + 5 (H) = 29 g/mol
4. N₂: 14 (N) × 2 = 28 g/mol
Based on the molar masses, CH₄ has the lowest molar mass at 16 g/mol. Therefore, when the stopper is removed, CH₄ (methane) will diffuse the fastest among the four gases in the flask.
More on diffusion: https://brainly.com/question/30577588
#SPJ11