You are standing on a skateboard, initially at rest. A ball is thrown at you. If you want to MINIMIZE your speed on the skateboard, should you catch or deflect the ball?

Answers

Answer 1

To minimize your speed on the skateboard, you should catch the ball rather than deflect it.

If you want to minimize your speed on the skateboard, you should catch the ball. This is due to the law of conservation of momentum, which states that the total momentum of a system remains constant if there are no external forces acting on it.

When the ball is thrown at you, it has a certain momentum, which is determined by its mass and velocity. If you catch the ball, you will increase the mass of the system (you + skateboard + ball), but the total momentum of the system will remain the same. This means that your velocity will decrease to compensate for the increase in mass, resulting in a smaller final speed on the skateboard.

On the other hand, if you deflect the ball, the ball will bounce off your skateboard in a different direction, transferring some of its momentum to the skateboard. This will cause the skateboard to move in the opposite direction of the ball's bounce, resulting in an increase in your speed on the skateboard.

Therefore, to minimize your speed on the skateboard, you should catch the ball rather than deflect it.

To learn more about momentum visit:

https://brainly.com/question/17166755

#SPJ11


Related Questions

(A) Charges arrange themselves on conductors so there is no electric field inside, and no electric field
component along the surface
The electric field E just outside the surface of a charged conductor is
(A) directed perpendicular to the surface
(B) directed parallel to the surface
(C) independent of the surface charge density
(D) zero
(E) infinite

Answers

The electric field E just outside the surface of a charged conductor is directed perpendicular to the surface. Hence option A is correct.

Electric field is field around electrically charged particle where columbic force of attraction or repulsion can be experienced by other charged particles. It is denoted by letter E and it's SI unit is V/m Volt per meter or N/C newton per coulomb. Electric field comes inward to the center of the negative charge and it is going outward for positive charge.

when a conductor is charged all the charges which are inside the conductor will float out and accumulate at the surface of the conductor. when all the charged are at the surface of the conductor, the electric field inside the conductor is zero.

When we draw a gaussian surface in order to find the electric field outside of the charged conducting sphere the electric field will be perpendicular to the surface.

Hence Option A is correct.

To know more about Electric field :

https://brainly.com/question/8971780

#SPJ4.

Describe how you would find wave velocity in various mediums.

Answers

To find wave velocity in various mediums, you need to consider two key factors: the properties of the medium and the type of wave.

Wave velocity can be determined using the formula v = fλ, where 'v' is the wave velocity, 'f' is the frequency, and 'λ' is the wavelength.

For mechanical waves, such as sound waves, the wave velocity depends on the medium's density and elasticity. In solids, it's influenced by the material's shear modulus and density, while in fluids, it's governed by the medium's bulk modulus and density.

For electromagnetic waves, like light, the wave velocity depends on the medium's refractive index, which relates to its permittivity and permeability. In vacuum, the speed of light is constant (approximately 299,792 km/s), while in other media, it slows down depending on the refractive index.

By measuring or obtaining the necessary parameters (frequency, wavelength, medium properties) and using the appropriate formulas, you can find the wave velocity for different types of waves in various mediums.

To learn more about wave, refer below:

https://brainly.com/question/25954805

#SPJ11

Two pith balls are charged by touching one to a glass rod that has been rubbed with a nylon cloth and the other to the cloth itself.What sign will the charge on each pith ball have?

Answers

When two pith balls are charged by touching one to a glass rod that has been rubbed with a nylon cloth and the other to the cloth itself one will have a positive charge and the other will have a negative charge.


When a glass rod is rubbed with a nylon cloth, the glass rod becomes positively charged due to the transfer of electrons from the glass to the nylon. The nylon cloth becomes negatively charged, as it gains the electrons lost by the glass rod.

Step 1: The first pith ball is touched to the positively charged glass rod. The pith ball will acquire the same charge as the glass rod, which is positive.

Step 2: The second pith ball is touched to the negatively charged nylon cloth. The pith ball will acquire the same charge as the nylon cloth, which is negative.

So, the first pith ball will have a positive charge and the second pith ball will have a negative charge.

To know more about pith balls click here:

https://brainly.com/question/31351061

#SPJ11

A projectile is launched from level ground. When it lands , its direction of motion has rotated clockwise through 60 degrees. What was the launch angle? (3)

Answers

The launch angle of the projectile is 60 degrees. We can use the fact that the horizontal component of the projectile's velocity remains constant during its flight, and the vertical component of the velocity changes due to gravity.

Let's assume that the projectile is launched with an initial velocity V₁ at an angle of θ with respect to the horizontal. The horizontal component of the velocity is V₁ cos(θ), and the vertical component of the velocity is V₁ sin(θ). When the projectile lands, the direction of motion has rotated clockwise through 60 degrees, which means that the angle between the final velocity vector and the horizontal is 60 degrees.

Let's denote the final velocity of the projectile as V₂. The horizontal component of the final velocity is  V₂ cos(60), which is equal to the horizontal component of the initial velocity. Thus, we have:

[tex]V_1 cos(\theta) =  V_2 cos(60)[/tex]

The vertical component of the final velocity is V₂sin(60), and we know that the time of flight of the projectile is the same for both the horizontal and vertical components. Therefore, we can use the formula for the time of flight of a projectile:

[tex]t = 2V_1 sin(\theta) / g[/tex]

where g is the acceleration due to gravity.

Since the projectile lands at the same level as it was launched, the vertical displacement of the projectile is zero. We can use the formula for the vertical displacement of a projectile:

[tex]y = V_1 sin(\theta) t - g t^2/2[/tex]

Setting y equal to zero and solving for sin(θ), we get:

[tex]sin(\theta) = 0.5  V_2^2 / (V_1^2 sin^2(\theta))[/tex]

Substituting [tex]V_2cos(60) for V_1 cos(\theta)[/tex] and simplifying, we get:

[tex]sin(\theta) = \sqrt{{3) / 2}[/tex]

Taking the inverse sine of both sides, we get:

θ = 60 degrees

Therefore, the launch angle of the projectile is 60 degrees.

Learn more about projectile here:

https://brainly.com/question/29545516

#SPJ11

Two identical resistors are connected first in series and then in parallel hich combination has the larger net resistance A. the pair in series B. the pair in parallel C. The two combinations have the same resistance,

Answers

The series connection (2R) has a larger net resistance than the parallel connection (R/2).The correct answer is option A.

When two identical resistors are connected first in series and then in parallel, the combination with the larger net resistance is A. the pair in series.

1. In a series connection, the total resistance (Rt) is the sum of the individual resistances (R1 and R2): Rt = R1 + R2. Since both resistors are identical, the total resistance in series would be 2R (where R is the resistance of one resistor).

2. In a parallel connection, the total resistance is found using the formula 1/Rt = 1/R1 + 1/R2. Since both resistors are identical, this simplifies to 1/Rt = 2/R, or Rt = R/2.

Comparing the two total resistances, you can see that the series connection (2R) has a larger net resistance than the parallel connection (R/2).

To learn more about resistance https://brainly.com/question/30882761

#SPJ11

Do amplitude and wave length of a wave affect the speed of that wave? Assume non-dispersive medium.

Answers

Yes, the amplitude and wavelength of a wave do affect its speed in a non-dispersive medium.

The square root of the linear density of the medium determines the wave's speed, which is inversely proportional to it.

A wave that has a longer wavelength and a greater amplitude will therefore move more quickly than one that has a shorter wavelength and a lower amplitude.

In general, a wave's speed is inversely proportional to the square root of its amplitude times its wavelength. As a result, faster waves are produced when amplitudes are higher and when wavelengths are longer.

The characteristics of the medium also have an impact on a wave's speed. Sound waves, for instance, move through water at a rate of four times that of air. Consequently, a wave's speed is a combination of its amplitude, wavelength, and medium.

To learn more about wavelength visit:

https://brainly.com/question/10750459

#SPJ4

Masses are distributed in the xy-plane as follows: 10 kg at (2.0, 6.0) m, 4.0 kg at (2.0, 0.0) m, and 6.0 kg at (0.0, 3.0) m. Where would a 20-kg mass need to be positioned so that the center of gravity of the resulting four mass system would be at the origin?

Answers

The 20-kg mass needs to be positioned at approximately (-3.9, -0.1) m to balance the four-mass system at the origin, which is the center of gravity of the four-mass system.

To find the center of gravity of the four-mass system, we need to find the coordinates of the point where the resultant gravitational force on the system would act. We can do this by finding the moments of the masses about the x and y axes and then dividing them by the total mass of the system.

Let's denote the coordinates of the unknown mass by (x, y).

The moment of the 10 kg mass about the x-axis is:

Mx1 = 10 kg × 6.0 m = 60 kg·m

The moment of the 4.0 kg mass about the x-axis is:

Mx2 = 4.0 kg × 0.0 m = 0 kg·m

The moment of the 6.0 kg mass about the x-axis is:

Mx3 = 6.0 kg × 3.0 m = 18 kg·m

The moment of the unknown mass about the x-axis is:

Mx4 = 20 kg × x

The total moment about the x-axis is:

Mx = Mx1 + Mx2 + Mx3 + Mx4 = 60 kg·m + 0 kg·m + 18 kg·m + 20 kg × x

Similarly, the moment of the 10 kg mass about the y-axis is:

My1 = 10 kg × 2.0 m = 20 kg·m

The moment of the 4.0 kg mass about the y-axis is:

My2 = 4.0 kg × 0.0 m = 0 kg·m

The moment of the 6.0 kg mass about the y-axis is:

My3 = 6.0 kg × (-3.0 m) = -18 kg·m

The moment of the unknown mass about the y-axis is:

My4 = 20 kg × y

The total moment about the y-axis is:

My = My1 + My2 + My3 + My4 = 20 + 0  - 18  + 20 kg × y

To find the coordinates of the center of gravity, we set the total moments about both axes to zero:

Mx = 60  + 18  + 20 kg × x = 0

My = 20 kg·m - 18 + 20 kg × y = 0

Solving for x and y, we get:

x = -(60 + 18 )/(20 kg) = -3.9 m

y = (18 - 20 )/(20 kg) = -0.1 m

Therefore, the 20-kg mass needs to be positioned at approximately (-3.9, -0.1) m to balance the four-mass system at the origin.

To learn more about center of gravity, refer to:

https://brainly.com/question/24553858

#SPJ4

The 20-kg mass needs to be positioned at (-1.5, 4.5) m to have the center of gravity at the origin.

Where should a 20-kg mass be placed to achieve a center of gravity at the origin?

The center of gravity of a system is the point at which the entire mass of the system can be considered to be concentrated. To determine the position of the 20-kg mass, we need to calculate the coordinates of the center of gravity of the given masses and then find the position that would balance the system at the origin.

First, we calculate the x-coordinate of the center of gravity (CG):

CG_x = (m1 * x1 + m2 * x2 + m3 * x3 + m4 * x4) / (m1 + m2 + m3 + m4)

Using the given masses and their respective x-coordinates:

CG_x = (10 kg * 2.0 m + 4.0 kg * 2.0 m + 6.0 kg * 0.0 m + 20 kg * x4) / (10 kg + 4.0 kg + 6.0 kg + 20 kg)

CG_x = (20 kg + 8.0 kg) / 40 kg = 28.0 kgm / 40 kg = 0.7 m

Next, we calculate the y-coordinate of the center of gravity (CG):

CG_y = (m1 * y1 + m2 * y2 + m3 * y3 + m4 * y4) / (m1 + m2 + m3 + m4)

Using the given masses and their respective y-coordinates:

CG_y = (10 kg * 6.0 m + 4.0 kg * 0.0 m + 6.0 kg * 3.0 m + 20 kg * y4) / (10 kg + 4.0 kg + 6.0 kg + 20 kg)

CG_y = (60.0 kgm + 18.0 kgm) / 40 kg = 78.0 kgm / 40 kg = 1.95 m

Therefore, to have the center of gravity at the origin (0, 0), the 20-kg mass should be positioned at (-1.5, 4.5) m.

Learn more about Masses

brainly.com/question/11954533

#SPJ11

Q 8.23 You have a heavy piece of equipment from a 1. mm diameter wire. Your supervisor asks what the length of the wire will be doubled without changing how far the wire stretches. What diameter must the new wire have?A 1.0 mmB 1.4 mmC 2.0 mmD 4.0 mm

Answers

The diameter must the new wire have is (B) 1.4 mm.

To solve this problem, we can use the formula for stress (force per unit area) and strain (change in length per original length):

stress = force / area

strain = change in length / original length

Assuming the wire is under tensile stress (i.e., being stretched), we can assume that stress is constant before and after the doubling of the length. We can also assume that the material of the wire is the same before and after the doubling, so the stress-strain relationship is linear (i.e., Hooke's law applies).

Let L be the original length of the wire, and let d be the original diameter. When the length is doubled, the new length is 2L. We want to find the new diameter, d'. Since the wire still stretches the same amount, the strain is the same before and after the doubling. Thus, we have:

strain = change in length / original length = (2L - L) / L = 1

Using Hooke's law, we can relate stress to strain and the material's Young's modulus E:

stress = E [tex]\times[/tex] strain

Assuming E is constant before and after the doubling, we have:

stress = E [tex]\times[/tex] strain = constant

Substituting in the formula for stress, we get:

force / area = constant

Since the force is proportional to the cross-sectional area of the wire, we have:

force / area = constant = (original force) / (original area)

Thus, the force on the wire is the same before and after the doubling of the length.

Now we can use the formula for the cross-sectional area of a wire:

area = π [tex]\times[/tex] (d/2[tex])^2[/tex]

Assuming the wire is made of the same material before and after the doubling, and the force is the same, we can equate the areas before and after the doubling:

π [tex]\times[/tex] (d/2[tex])^2[/tex] = π [tex]\times[/tex] (d'/2[tex])^2[/tex]

Solving for d', we get:

d' = d [tex]\times[/tex] √2

Substituting in the values given in the problem, we get:

d' = 1.0 mm[tex]\times[/tex] √2 ≈ 1.4 mm

Therefore, the answer is (B) 1.4 mm.

To learn more about Hooke's law visit: https://brainly.com/question/29126957

#SPJ11

The fraction of energy carried by the reflected sound wave can be large if the surface is

Answers

The fraction of energy carried by the reflected sound wave can be large if the surface is smooth and hard. This is because a smooth and hard surface does not absorb much of the sound energy that is directed towards it, but instead reflects most of it back into the environment.

In contrast, a rough or soft surface will absorb more of the sound energy and scatter it in different directions, resulting in a smaller fraction of energy being reflected back as a sound wave.

The ability of a surface to reflect sound energy is characterized by its acoustic reflectivity, which is a measure of the fraction of sound energy that is reflected by the surface.

Smooth and hard surfaces, such as concrete, metal, and glass, have high acoustic reflectivity and can reflect up to 95% of the sound energy that is directed toward them.

In contrast, soft and absorbent surfaces, such as carpets, curtains, and foam panels, have low acoustic reflectivity and reflect only a small fraction of the sound energy.

Understanding the acoustic reflectivity of different surfaces is important in many applications, such as room acoustics, noise control, and audio engineering.

By choosing the right surfaces and materials, it is possible to control the amount of sound reflection and absorption in a given environment, leading to better sound quality, speech intelligibility, and overall acoustic comfort.

For more such answers on sound energy

https://brainly.com/question/14194291

#SPJ11

TRUE/FALSE. The force becomes larger the closer the charges are together

Answers

The statement the force becomes larger the closer the charges are together is True in accordance with Coulomb's law.

Coulomb's law can be described as the force between two charges.

Coulomb's law can be expressed as

F = [tex]\frac{q_1q_2}{4 \pi \epsilon r^2}[/tex]

where [tex]q_1[/tex] is the magnitude of one charge

[tex]q_2[/tex] is the magnitude of the other charge

4πε is the proportionality constant

r is the distance between two charges

Thus, from above we can conclude that the force is inversely proportional to the square of separation of the charges. And we can conclude, the force becomes larger the closer the charges are together as the distance between them is reduced.

Learn more about Coulomb's law:

https://brainly.com/question/26892767

#SPJ4

What equation describes the relationship between electron kinetic energy (KE), the frequency of the incident radiation (ν), and the work function of the metal (Φ)? (GOTTA KNOW THIS!!)
A. KE = ν - Φ
B. KE = hν/Φ
C. KE = hν - Φ
D. KE = νΦ

Answers

The correct equation that describes the relationship between electron kinetic energy (KE), the frequency of the incident radiation (ν), and the work function of the metal (Φ) is:

KE = hν - Φ

This equation is known as the photoelectric effect equation and explains the energy transfer between photons and electrons in a metal. When a photon with a frequency ν interacts with a metal, it can transfer its energy to an electron in the metal, causing the electron to be emitted with a certain kinetic energy. The amount of kinetic energy that the electron gains is equal to the energy of the photon minus the energy required to remove the electron from the metal (known as the work function, Φ).

This equation is known as the Einstein photoelectric equation, and it explains how photons of light can eject electrons from a metal surface. When a photon of light with a frequency ν strikes a metal surface, it can transfer its energy to an electron, giving it enough energy to overcome the work function Φ and escape from the surface.

The amount of kinetic energy the electron gains in the process is given by the difference between the photon's energy and the metal's work function. This difference is hν - Φ, which is the equation for the kinetic energy of the ejected electron.

This equation is important in the field of photochemistry, where it is used to calculate the energy of electrons ejected from a metal surface by incident light, and in the development of photoelectric cells, which use the photoelectric effect to generate electricity.

To learn more about kinetic energy visit: https://brainly.com/question/26472013

#SPJ11

a very loud train whistle has an acoustic power output of 100 watts. if the sound energy spreads out spherically, what is the intensity level in dB at a distance of 100 meters from the train ? (a) 78.3dB (b) 81.6dB (c)89.0dB (d) 95.0dB (e) 98.0dB

Answers

The intensity level in dB at a distance of 100 meters from the train whistle is (b) 81.6 dB.

The intensity of a sound wave decreases as the distance from the source increases. This is because the same amount of sound energy is spread out over a larger area as the sound wave travels away from the source.

The intensity of a sound wave is given by:

I = P/4πr^2

where I is the intensity, P is the power, and r is the distance from the source.

We are given that the power output of the train whistle is 100 watts, and we need to find the intensity level in dB at a distance of 100 meters from the train. Using the equation above, we can calculate the intensity at this distance:

[tex]I = 100/(4π(100)^2) = 7.96 × 10^-6 W/m^2[/tex]

The intensity level in dB is given by:

[tex]β = 10 log(I/I_0)[/tex]

where I_0 is the reference intensity, which is [tex]1.00 × 10^-12 W/m^2.[/tex]

Substituting the values, we get:

[tex]β = 10 log(7.96 × 10^-6/1.00 × 10^-12) = 81.6 dB[/tex]

for such more questions on sound energy

https://brainly.com/question/29415138

#SPJ11

during a figure skating routine jackie and peter skate apart with an angle of 60o between them. jackie skates for 5 meters and peter skates for 7 meters. how far apart are they?

Answers

Jackie and Peter are approximately sqrt(39) meters  distance apart, or about 6.245 meters apart.

To solve this problem, we can use the Law of Cosines, which relates the sides and angles of a triangle. In this case, we have a triangle formed by Jackie, Peter, and the distance between them, and we know the lengths of two sides and the angle between them.

The Law of Cosines states that for a triangle with sides a, b, and c, and angle C opposite side c, we have:

c^2 = a^2 + b^2 - 2ab cos(C)

In this problem, we want to find the length of side c, which is the distance between Jackie and Peter. We know that Jackie skates for 5 meters and Peter skates for 7 meters, so we can set a = 5 and b = 7. We also know that the angle between them is 60 degrees, so we can set C = 60 degrees. Substituting these values into the Law of Cosines, we get:

c^2 = 5^2 + 7^2 - 2(5)(7) cos(60)

c^2 = 25 + 49 - 35

c^2 = 39

c = sqrt(39)

To learn more about Distance :

https://brainly.com/question/26550516

#SPJ11

if a train is accelerating at a rate of 3.0 km/hr/s and its initial velocity is 20 km/hr, what is it velocity after 30 seconds?

Answers

The velocity of the train after 30 seconds is calculated as  30.5 m/s.

What is meant by velocity?

Velocity is vector quantity that explains the rate at which any object changes the position.

Initial velocity = 20 km/hr = (20 km/hr) x (1000 m/km) / (3600 s/hr) = 5.56 m/s

Acceleration = 3.0 km/hr/s = (3.0 km/hr/s) x (1000 m/km) / (3600 s/hr) = 0.83 m/s²

As v = u + at

v is final velocity, u is initial velocity, a is acceleration , t is time

v = 5.56 m/s + (0.83 m/s²) x 30 s

v = 5.56 m/s + 24.9 m/s

v = 30.5 m/s

Therefore, the velocity of the train after 30 seconds is 30.5 m/s.

To know more about velocity, refer

https://brainly.com/question/24445340

#SPJ1

Two thin-walled concentric conducting spheres of radii 5.0 cm and 10 cm have a potential difference of 100 V between them. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
(a) What is the capacitance of this combination?
(b) What is the charge carried by each sphere?

Answers

The capacitance of the combination is 11.1 x 10⁻¹⁰F.

Let the charge of inner sphere be q₁ and that of outer sphere be q₂.

The potential difference between the two spheres is given as,

V₁ - V₂ = (1/4[tex]\pi[/tex]ε₀)q₁ [(1/r₁) - (1/r₂)]

100 = 9 x 10⁹q₁ x [(1/5) - (1/10)]

q₁ = 11.1 x 10⁻⁸C

The charge of outer sphere,

q₂ = (-r₁/r₂)q₁

q₂ = -5.55 x 10⁻⁸C

(a) Capacitance of the combination, C = 4[tex]\pi[/tex]ε₀r₁r₂/(r₁ - r₂)

C = 11.1 x 10⁻¹¹ x 50/-5

C = 11.1 x 10⁻¹⁰F

To learn more about capacitance, click:

https://brainly.com/question/28445252

#SPJ4

The long-range electrostatic repulsion between protons limits the size of stable nuclei. Why are there no large nuclei consisting only of neutrons, which do not repel each other?A. The nuclear force acting on protons is stronger than that acting on neutrons, so neutrons would not be bound.B. The Pauli exclusion principle would require the neutrons to occupy very high energy states, yielding the nucleus unstable.C. Nuclei are in the center of atoms, and the atomic electrons would not be bound if there were no protons in the nucleus.

Answers

B. The Pauli exclusion principle would require the neutrons to occupy very high energy states, yielding the nucleus unstable.

While it's true that neutrons do not repel each other due to electrostatic repulsion, they still experience the nuclear force, which is attractive. However, adding too many neutrons to a nucleus would violate the Pauli exclusion principle, which states that no two fermions (particles with half-integer spin, like protons and neutrons) can occupy the same quantum state simultaneously. This means that as more and more neutrons are added to a nucleus, they would have to occupy higher and higher energy states, making the nucleus increasingly unstable. Therefore, large nuclei consisting only of neutrons are not stable.
The long-range electrostatic repulsion between protons limits the size of stable nuclei. There are no large nuclei consisting only of neutrons because the Pauli exclusion principle would require the neutrons to occupy very high energy states, yielding the nucleus unstable.

Visit here to learn more about Pauli exclusion principle:

brainly.com/question/30563805

#SPJ11

How does change in momentum seem to be related to the maximum force applied to the ball?

Answers

The change in momentum of an object is directly proportional to the force applied to it, according to Newton's second law of motion. The greater the force applied to an object, the greater the change in its momentum.

When a ball is struck with a maximum force, the change in its momentum is also maximum, resulting in greater acceleration.

This acceleration is directly proportional to the force applied and inversely proportional to the mass of the ball, as stated by Newton's second law.

Thus, when a ball is struck with a maximum force, it experiences a greater change in momentum, resulting in greater acceleration.

This acceleration causes the ball to travel farther and faster than when struck with a lower force.

Therefore, the maximum force applied to a ball is directly related to the change in its momentum and ultimately affects its speed, distance, and trajectory.

For more such answers on the momentum

https://brainly.com/question/7538238

#SPJ11

For a given mass at the end of a vertical ideal spring, if the spring constant is doubled, its period is multiplied by a factor of:

Answers

The spring constant is doubled, the period of the mass-spring system is multiplied by a factor of approximately 0.707. This means that the frequency of oscillation is increased by a factor of approximately 1.414 (the reciprocal of 0.707), which corresponds to an increase in the number of oscillations per unit time.

The period of a mass-spring system is given by the equation:

T = 2π√(m/k)

where T is the period, m is the mass attached to the spring, and k is the spring constant.

If the spring constant is doubled, then k is replaced by 2k in the above equation, and we get:

T = 2π√(m/2k)

We can simplify this expression by factoring out a 2 from the square root, as follows:

T = 2π√(m/(2×2)k)

T = 2π(1/2)√(m/k)

T = π√(m/k)

So, we see that the period of the system is proportional to the square root of the mass and inversely proportional to the square root of the spring constant. If the spring constant is doubled, the period of the mass-spring system is multiplied by a factor of √(1/2), which is approximately 0.707.

For similar question on frequency of oscillation

https://brainly.com/question/30694091

#SPJ11

I was sitting at a light in my car this morning on the way to school. The light turned green and I accelerated down the street. What was providing the force to accelerate me?
Entry field with correct answer
The engine
The tires
The gasoline
The road

Answers

The engine of the car was providing the force to accelerate

When you were sitting at the red light, your car was stationary, meaning there was no net force acting on it.

However, when the light turned green and you accelerated down the street, a net force was acting on your car. This force is what caused your car to accelerate, and it was being provided by the engine of your car.The engine is the part of the car that converts fuel into energy that can be used to move the car. The energy is transferred from the engine to the wheels of the car via the drivetrain, which includes the transmission, driveshaft, and axles. As the engine produces power, it rotates the wheels of the car, which propels the car forward.The tires of the car do play a role in the acceleration of the car, but they are not the source of the force that is accelerating the car. The tires provide the necessary friction between the car and the road, allowing the car to maintain traction and move forward. The gasoline is also not the source of the force that is accelerating the car, but rather it is the fuel that powers the engine.

for such more questions on net force acting

https://brainly.com/question/14361879

#SPJ11

Two charged particles exert an electrostatic force of 24 N on each other. What will the magnitude of the electrostatic force be if the distance between the two charges is reduced to one-third of the original distance?

Answers

The electrostatic force between two charged particles is given by Coulomb's Law, which states that F = kq1q2/d^2, where F is the force, k is the Coulomb constant, q1 and q2 are the charges of the particles, and d is the distance between them.

In this case, we know that the electrostatic force is 24 N when the particles are at their original distance. Let's assume that the charges are equal in magnitude, so q1 = q2 = q.

Then, we can rearrange Coulomb's Law to solve for q:


q = sqrt(Fd^2/k)


Plugging in the given values, we get:


q = sqrt(24d^2/k)


Now, if the distance between the charges is reduced to one-third of the original distance, the new distance is d/3. Using the same equation as before, we can find the new force:



F' = kq^2/(d/3)^2



Substituting for q and simplifying, we get:


F' = 27F



Therefore, the magnitude of the electrostatic force will be 27 times greater when the distance between the charges is reduced to one-third of the original distance.

To know more about electrostatic force here

https://brainly.com/question/9774180

#SPJ11

An object has an emissivity of 0.95 and radiates heat at a rate of 100W when it is at an absolute temperature T. The temperature doubles to 2T, what will be the new rate of radiation?

Answers

To answer your question, we will use the Stefan-Boltzmann Law, which relates the power of radiation (P) to the emissivity (ε), surface area (A), Stefan-Boltzmann constant (σ), and absolute temperature (T) of an object. The formula is:

P = ε * A * σ * T^4
Given the emissivity (ε) of 0.95 and the initial radiation rate of 100W, we can calculate the rate when the temperature doubles to 2T.
When the temperature doubles, the equation becomes:

P_new = ε * A * σ * (2T)^4
Since (2T)^4 = 16 * T^4, the new equation is:
P_new = ε * A * σ * 16 * T^4
From the initial condition (P = 100W), we know that:

100 = 0.95 * A * σ * T^4
Now we can express A * σ * T^4 as a ratio:
A * σ * T^4 = 100 / 0.95 ≈ 105.26
Substitute this back into the equation for P_new:
P_new = 0.95 * (105.26) * 16
P_new ≈ 1608.16 W
So, when the temperature doubles to 2T, the new rate of radiation will be approximately 1608.16 W.

Learn more about radiation here

https://brainly.com/question/13934832

#SPJ11

The gravitational forces of the Earth and the Moon are attractive, so there must be a point on a line joining their centers where the gravitational forces on an object cancel.How far is this distance from the Earth's center in km?

Answers

The distance from the Earth's center to the Lagrange point L1 is approximately 326,225 km.

To determine the point where the gravitational forces of the Earth and the Moon cancel each other, you can use the concept of the Lagrange point, specifically L1. At this point, the gravitational forces from both bodies are equal and opposite, causing them to effectively cancel each other out.
To find the distance from the Earth's center, you can use the following formula:
[tex]d = (R * (Mm / (Mm + Me))^{1/3})[/tex]
where d is the distance from the Earth's center, R is the distance between the centers of the Earth and the Moon (384,400 km), Mm is the mass of the Moon (7.342 × [tex]10^{22}[/tex] kg), and Me is the mass of the Earth (5.972 × [tex]10^{24}[/tex] kg).
Using this formula, the distance d from the Earth's center to the L1 point where the gravitational forces cancel is approximately 326,284 km.

Learn more about  gravitational forces here:

https://brainly.com/question/29190673

#SPJ11

if two people talk simultaneously and each creates an intensity level of 65 db at a certain point, does the total intensity level at this point equal 130 db?

Answers

No, the total intensity level at this point does not equal 130 db.

When two people talk simultaneously and each creates an intensity level of 65 db, the total intensity level at the point where the sounds meet will be 68 db.

This is because sound intensity levels are measured logarithmically and the addition of two sounds of equal intensity results in a 3 db increase, not a doubling of the intensity level.

To know more about total intensity level here

https://brainly.com/question/31077114

#SPJ11

If two 1000 Hz tones reach a listener 25 ms apart, the listener will perceive

Answers

If two 1000 Hz tones reach a listener 25 ms apart, the listener will perceive a beating or pulsating sound. This phenomenon is called the "beat" frequency.

The beat frequency is the difference between the frequencies of the two tones. In this case, the difference is 0 Hz because both tones have the same frequency of 1000 Hz.

However, the listener will still perceive a beating effect because the two tones are slightly out of phase due to their arrival time difference. This beating effect creates a perceived change in the loudness or intensity of the sound wave over time, which is known as amplitude modulation.

The beat frequency can be calculated as the reciprocal of the time difference between the two tones, which in this case is 1/0.025 = 40 Hz. However, since the difference in frequency between the two tones is zero, there will be no beat frequency, only a perceived change in amplitude over time.

Learn more about tone here:

https://brainly.com/question/819739

#SPJ11

when was the last time that all four of the gas giant planets were aligned on the same side of the sun?

Answers

The last time all four gas giant planets – Jupiter, Saturn, Uranus, and Neptune – were aligned on the same side of the Sun was in 1981.

Planetary alignment refers to the scenario when planets in our solar system form a straight line in relation to the Sun. This phenomenon is relatively rare due to the varying orbital periods of these planets.

Jupiter takes about 11.9 Earth years to complete one orbit around the Sun, while Saturn's orbit takes approximately 29.5 Earth years. Uranus and Neptune have even longer orbital periods, taking around 84 and 165 Earth years, respectively. These differences in orbital periods mean that true alignment of all four gas giants is not a frequent occurrence.

It is important to note that such alignments do not have any significant effects on our daily lives or Earth's environment. Although some people may associate planetary alignments with disasters or astrological predictions, these claims lack scientific basis.

In summary, the last time all four gas giant planets were aligned on the same side of the Sun was in 1981. This event is relatively rare due to the planets' differing orbital periods, and it does not have any notable impact on Earth or its inhabitants.

For more such questions on Planetary alignment.

https://brainly.com/question/2193576#

#SPJ11

Now you transfer heat energy to the gas in the cylinder, but hold the piston so that it can not move
1.) Is work done on or by the gas?
2.) The internal energy of the gas increases, decreases, or stays constant.
3.) The temperature of the gas increases, decreases, or stays constant

Answers


When you transfer heat energy to the gas in the cylinder while holding the piston so that it cannot move:

1) No work is done on or by the gas. This is because work is defined as the force applied to an object over a distance, and since the piston does not move, there is no distance over which the force can act.

2) The internal energy of the gas increases. This is because the heat energy transferred to the gas increases its internal energy, as it cannot do work on the piston.

3) The temperature of the gas increases. The increase in internal energy directly correlates with an increase in temperature, as the added heat energy results in the gas particles having more kinetic energy, which in turn increases the temperature.
To know more about kinetic energy:

https://brainly.com/question/26472013

#SPJ11

In which environments would you use an air purifying respirator?

Answers

Air purifying respirators are used in a range of environments, including industrial workplaces, healthcare facilities, confined spaces, emergency response situations, and domestic settings, to protect individuals from harmful airborne contaminants and ensure safe air quality.

An air purifying respirator (APR) is an essential piece of personal protective equipment that filters airborne contaminants to ensure clean and safe air for the wearer. APRs are commonly used in various environments where air quality is compromised or hazardous substances are present.

One such environment is industrial workplaces, where exposure to dust, fumes, and chemicals is common. Workers in manufacturing plants, chemical processing facilities, and construction sites may require APRs to protect against respiratory hazards. APRs can also be used in healthcare settings to protect healthcare workers from airborne pathogens, such as viruses and bacteria, especially during a pandemic.

Another environment that may require APRs is confined spaces, such as tunnels, tanks, and sewers. These areas often have limited ventilation and may contain hazardous gases, vapors, or particulates. Workers in these spaces should wear APRs to prevent inhalation of these harmful substances.

Emergency responders and law enforcement personnel may also utilize APRs during disaster relief efforts or hazardous materials incidents. These situations often involve unpredictable and dangerous air quality, making APRs a crucial safeguard.

Lastly, APRs can be beneficial in domestic settings, particularly for individuals with respiratory conditions, allergies, or compromised immune systems. Using an air purifying respirator in such cases can significantly reduce exposure to allergens, pollutants, and pathogens, thereby improving overall health and well-being.

For more such questions on Air purifying respirators.

https://brainly.com/question/28871627#

#SPJ11

In an isolated system, a hot piece of copper comes in contact with a cold piece of aluminum which has a specific heat twice as high as copper. They will eventually reach the same final temperature, but which object experiences the greater loss or gain of heat in the process?

Answers

In an isolated system, a hot piece of copper comes in contact with a cold piece of aluminum. The aluminum has a specific heat twice as high as copper. The object that experiences the greater loss of heat is the hot copper, while the object that experiences the greater gain of heat is the cold aluminum.

In an isolated system, when a hot piece of copper comes in contact with a cold piece of aluminum, heat energy will transfer from the hot copper to the cold aluminum until they both reach the same final temperature. The specific heat of aluminum is twice as high as copper, which means that it requires more heat energy to raise the temperature of aluminum by 1°C than it does for copper. Therefore, the aluminum will experience a greater gain of heat energy as it absorbs the heat from the copper. Conversely, the copper will experience a greater loss of heat energy as it transfers its heat to the aluminum.

Learn more about isolated system here:

https://brainly.com/question/30079145

#SPJ11

a violinist is tuning her instrument to con- cert a (440 hz). she plays the note while listening to an electronically generated tone of exactly that frequency and hears a beat frequency of 3 hz, which increases to 4 hz when she tightens her violin string slightly. (a) what was the frequency of the note played by her violin when she heard the 3 hz beats? (b) to get her violin perfectly tuned to concert a, should she tighten or loosen her string from what it was when she heard the 3 hz beats?

Answers

(a) The frequency could have been either 437 Hz or 443 Hz.

(b) She needs to tighten her string even more.

How to find the frequency of the note played?

(a) Let the frequency of the note played by the violinist be f. The beat frequency is the difference between the frequencies of the two tones, so:

|440 Hz - f| = 3 Hz

Solving for f, we get:

f = 437 Hz or 443 Hz

So the frequency of the note played by the violinist when she heard the 3 Hz beats could have been either 437 Hz or 443 Hz.

Should she tighten or loosen her string?

(b) When the violinist tightens her string slightly, the frequency of the note increases. We know that the beat frequency increases from 3 Hz to 4 Hz, so the frequency of the note played by the violinist must increase by 1 Hz.

This means that the original frequency was 437 Hz, and the violinist needs to increase the frequency to 440 Hz to get perfectly tuned to concert A.

Therefore, she needs to tighten her string even more, which means she should turn the tuning peg to the right (clockwise when looking at the peg from the front of the instrument).

Learn more about beat frequency

brainly.com/question/14705053

#SPJ11

STT 10.5 When a spring is stretched by 5 cm, its elastic potential energy is 1 J. What will its elastic potential energy be if it is completely compressed by 10 cm?A -4 JB -2 JC 2 JD 4 J

Answers

The elastic potential energy of the spring when it is completely compressed by 10 cm is 0.40 J

We can use the equation for elastic potential energy:

U = 1/2 [tex]kx^2[/tex],

where U is the elastic potential energy stored in the spring, k is the spring constant, and x is the displacement from the equilibrium position.

Given that the elastic potential energy of the spring is 1 J when it is stretched by 5 cm. Using the equation, we get:

1 J = 1/2 k [tex](0.05 m)^2[/tex]

k = 80 N/m

We can find the new elastic potential energy stored in the spring:

U = 1/2 (80 N/m) [tex](-0.10 m)^2[/tex]

U = 0.40 J

To know more about elastic potential energy , here

brainly.com/question/12807194

#SPJ4

--The  complete Question is,  When a spring is stretched by 5 cm, its elastic potential energy is 1 J. What will its elastic potential energy be if it is completely compressed by 10 cm?-

Other Questions
Social Security provides income to retired, unemployed, and disabled workers. Benefits are based on how long a worker was employed. The comments below are from a discussion between two speakers with different perspectives on the future of Social Security.Speaker A:Social Security is now facing a real problem. Soon the system will be paying more in benefits to retirees than it is collecting from payroll taxes. If we dont fix this situation, the system will soon have nothing left. The best solution is to stop paying benefits to retirees with high incomes. Speaker B:What you propose is unfair. Workers pay into Social Security their whole working lives. After they retire, they are entitled to receive benefits based on what they have paid into the system. Even if they have high incomes, they are entitled to benefits from their own payments.Which evidence would best support the views of Speaker A?letters from workers explaining why they feel entitled to receive Social Security benefitsa graph of future payroll taxes and benefits payments, showing that Social Security will run out of money.a survey showing that many other countries provide benefits for retirees similar to those of Social Securityan opinion poll showing that most Americans oppose any tampering with Social Security what is health promotion (immunizations): school-age (6-12 yrs) I need help!I need to show my work to, What is the volume of the prism? Question 5 (5 points)The figure above shows the solution to a compound inequality. Which inequalitydoes the solution show?OA) -2B) -2OC) -2 x-5 < 6OD) -2 x + 5 < 6 The garden area is 48 000 cm. What is the area in square meters? 2. You are interested in the effect that government directed innovation activities has on patenting. After some time spent at the National Archives, you learn about a program during the Vietnam War that gave qualifying applicants the opportunity to work at the US Government Office of Research as their service during the war as opposed to being drafted for combat. Out of the qualifying candidates, the government randomly selected who would be offered to work at the office of research A carnival performer claims to be able to guess a persons weight within 4 pounds of their actual weight or the person wins a prize. If the person weighs 142 pounds, which equations can be used to find the minimum and maximum weights the performer can guess without the person winning a prize.a) |x-142|=4b) |x-4|=142c) |x+4|=142d) |x+142|=4 r10OFor each radius length of a circle that is given, mark the correct area of the circle.Use = 3.14Radius ofCircle5 cm6 cm9 cm10 cmPorfavorere helppp plis 15 points for it Use the t-distribution table to find the critical value(s) for the indicated alternative hypotheses, level of significance , and sample sizes n1 and n2. Assume that the samples are independent, normal, and random. Answer parts (a) and (b).Ha : 1 2 , = 0.10 , n1 = 14 , n2 = 13(a) Find the critical value(s) assuming that the population variances are equal.____(Type an integer or decimal rounded to three decimal places as needed. Use a comma to separate answers as needed.)(b) Find the critical value(s) assuming that the population variances are not equal.____(Type an integer or decimal rounded to three decimal places as needed. Use a comma to separate answers as needed.) Find the perimeter of the following polygon. Be sure to include the correct unit in your answer.12ft16ft9ft9ft 15ft WAD: Cervical Facet Joint Injuries & Capsular Avulsion- with the loss of joint protection, the therapist should consider a ___________ and/or _______ ______ strategy when treating the pt. 5. (16 marks) It is given that the moment generating function of a negative binomial random variable is mx(t)= (1 - p)^r /(1 - pe^t)^r where p and r are the parameters. Find the expected value and variance using the moment generating function. A nurse is caring for 10-year-old child with sickle cell anemia admitted for vaso-occlusive crisis. Which would be the most appropriate activity for the nurse to provide for the child? Some eIF proteins are essential to initiate translation and others help regulate the process. A country has only two citizens, Bill and Ted, both have $1,000 per week in income. Bill and Ted each face some risk of getting sick, in which case they will have to pay health care costs of $750. There is a 10% probability that Bill will get sick and a 30% probability that Ted will be get sick. Bill and Ted have the same utility function U = ln(C). The government is considering providing some public health insurance. In particular, they are considering two plans: the first would pay an individual who gets sick $100, and the second would pay any individual who gets sick $600. Both would be financed by collecting a tax from each individual. = 2 (a) a. Under each plan, how high would the government have to set the tax so that it would not expect to lose money on the plan? (Assume the tax is the same for both Bill and Ted.) (2 marks] (b) Assuming the government sets the tax rate you found in part (a), compute the well-being of Bill and Ted under each of the plans. How do Bill and Ted rank the three possibilities (the two policies and the status quo)? [2 marks] (c) Explain the patterns you see in part (c) in terms of redistribution and risk aversion. (At most 3 sentences.) [2 marks] (d) Which plan is best if the society has i. a utilitarian social welfare function? [1 mark] ii. a Rawlsian social welfare function? [1 mark] UNIX System V implements a mechanism called STREAMS. What is this mechanism? posture & neck pain are highly correlated- (True/False) Calculate the mass of Kr in a 9.95 L cylinder at 91.2 C and 4.50 bar hannah stood up to her supervisor who tried to convince her discriminate against another employee who has a mobility impairment. throughout the conversation, she firmly and confidently addressed her concerns about his proposal without retreating. which term best describes the attribute she displayed? Lead time for one of your fastest-moving products is 22 days. Demand during this period averages 105 units per day.