Answer:
The probability that X and Y are both positive and that their sum is less or equal to 1 0.64.
Step-by-step explanation:
It is provided that the random variables X and Y follows a standard normal distribution.
That is, [tex]X,Y\sim N(0, 1)[/tex]
It is also provided that the variables X and Y are statistically independent of each other.
Compute the probability that X and Y are both positive and that their sum is less or equal to 1 as follows:
The mean and standard deviation of X + Y are:
[tex]E(X+Y)=E(X)+E(Y)=0+0=0\\\\SD(X+Y)=\sqrt{V(X)+V(Y)+2Cov(X,Y)}=\sqrt{1+1+0}=\sqrt{2}[/tex]
The probability is:
[tex]P(X+Y\leq 1)=P(X+Y<1-0.50)\ [\text{Apply continuity correction}]\\[/tex]
[tex]=P(X+Y<0.50)\\\\=P(\frac{(X+Y)-E(X+Y)}{SD(X+Y)}<\frac{0.50-0}{\sqrt{2}})\\\\=P(Z<0.354)\\\\=0.63683\\\\\approx 0.64[/tex]
*Use the z-table.
Thus, the probability that X and Y are both positive and that their sum is less or equal to 1 0.64.
A researcher conducts two studies. Study 1 uses a one-way between-subjects ANOVA. and Study 2 uses a within-subjects ANOVA. If the number of groups and participants per group are the same in each study, then in which study was the total number of participants larger? Explain.
Answer:
One way between subjects ANOVA
Step-by-step explanation:
In the between groups ANOVA, different people tests each conditions corresponding to the variables in the study while for the within groups ANOVA, the same person tests for all conditions corresponding to the variables. This way the total number of participants will be larger in the between subjects ANOVA group.
y - 15=x Solve for Y
Answer:
y = x+15
Step-by-step explanation:
y - 15=x
Add 15 to each side
y - 15+15=x+15
y = x+15
Answer:
[tex]y=x+15[/tex]
Step-by-step explanation:
[tex]y - 15=x[/tex]
Add [tex]15[/tex] on both sides of the equation.
[tex]y - 15+15=x+15[/tex]
The [tex]y[/tex] should be isolated on one side of the equation.
[tex]y=x+15[/tex]
Solve x-6y = 11 for y
Answer:
2
Step-by-step explanation:
Answer: y = 11 - x / -6
Step-by-step explanation:
X - 6y = 11
Since we are solving for y, we need to isolate the variable.
Move x to the other side of the equation.
- 6y = 11 - x
Now divide bith sides by -6 to cancel out -6y and get the variable y
-6y/ -6 = 11 - x/ -6
y = 11 - x / -6
Im not sure if it was solving for y, or if it was solve for x if y = 11
Simplify 1 ∙ x -x/1 .
Answer:
0
Step-by-step explanation:
1x=x
-x/1=-x
x-x=0
Answer:
Brainleist !
Step-by-step explanation:
x - x /1
x - x = nothing or 0
What is the general form of this equation:
The line passes through the point (-2,4) with a slope -2/3
Answer: y= -2/3 + 8/3
Step-by-step explanation:
-2/3 is the slope so you just need the y-intercept to write the equation in general form or slope intercept form
4= -2/3(-2) +b
4 = 4/3 + b
-4/3 -4/3
b= 8/3
general form is y= -2/3 + 8/3
Find tan x if sec x = sort 37/6 and sin x <0
Answer:
tan(x) = -1/6
Step-by-step explanation:
We can use the relation between tan and sec:
[tex]\displaystyle\tan{x}=\pm\sqrt{\sec^2{x}-1}\\\\\tan{x}=-\sqrt{\left(\dfrac{\sqrt{37}}{6}\right)^2-1}\quad\text{negative because sine is negative}\\\\=-\sqrt{\dfrac{37-36}{36}}=\boxed{-\dfrac{1}{6}}[/tex]
The tangent of x is -1/6.
1 adult and 6 children went swimming. How much did they pay together
Answer:
[tex]x+6y[/tex] where x is the cost of one adult ticket and y is the cost of one child ticket.
Step-by-step explanation:
This is an incomplete question since we would need to know the cost of the adult ticket and the cost of the children ticket.
However, let's say that the price is x dollars per adult and y dollars per child.
Now, we need to find out how much one adult and 6 children paid.
Thus, we would have to multiply the cost per adult by the number of adults and the cost per child per number of children and then sum up these two results.
Writing this in an algebraic way we would have:
[tex]1(x)+6y\\x+6y[/tex]
Thus, 1 adult and 6 children would have paid x + 6y dollars where x is the cost of the adult ticket and y is the cost of the children ticket.
(For example, if an adult ticket is 6 dollars and a child ticket is 4 dollars we would have that they paid 6 + 6(4) = 6 + 24 = 30 dollars)
Your friend believes that he has found a route to work that would make your commute faster than what it currently is under similar conditions. Suppose that data were collected for a random set of 7 days, where each difference is calculated by subtracting the time taken on the current route from the time taken on the new route. Assume that the populations are normally distributed. Your friend uses the alternative hypothesis Ha:μd<0. Suppose the test statistic t is computed as t≈−3.201, which has 6 degrees of freedom. What range contains the p-value?
Answer:
The range of p-values
0.01 < p < 0.025
Step-by-step explanation:
Explanation:-
Given random sample size 'n' = 7
Assume that the populations are normally distributed
Null Hypothesis :H₀:μd=0.
Alternative Hypothesis:H₁:μd<0.
Degrees of freedom
ν = n-1 =7-1 =6
given the test statistic t = - 3.201
we will use single tailed test in t-distribution table
The test statistic t= 3.201 is lies between the critical values is 0.01 and 0.025
The range of p-values
0.01 < p < 0.025 (check t- distribution table single tailed test)
Final answer:-
The range of p-values
0.01 < p < 0.025
Examine the details of the chi‑square test and conclude in context. There is good evidence (cite P-value) of an association between treatment and outcome in the population of women just treated for a UTI. There were substantially fewer than expected women getting a UTI recurrence in the study among those drinking cranberry juice daily. The conditions for inference are not met. There is good evidence (cite P-value) of an association between treatment and outcome in the population of women just treated for a UTI. There were substantially fewer than expected women getting a UTI recurrence among those abstaining from both drinks. There is good evidence (cite P-value) of an association between treatment and outcome in the population of women just treated for a UTI. There were substantially fewer than expected women getting a UTI recurrence among those drinking Lactobacillus drink. There is good evidence (cite P-value) that, in the population of women just treated for a UTI, women drinking cranberry juice daily have fewer UTI recurrences, on average. Question Source: Baldi 4e - The Practice Of Statistics
Answer:
Step-by-step explanation:
We will examine and outline the details of this chi-square test and then conclude in context.
(A) A population of women have just been treated for a urinary tract infection.
(B) Since the chi-square test is done for categorical variables, we will pick out the variable involved here.
That variable is: "UTI Recurrence"
Hence, we are looking at the recurrence of a urinary tract infection, among samples of the population of women who have recently been treated of it.
(C) There are three samples from this population and they are distinguished thus:
SAMPLE 1: Those drinking cranberry juice daily
SAMPLE 2: Those taking lactobacillus drink
SAMPLE 3: Those abstaining from both drinks (the placebo sample)
(D) The result of the test gave good evidence that SAMPLE 1 has the lowest value of the categorical variable involved; as compared to the values from SAMPLE 2 and SAMPLE 3.
In other words, on the average (average here is equal to mode or frequency of occurrence of the variable), the lowest number of UTI recurrences stems from Sample 1, as compared to the numbers of UTI recurrences in the other two samples
if a-2= (2^2/3+2^1/3) find a^3-6a^2+12a-14
Answer:
Step-by-step explanation:
7. 1, for r = 0 - 1, for r = 1 Hence, determine alo. Using characteristic root ... find the solution of the recurrence relation y, + 9 y, 2 = 6y, 1, subjected to the ... Solve a, -5a, 1 + 6a, 2 = 0 , given initial conditions ao = 2 and a1 = 5. ... Solve the recurrence relation a, – 7a, 1 + 16a, 2 – 12a, 3 = 0 for n > 3 with ... 2"; 3. a = (2)” – n.
Answer:
2
Step-by-step explanation:
I solved in the picture
Hope this helps ^-^
(a) There are $n$ chairs in a row. Find the number of ways of choosing $k$ of these chairs, so that no two chosen chairs are adjacent.
(b) There are 10 chairs in a circle, labelled from 1 to 10. Find the number of ways of choosing 3 of these chairs, so that no two chosen chairs are adjacent.
(c) There are $n$ chairs in a circle, labelled from 1 to $n.$ Find the number of ways of choosing $k$ of these chairs, so that no two chosen chairs are adjacent.
Answer:
(A) P (n,k) = n!/(n-k)! divided by 2
(B) C (n,3) = n!/(12)(n-3)!
(C) C (n,k) = n!/(n-k)!(k!)
Step-by-step explanation:
Permutation deals with order or arrangement or position of objects. Where this does not matter, we use the Combination formula.
We divide by 2 in all cases, because no 2 chosen chairs should be adjacent.
For (B), n=10
C (n,3) = n!/(n-3)!(3!) divided by 2
3! = 3×2×1 = 6
The expression divided by 2 means it will be multiplied by 1/2
Hence 6×2 = 12
And we arrive at
C (n,3) =n!/(12)(n-3)!
The correlation between height and weight among men age 18-74 in the U.S. is about 0.40. Say whether each conclusion below follows from the data; explain your answer. a) Taller men tend to be heavier. b) The correlation between weight and height for men age 18-74 is about 0.40. c) Heavier men tend to be taller. d) If someone eats more and puts on 10 pounds, he is likely to get somewhat taller.
Answer:
Options a, b, c are correct.
Step-by-step explanation:
First let's see the equation that governs the statement, which is the following:
[tex]r = \frac{cov (x, y)}{\sqrt{var(x) var (y)} }[/tex]
Therefore, reading options a, b, c are correct.
Since from the formula we have the correlation coefficient of two variables x and y and here it shows us the correlation between x, y and y, x is the same.
This means that the 0.4 correlation implies a moderate but positive relationship between the two variables.
that is, the highest or lowest value of one variable implies a highest or lowest value of the other variable, respectively.
Could someone help me with this trigonometry question where you have find the x which is the adjacent. the reference angle is 39 degree and the opposide side is 30 cm.
Answer:
37.047
Step-by-step explanation:
Sin(39) = 30/hyp
Cos(39) = x/hyp
hyp = 30/Sin(39)
and hyp = x/Cos(39)
hyp = hyp
30/Sin(39) = x/Cos(39)
x = 30(Cos(39))/Sin(39)
x is approximately equal to 37.047
you and a group of friends spent at least $73.00 at a local pizzeria. Drinks for the table totaled $13 and it was $15 per pizza. how many pizzas could they order
Answer:
4 pizza's
Step-by-step explanation:
hope this helps :)
Find the area of the triangle
Answer:
Step-by-step explanation:
The formula for the area of a triangle is base*height divided by 2. Remember this because itll be important for everything you do in math relating to geometry and calculus. Assuming you go that far
[tex]\frac{base*height}{2} =\frac{14*8}{2} =\frac{112}{2} = 56 units^2[/tex]
Answer:
A =56 units^2
Step-by-step explanation:
The area of a triangle is given by
A =1/2 bh where 14 is the base and 8 is the height
A = 1/2 (14)8
A =56 units^2
Please help :( : Solve the equation 3x + 5y = 15 for y
Answer:
y = -3/5 x +3
Step-by-step explanation:
3x + 5y = 15
Subtract 3x from each side
-3x+3x + 5y = -3x+15
5y = -3x+15
Divide each side by 5
5y/5 = -3x/5 +15/5
y = -3/5 x +3
What is the domain of the function on the graph?
all real numbers
all real numbers greater than or equal to 0
O all real numbers greater than or equal to -2
all real numbers greater than or equal to -3
HELP PLEASE
Answer:
All real numbers greater than or equal to -3
Step-by-step explanation:
First look at graph where the line points to which direction of the graph
And look for any closed or open circles in the graph
Since in the graph has a close circle at (-3,-2) meaning it includes that x-value for its domain.
With the graph going to positive infinity it states that the domain is all real numbers.
So in conclusion it has a domain of all real numbers greater than or equal to -3
If P(-2, 1) is rotated 90°, its image is
The image of P(-2,1) after it is rotated 90° is (-1,-2).
What percent of forty-eight is thirty?
Answer:
P = 62.5 %
Step-by-step explanation:
Of means multiply and is means equals
P * 48 = 30
Divide each side by 48
P = 30/48
P = .625
Change to percent form
P = 62.5 %
Answer:
62.5%
Step-by-step explanation:
30 is 62.5% of 48 since:
30÷48=0.625
0.625×100=62.5%
If an arrow is shot upward on Mars with a speed of 52 m/s, its height in meters t seconds later is given by y = 52t − 1.86t2. (Round your answers to two decimal places.) (a) Find the average speed over the given time intervals.
Answer:
A. (I) v = 46.42 m/s; (ii) v = 47.35 m/s; (III) v = 48.09 m/s; (iv) v = 48.26 m/s; (v) v = 58.28 m/s
B. v = 48.28 m/s
Note: the question is missing some values. The full Question is provided below:
If an arrow is shot upward on Mars with a speed of 52 m/s, its height in meters t seconds later is given by y = 52t − 1.86t2. (Round your answers to two decimal places.)
(a) Find the average speed over the given time intervals. (i) [1, 2] m/s (ii) [1, 1.5] m/s (iii) [1, 1.1] m/s (iv) [1, 1.01] m/s (v) [1, 1.001] m/s
(b) Estimate the speed when t = 1. m/s
Step-by-step explanation:
Height, y = 52t - 1.86t²
Velocity = ∆y/∆t = 52 - 1.86 * 2t = 52- 3.72t
A. Average velocity = (v1 + v2)/2
(i) At t = 1, 2
Average velocity = (52 - 3.72*1 + 52 -3.72*2)/2 = 46.42 m/s
(ii) At t = 1,1.5
Average velocity = (52 - 3.72*1 + 52 - 3.72*1.5)/2 = 47.35 m/s
(iii) At t = 1,1.1
Average velocity = (52 - 3.72*1 + 52 -3.72*1.1)/2 = 48.09m/s
(iv) At to = 1, 1.01
Average velocity = (52 - 3.72*1 + 52 - 3.72*1.01)/2 = 48.26 m/s
(iv) At t = (1, 1.001)s
Average velocity = (52 - 3.72*1 + 52 - 3.72*1.001)/2 = 48.28 m/s
B. Speed at t = 1s
Velocity = 52 - 3.72 * 1 = 48.28 m/s
What is the value of (Negative one-half)–4?
A) -16
B) Negative StartFraction 1 Over 16 EndFraction
C) StartFraction 1 Over 16 EndFraction
D) 16
Answer:
It would be 16!!!
The value of the exponent numerical expression (-1/2)⁻⁴ will be 16. Then the correct option is D.
What is the value of the expression?When the relevant components and basic processes of a numerical method are given values, the expression's result is the result of the computation it depicts.
The definition of simplicity is making something simpler to achieve or grasp while also making it a little less difficult.
The expression is given below.
⇒ (-1/2)⁻⁴
Simplify the equation, then we have
⇒ (-1/2)⁻⁴
⇒ (-2)⁴
⇒ -2⁴
⇒ 16
The value of the exponent numerical expression (-1/2)⁻⁴ will be 16. Then the correct option is D.
More about the value of the expression link is given below.
https://brainly.com/question/23671908
#SPJ6
Assuming the below results were obtained in a study used to test the accuracy of the rapid diagnostic test for influenza, calculate and interpret the sensitivity of the rapid diagnostic influenza test.
Frequency of Flu Cases Frequency of Non-Fu Cases
Frequency of Individuals who 47 10
Screened Positive
Frequency of individuals who 43 100
Screened Negative
A) When the rapid diagnostic influenza test is used, 52.22% of individuals who have the flu test positive for the flu.
B) When the rapid diagnostic influenza test is used, 90.91% of individuals who have the flu test positive for the
C) When the rapid diagnostic influenza test is used, 47.78% of individuals who have the flu test positive for the flu.
D) When the rapid diagnostic influenza test is used, 9.09% of individuals who have the flu test positive for the flu.
Answer:
c
Step-by-step explanation:
en un parque hay una zona de columpios y una pista de patinaje que ocupa en total 5 quintos del espacio .si los columpios ocupan 2 septimos del parque . que fraccion del parque ocupa la pista de patinaje
Answer:
The rink occupies 69% of the whole park, approximately, which is equivalent to 280/408.Step-by-step explanation:
To solve this problem, we need to find the number which express the whole park.
Notice that the park is divided in two sections, one occupies 5/8 of the total, and the other occupies 2/7 of the total. So, the sum would be
[tex]\frac{5}{8}+\frac{2}{7}=\frac{35+16}{56} =\frac{51}{56}[/tex]
Now we have the total space there, we need to divide 5/8 by 51/56, so
[tex]\frac{5}{8} \div \frac{51}{56}=\frac{5}{8} \times \frac{56}{51}=\frac{280}{408} \approx 0.69[/tex]
Therefore, the rink occupies 69% of the whole park, approximately, which is equivalent to 280/408.
Triangle QRS is dilated according to the rule DO,2 (x,y). On a coordinate plane, (0, 0) is the center of dilation. Triangle Q R S has points (negative 3, 3), (2, 4), and (negative 1, 1). What is true about the image ΔQ'R'S'? Select three options. Which statements are true? DO,2 (x,y) = (2x, 2y) Side Q'S' lies on a line with a slope of -1. QR is longer than Q'R'. The vertices of the image are closer to the origin than those of the pre-image. The distance from Q' to the origin is twice the distance from Q to the origin.
Answer:
Options A, B and E are correct
Step-by-step explanation:
From the information given above, we would draw a dilation that produces an image that is the same shape as the original image, but has a different size.
The scale factor is 2
QRS → Q'R'S' = (x,y) → 2(x,y)
The coordinates of ∆QRS
Q (-3, 3)
R (2, 4)
S (-1, 1)
To get the coordinates of Q'R'S', we would multiply each coordinate of the original triangle by the scale factor of 2 since the dilation is from the origin. In order words, each vertex of QRS is multiplied by 2 to get each of the vertex of Q'R'S'.
2 (x,y) = (2x, 2y)
The coordinates of ∆Q'R'S' becomes:
Q' (-6, 6)
R' (4, 8)
S' (-2, 2)
To determine the statements that are true about the image ΔQ'R'S,
we would graph the coordinates of the two triangles.
Starting with ΔABC, we would draw the dilation image of the triangle with a center at the origin and a scale factor of 2.
See attached the diagram for better explanation.
Let's check out each options and compare it with diagram we obtained:
a) DO, 2 (x,y) = (2x, 2y)
A dilation about the origin with a scale factor 2 is described using the above notation.
Q' = 2(-3,3) = [2(-3), 2(3)] = (-6, 6)
R' (4, 8) = 2(2,4) = [2(2), 2(4)] = (4, 8)
S' (-2, 2) = 2(-1,1) = [2(-1), 2(1)] = (-2, 2)
This option is correct
b) Side Q'S' lies on a line with a slope of -1
Q' (-6, 6)
S' (-2, 2)
coordinate (x, y)
Slope = m = (change in y)/(change in x)
m = (6-2)/[-6-(-2)]
= 4/(-6+2) = 4/-4
m = -1
This option is correct
c) QR is longer than Q'R'
Length of QR (-3 to 2) = 5
Length of Q'R' (-6 to 4) = 10
QR is not longer than Q'R'
This option is false
d) The vertices of the image are closer to the origin than those of the pre-image
The scale factor determines how much bigger or smaller the dilation image will be compared to the preimage. In a transformation, the final figure is referred to as the image. The original figure is referred to as the preimage.
From the diagram, the vertices of the preimage (original image) are closer to the origin than those of the dilation image.
This option is false
e) The distance from Q' to the origin is twice the distance from Q to the origin.
The distance from Q' to the origin (6 to 0) = 6
The distance from Q to the origin (3 to 0) = 3
The distance from Q' to the origin = 2(the distance from Q to the origin)
This option is correct
Answer:
A,B and E is correct
Step-by-step explanation:
Chris is constructing a diagram for a deck he is restructuring in his backyard. The deck will be in the shape of a square, and he
has labeled a side length with the equation below, where x represents the original deck area.
side length = V1 + 12
Answer:
Increase the area of the deck by 12 square feet.
Step-by-step explanation:
The area of the deck increased by 12 square feet.
What is area?Area is the amount of space occupied by a two-dimensional figure. In other words, it is the quantity that measures the number of unit squares that cover the surface of a closed figure. The standard unit of area is square units which is generally represented as square inches, square feet, etc.
Given that, Chris is constructing a diagram for a deck he is restructuring in his backyard.
The deck will be in the shape of a square, and he has labeled a side length with the equation below, where x represents the original deck area. Side length = V1 + 12
Increase the area of the deck by 12 square feet.
Therefore, the area of the deck increased by 12 square feet.
Learn more about the area here:
https://brainly.com/question/27683633.
#SPJ5
A garden bed contains 8 tomato plants, 4 squash plants and 8 bell pepper plants. What percentage of the plants are tomato plants
Answer:
33.33%
Step-by-step explanation:
Add them together 8 plus 8 plus 8 which is 24 there are 8 tp so its 8/24 which is equal to 1/3 so the percent is
The mean of the data set(9,5,y,2,x)is twice the data set (8,x, 4,1,3).What is (y-x)
Answer:
y - x = 16
Step-by-step explanation:
Explanation:-
Step(i):-
Given data set A is 9,5,y,2,x
Mean of the Data set A
= [tex]\frac{9 + 5 + y + 2 +x}{5}[/tex]
= [tex]\frac{16 +x+y}{5}[/tex]
Given data set B is 8, x, 4, 1, 3
Mean of the Data set B
= [tex]\frac{8+ x+4+1+3}{5}[/tex]
Step(ii):-
Mean of the Data set A = 2 X Mean of the Data set B
[tex]\frac{16 +x+y}{5} = 2 X \frac{16+x}{5}[/tex]
On simplification , we get
16 +x + y = 2( 16 +x)
16 + x + y = 32 + 2 x
16 + x + y - 32 - 2 x = 0
y - x -16 =0
y - x = 16
Jacob put his 731 Marbles and 37 bags if he puts the same amount in each bag how many marbles were in each bag how many marbles were left out of the backs
Answer:
19 marbles in each bag 28 left over
Step-by-step explanation:
the first step to this problem is to find out the number of marbles in each bag.
if there were 731 marbles and 37 bags, we need to divide 731 by 37.
731/37 = 19[tex]\frac{28}{37}[/tex]
therefore there are 19 marbles in each bag.
the second part of the question is to determine how many are left out or in other words how many numbers are "left over"
since the fraction is 28/37 there are 28 marbles that are left out of the bag.
feel free to ask questions, hope this helped you!
The population of Boomtown is currently 3000 and expected to grow by 2.3% over the
next year. What will its population be by then?
The population of Dullsville, on the other hand, is currently 13000 and expected to
decrease by 4.1% over the next year. What will its population be by then?
Answer:
a) The Expectation of the Population to grow in the next year
= 3069
b) The Expectation of the Population decrease in the next year
= 12,467
Step-by-step explanation:
Explanation:-
a)
The population of Boom town is currently 3000
Given expected to grow by 2.3 % over the next year
= [tex]3000 X \frac{2.3}{100} = 69[/tex]
= 69
The Expectation of the Population growth in the next year
= 3000 +69 = 3069
b)
The population of town is currently 13000
Given expected to grow by 4.1 % over the next year
= [tex]13000 X \frac{4.1}{100} = 533[/tex]
The Expectation of the Population decrease in the next year
= 13000 - 533 = 12,467
An amount of money earned #24 in 4 years at a rate of 5% per year simple intrest. what was the amount of money
Answer:
4.8
Step-by-step explanation:
simple interest=Principal ×time×rate ÷100
=24×4×5÷100
=4.8