Step-by-step explanation:
work is shown and pictured
Simplify.
(8^3)7 = 8n
Answer:
448I think
Step-by-step explanation:
Answer:21
Step-by-step explanation:
1. Find the equation of the line passing through the point (2,−4) that is parallel to the line y=3x+2 y= 2. Find the equation of the line passing through the point (1,−5) and perpendicular to y=18x+2 y=
Answer:
Step-by-step explanation:
1) Parallel lines have same slope
y = 3x + 2
m = 3
(2, -4) ; m = 3
equation: y - y1 = m (x - x1)
y - [-4] = 3(x - 2)
y + 4 = 3x - 6
y = 3x - 6 - 4
y = 3x - 10
2) y = 18x + 2
m1 = 18
Slope the line perpendicular to y = 18x + 2, m2 = -1/m1 = -1/18
m2 = -1/18
(1 , -5)
[tex]y-[-5]=\frac{-1/18}(x-1)\\\\y+5=\frac{-1}{18}x + \frac{1}{18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-5\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{5*18}{1*18}\\\\y=\frac{-1}{18}x+\frac{1}{18}-\frac{90}{18}\\\\y=\frac{-1}{18}x-\frac{89}{18}\\\\[/tex]
Erin had 55 stuffed bears. She took out her favorite 7 bears and then equally divided the other bears among her 3 sisters. Erin's youngest sister, Su, already had 15 stuffed bears. How many stuffed bears does Su have now?
Answer:
27 stuffed bears
Step-by-step explanation:
Erin: 55 Su: 15
Erin: 55-7=48 ( 7 will be kept for herself)
Erin and her sisters: 48/4= 12
Each sister besides Erin and Su have 12
Su: 15+12=27
Thus, Su will have 27 stuffed bears
Answer:
31 Stuffed Bears
Step-by-step explanation:
55 - 7 = 48
48 / 3 = 16
16 + 15 = 31
Sue has 31 stuffed bears
A textile manufacturer has historically found an average of 0.1 flaws per square meter of cloth. Let X be the number of flaws in a bolt of 2000 square meters of cloth. How is X distributed
Answer:
Poisson distribution
Step-by-step explanation:
Given that :
There is an average of 0.1 flaws per square meter of cloth
So X = the number of flaws in a bolt of 2000 square meters of cloth.
The objective is to deduce how is X distributed.
Well, we can say X undergoes Poisson distribution.
Because, the flaw can be randomly positioned on the cloth and also dictate how many times the event is likely to occur within a specified period of time.
Most time Poisson distribution is majorly used for independent events.
An independent is an event which contains two types of events occuring at a time say event [tex]E_1[/tex] and event [tex]E_2[/tex] and the event [tex]E_1[/tex] does not in any way affects the occurrence of the event [tex]E_2[/tex] .
A boy is playing a ball in a garden surrounded by a wall 2.5 m high and kicks the ball vertically up from a height of 0.4 m with a speed of 14 m/s. For how long is the ball above
the height of the wall.
Answer:
2.54 seconds
Step-by-step explanation:
We can use the following equation to model the vertical position of the ball:
S = So + Vo*t + a*t^2/2
Where S is the final position, So is the inicial position, Vo is the inicial speed, a is the acceleration and t is the time.
Then, using S = 2.5, So = 0.4, Vo = 14 and a = -9.8 m/s2, we have that:
2.5 = 0.4 + 14*t - 4.9t^2
4.9t^2 - 14t + 2.1 = 0
Solving this quadratic equation, we have that t1 = 2.6983 s and t2 = 0.1588 s.
Between these times, the ball will be higher than 2.5 m, so the amount of time the ball will be higher than 2.5 m is:
t1 - t2 = 2.6983 - 0.1588 = 2.54 seconds
The perimeter of the rectangle is below 76 units. Find the length of side AD. AB on rectangle 3y + 3 CB 2y
Answer:
14 units
Step-by-step explanation:
The perimeter of a figure is the sum of the lengths of all the sides.
Here, we know that ABCD is a rectangle, so by definition, AB = CD and AD = BC. We also are given that AB = 3y + 3 and BC = 2y, which means that:
AB = CD = 3y + 3
AD = BC = 2y
Adding up all the side lengths and setting that equal to the perimeter, which is 76 units, we get the expression:
AB + CD + AD + BC = 76
(3y + 3) + (3y + 3) + 2y + 2y = 76
10y + 6 = 76
10y = 70
y = 7
We want to know the length of AD, which is written as 2y. Substitute 7 in for y:
AD = 2y = 2 * 7 = 14
The answer is thus 14 units.
~ an aesthetics lover
Answer:
14
Step-by-step explanation:
The perimeter of a rectangle is found by
P = 2 (l+w)
P = 2( 3y+3+2y)
Combine like terms
P = 2(5y+3)
We know the perimeter is 76
76 = 2(5y+3)
Divide each side by 2
76/2 = 2/2(5y+3)
38 = 5y+3
Subtract 3 from each side
38-3 = 5y+3-3
35 = 5y
Divide each side by 5
35/5 = 5y/5
7 =y
We want the length of AD = BC = 2y
AD = 2y=2*y = 14
A group of professors investigated first-year college students' knowledge of astronomy. One concept of interest was the Big Bang theory of the creation of the universe. In a sample of 149149 freshmen students, 3232 believed that the Big Bang theory accurately described the creation of planetary systems. Based on this information, is it correct at the alphaαequals=0.100.10 level of significance to state that more than 20% of all freshmen college students believe the Big Bang theory describes the creation of planetary systems? State the null and alternative hypotheses. Choos
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
A group of professors investigated first-year college students' knowledge of astronomy. One concept of interest was the Big Bang theory of the creation of the universe. In a sample of 149 freshmen students, 32 believed that the Big Bang theory accurately described the creation of planetary systems. Based on this information, is it correct at the alpha = 0.01 level of significance to state that more than 20% of all freshmen college students believe the Big Bang theory describes the creation of planetary systems? State the null and alternative hypotheses. Choose the correct answer below. H_0: p = 0.20 H_a: p not equal to 0.20 H_0: p not equal to 0.20 H_a: p = 0.20 H_0: p = 0.20 H_a: p 0.20 If alpha = 0.05, find the rejection region for the test. Choose the correct answer below. z > 1.645 z > 1.96 z
Solution:
We would set up the null and alternative hypothesis. The correct options are
For null hypothesis,
p ≥ 0.2
For alternative hypothesis,
p < 0.2
This is a left tailed test.
Considering the population proportion, probability of success, p = 0.2
q = probability of failure = 1 - p
q = 1 - 0.2 = 0.8
Considering the sample,
Sample proportion, P = x/n
Where
x = number of success = 32
n = number of samples = 149
P = 32/149 = 0.21
We would determine the test statistic which is the z score
z = (P - p)/√pq/n
z = (0.21 - 0.2)/√(0.2 × 0.8)/149 = 0.31
The calculated test statistic is 0.31 for the right tail and - 0.31 for the left tail
Since α = 0.05, the critical value is determined from the normal distribution table.
For the left, α/2 = 0.05/2 = 0.025
The z score for an area to the left of 0.025 is - 1.96
For the right, α/2 = 1 - 0.025 = 0.975
The z score for an area to the right of 0.975 is 1.96
In order to reject the null hypothesis, the test statistic must be smaller than - 1.96 or greater than 1.96
Therefore, the rejection region is z > 1.96
Which ordered pair is the best estimate for the
solution of the system of equations?
y =
3x + 6
y = 1x – 2
Answer:
-4, -6
Step-by-step explanation:
3x+6= 1x-2
2x+6= -2
2x= -8
x= -4
Now that you have your x variable, you can go back and plug it in to your original equations:
y= 3(-4)+6,
y= (-12)+6 therefore y= -6
y=1(-4) -2,
y= (-4) -2 therefore y = -6
What is the equation of the exponential graph shown?
Answer:
[tex]100(0.5)^{x}[/tex]
Step-by-step explanation:
According to the graph, the y int is at 100
so that is the starting point
Then at 1 it is at 50
[tex]\frac{100}{50}[/tex] is 2 so that means it is reduced by half
Just to make sure, [tex]\frac{50}{25}[/tex] is also /2 so that means it is the slope
Since it is a decay, the slope has to be less than one so you get the reciprecol of 2 to get....
[tex]\frac{1}{2}[/tex]
Answer:f(x)=100(2^x)
Step-by-step explanation:
If 3 boxes of apples weigh 105 pounds, how much would 2 boxes of apples weigh?
Answer:
70 pounds
Step-by-step explanation:
3 boxes= 105 pounds
2boxes= x pounds
Cross Multiply
3*x=105 *2
3x=210
3x/3=210/3
x=70 pounds
Answer:
70
Step-by-step explanation:
105/3=35
35x2=70
So 70 is the answer
Express the following ratio in its simplest form.
4:12
Answer:
3:12
Step-by-step explanation:
Answer:
1:3
Step-by-step explanation:
Think 4:12 as a fraction for a moment, it would be 4/12. Now completely simplify 4/12, you get 1/3. Now put 1/3 as a ratio, it would be 1:3.
Please mark BRAINLIEST, thanks!
An article reported the following data on oxidation-induction time (min) for various commercial oils:87 105 130 160 180 195 135 145 213 105 145151 152 136 87 99 92 119 129(a) Calculate the sample variance and standard deviation. (Round your answers to three decimal places.)s^2 = ________. min^2s = ________. min(b) If the observations were reexpressed in hours, what would be the resulting values of the sample variance and sample standard deviation? Answer without actually performing the reexpression. (Round your answer to three decimal places.)s^2 =______ hr^2s = ______hr
Answer:
Step-by-step explanation:
Mean = (87 + 105 + 130 + 160 + 180 + 195 + 135 + 145 + 213 + 105 + 145 + 151 152 + 136 + 87 + 99 + 92 + 119 + 129)/19 = 129
Variance = (summation(x - mean)²/n
Standard deviation = √(summation(x - mean)²/n
n = 19
Variance = [(87 - 129)^2 + (105 - 129)^2 + (130 - 129)^2+ (160 - 129)^2 + (180 - 129)^2 + (195 - 129)^2 + (135 - 129)^2 + (145 - 129)^2 + (213 - 129)^2 + (105 - 129)^2 + (145 - 129)^2 + (151 - 129)^2 + (152 - 129)^2 + (136 - 129)^2 + (87 - 129)^2 + (99 - 129)^2 + (92 - 129)^2 + (119 - 129)^2 + (129 - 129)^2]/19 = 23634/19 1243.895 min
Standard deviation = √1243.895 = 35.269 min
60 minutes = 1 hour
Converting the variance to hours,
Each division would have been divided by 60². 60² can be factorized out
Variance = 23634/60² = 6.565 hours
Converting the standard deviation to hours, it becomes
√6.565 = 2.562 hours
A number cube with faces labeled from 1 to 6 will be rolled once. The number rolled will be recorded as the outcome. Give the sample space describing all possible outcomes. Then give all of the outcomes for the event of rolling the number 1, 3, or 4. If there is more than one element in the set, separate them with commas. Sample space: {} Event of rolling the number 1 3, or 4 :
Answer:
Sample space: [tex]\Omega=\{1,2,3,4,5,6\}[/tex]
Event of rolling the number 1 3, or 4 : A={1,3,4}
Step-by-step explanation:
When you roll a number cube with faces labeled from 1 to 6 once.
The possible outcomes are: 1,2,3,4,5 or 6.
Therefore, the sample space of this event is:
Sample space: [tex]\Omega=\{1,2,3,4,5,6\}[/tex]Given the event of rolling the numbers 1, 3, or 4.
Now we are required to give the outcomes for the event of rolling number 1,3 or 4. Let's call the event A. The set of possible outcomes for A has all the numbers 1, 3 and 4 as follows
Event of rolling the number 1 3, or 4 :A= {1,3,4}The diagram shows a rectangle and a square.
Diagram
accuratel
The rectangle is 2 cm long and 6 cm wide.
The perimeter of the rectangle is the same as the perimeter of the square.
Work out the length of one side of the square.
Answer:
4 cm
Step-by-step explanation:
The side of the square will be the average of the two sides of the rectangle with the same perimeter.
Formulas for the perimeters are ...
P = 2(L+W)
P = 4s
Equating these gives ...
4s = 2(L+W)
s = (L +W)/2 . . . . . divide by 4
For the given side lengths, ...
s = (2 cm +6 cm)/2 = (8/2) cm = 4 cm
The length of one side of the square is 4 cm.
The image point using the translation (x,) + (x+4,y-1)
for the point (3,3) is
Answer: (7, 2)
Step-by-step explanation:
(x, y) → (x + 4, y - 1)
(3, 3) → (3 + 4, 3 - 1)
= (7, 2)
Q‒4. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where (a,b)R(c,d) means that a+d=b+c.
Prove that R is an equivalence relation.
Find [(2,4)].
Answer:
Step-by-step explanation:
REcall that given a set A, * is a equivalence relation over A if
- for a in A, then a*a.
- for a,b in A. If a*b, then b*a.
- for a,b,c in A. If a*b and b*c then a*c.
Consider A the set of all ordered pairs of positive integers.
- Let (a,b) in A. Then a+b = a+b. So, by definition (a,b)R(a,b).
- Let (a,b), (c,d) in A and suppose that (a,b)R(c,d) . Then, by definition a+d = b+c. Since the + is commutative over the integers, this implies that d+a = c+b. Then (c,d)R(a,b).
- Let (a,b),(c,d), (e,f) in A and suppose that (a,b)R(c,d) and (c,d)R(e,f). Then
a+d = b+c, c+f = d+e. We have that f = d+e-c. So a+f = a+d+e-c. From the first equation we find that a+d-c = b. Then a+f = b+e. So, by definition (a,b)R(e,f).
So R is an equivalence relation.
[(a,b)] is the equivalence class of (a,b). This is by definition, finding all the elements of A that are equivalente to (a,b).
Let us find all the possible elements of A that are equivalent to (2,4). Let (a,b)R(2,4) Then a+4 = b+2. This implies that a+2 = b. So all the elements of the form (a,a+2) are part of this class.
Z=1.23 z=0.86 WHAT is the area of the shaded region between the two
Answer:
The area of the shaded region between [tex] \\ z = 1.23[/tex] and [tex] \\ z = 0.86[/tex] is [tex] \\ P(0.86 < z < 1.23) = 0.08554[/tex] or 8.554%.
Step-by-step explanation:
To solve this question, we need to find the corresponding probabilities for the standardized values (or z-scores) z = 1.23 and z = 0.86, and then subtract both to obtain the area of the shaded region between these two z-scores.
We need to having into account that a z-score is given by the following formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]
Where
x is a raw score from the distribution that we want to standardize using [1].[tex] \\ \mu[/tex] is the mean of the normal distribution.[tex] \\ \sigma[/tex] is the standard deviation of the normal distribution.A z-score indicates the distance of x from the mean in standard deviations units, where a positive value "tell us" that x is above [tex] \\ \mu[/tex], and conversely, a negative that x is below [tex] \\ \mu[/tex].
The standard normal distribution is a normal distribution with [tex] \\ \mu = 0[/tex] and [tex] \\ \sigma = 1[/tex], and has probabilities for standardized values obtained using [1]. All these probabilities are tabulated in the standard normal table (available in any Statistical book or on the Internet).
Using the cumulative standard normal table, for [tex] \\ z = 1.23[/tex], the corresponding cumulative probability is:
[tex] \\ P(z<1.23) = 0.89065[/tex]
The steps are as follows:
Consult the cumulative standard table using z = 1.2 as an entry. Z-scores are in the first column of the mentioned table. In the first row of it we have +0.00, +0.01, +0.02 and, finally, +0.03. The probability is the point that result from the intersection of z = 1.2 and +0.03 in the table, which is [tex] \\ P(z<1.23) = 0.89065[/tex].Following the same procedure, the cumulative probability for [tex] \\ z = 0.86[/tex] is:
[tex] \\ P(z<0.86) = 0.80511[/tex]
Subtracting both probabilities (because we need to know the area between these two values) we finally obtain the corresponding area between them (two z-scores):
[tex] \\ P(0.86 < z < 1.23) = 0.89065 - 0.80511[/tex]
[tex] \\ P(0.86 < z < 1.23) = 0.08554[/tex]
Therefore, the area of the shaded region between [tex] \\ z = 1.23[/tex] and [tex] \\ z = 0.86[/tex] is [tex] \\ P(0.86 < z < 1.23) = 0.08554[/tex] or 8.554%.
We can see this resulting area (red shaded area) in the graph below for a standard normal distribution, [tex] \\ N(0, 1)[/tex], and [tex] \\ z = 0.86[/tex] and [tex] \\ z = 1.23[/tex].
The probability of randomly selecting a white flower from a garden that has green, pink, yellow, and white flowers is 6%.
Which of the following describes the likelihood of selecting a white flower?
A.
likely
B.
unlikely
C.
neither unlikely nor likely
Answer:
b. unlikely
Step-by-step explanation:
I don't really know a step by step explanation :( sry
Temperature transducers of certain type are shipped in batches of 50. A sample of 60 batches was selected, and the number of transducers in each batch not conforming to design specifications was determined, resulting in the following data:
2 1 2 3 1 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 41 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 2 3
a. Determine frequencies and relative frequencies for the observed values of x = number of non-conforming transducers in a batch. (Round your relative frequencies to three decimal places.)
b. What proportion of batches in the sample have at most four non-conforming transducers? (Round your answer to three decimal places.)
Answer:
a.
Number: 0, 1, 2, 3, 4, 5, 6, 7, 8
Frequency: 6, 12, 13, 15, 5, 3, 3, 1, 1
b. The proportion of the batches that have at most is 0.864
Step-by-step explanation:
a. The given data are;
2 1 2 3 1 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 2 3
The frequencies are;
x fx
0 6
1 12
2 13
3 15
4 5
5 3
6 3
7 1
8 1
The relative frequency are;
x Rfx
0 0.102
1 0.203
2 0.220
3 0.254
4 0.085
5 0.051
6 0.051
7 0.017
8 0.017
b. The proportion of the batches that have at most 4 is given as follows;
The number of the batches that have at most 4 = 6 + 12 + 13 + 15 + 5 = 51
Therefore, the proportion of the batches that have at most 4 = 51 / 59 = 0.864.
A fast food hamburger restaurant uses 3,500 lbs. of hamburger each week. The manager of the restaurant wants to ensure that the meat is always fresh i.e. the meat should be no more than two days old on average when used. How much hamburger should be kept in the refrigerator as inventory
Answer:
The peak inventory will be 2 sales days of hamburguers, which is equivalent to 7,000 lbs. As they are consumed in 2 days, the average inventory is 3,500 lbs.
Step-by-step explanation:
If the meat should be no more than two days old on average when used, the stock of hamburguer in the refrigerator has to be at most the equivalent to 2 day of sales.
The "2 days old" represents the inventory turnover.
If we use all the hamburguers in the refrigerator and refill inmediatly, the average inventory is:
[tex]\bar I=\dfrac{\text{Beginning inventory}+\text{Ending inventory}}{2}\\\\\\\bar I=\dfrac{2*3,500+0}{2}=3,500[/tex]
The peak inventory will be 2 sales days of hamburguers, which is equivalent to 7,000 lbs. As they are consumed in 2 days, the average inventory is 3,500 lbs.
What’s the correct answer for this?
Answer:
B and C
Step-by-step explanation:
The correct option are
B) a cross section of rectangular pyramid perpendicular to the base
C) a cross section of a rectangular prism that is parallel to it's base
Which graph represents this equation y-4= -3(x+5)
Answer:
Graph B
Step-by-step explanation:
Simplify.
y - 4 = -3x - 15 Distribute
y = -3x - 11 Add 4 on both sides
The y-intercept should be negative, and option B has a negative y-intercept.
The graph of the given function will be represented by graph B so the correct answer is option B.
What is a graph?A graph is the representation of the data on the vertical and horizontal coordinates so we can see the trend of the data.
The graph of the function is attached with the answer below.
Simplify.
y - 4 = -3x - 15 Distribute
y = -3x - 11 Add 4 on both sides
The y-intercept should be negative, and option B has a negative y-intercept.
Therefore the graph of the given function will be represented by graph B so the correct answer is option B.
To know more about graphs follow
https://brainly.com/question/4025726
SPJ5
49% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults. Find the probability that the number of U.S. adults who have very little confidence in newspapers is (a) exactly five, (b) at least six, and (c) less than four.
Answer:
a) P(x=5) = 0.2456
b) P(x≥6) = 0.3526
c) P(x<4) = 0.1887
Step-by-step explanation:
We can model this as a binomial experiment, with sample size n=10 and p=0.49.
To calculate the probability of having k subjects with very little confidence in the sample of 10, we solve:
[tex]P(x=k) = \dbinom{n}{k} p^{k}q^{n-k}[/tex]
a) We have to calculate P(x=5).
For a binomial variable with n=10 and p=0.49, this can be calculated as:
[tex]P(x=5) = \dbinom{10}{5} p^{5}q^{5}=252*0.0282*0.0345=0.2456\\\\[/tex]
b) We have to calculate P(x≥6). This can be calculated as:
[tex]P(x\geq6)=P(x=6)+P(x=7)+P(x=8)+P(x=9)+P(x=10)\\\\\\P(x=6) = \binom{10}{6} p^{6}q^{4}=210*0.0138*0.0677=0.1966\\\\P(x=7) = \binom{10}{7} p^{7}q^{3}=120*0.0068*0.1327=0.1080\\\\P(x=8) = \binom{10}{8} p^{8}q^{2}=45*0.0033*0.2601=0.0389\\\\P(x=9) = \binom{10}{9} p^{9}q^{1}=10*0.0016*0.51=0.0083\\\\P(x=10) = \binom{10}{10} p^{10}q^{0}=1*0.0008*1=0.0008\\\\\\P(x\geq6)=0.1966+0.1080+0.0389+0.0083+0.0008\\\\P(x\geq6)=0.3526[/tex]
c) We have to calculate P(x<4). That is:
[tex]P(x<4)=P(x=0)+P(x=1)+P(x=2)+P(x=3)\\\\\\P(x=0) = \binom{10}{0} p^{0}q^{10}=1*1*0.0012=0.0012\\\\P(x=1) = \binom{10}{1} p^{1}q^{9}=10*0.49*0.0023=0.0114\\\\P(x=2) = \binom{10}{2} p^{2}q^{8}=45*0.2401*0.0046=0.0494\\\\P(x=3) = \binom{10}{3} p^{3}q^{7}=120*0.1176*0.009=0.1267\\\\\\P(x<4)=0.0012+0.0114+0.0494+0.1267\\\\P(x<4)=0.1887[/tex]
What does the “equity” of a tax mean?
Answer:
Equity of taxation means each citizen pays an amount of tax equal to their income and ability to pay the tax.
Answer:
C) The tax is paid equally by everyone
Step-by-step explanation:
When Ryan was born, he weighed 7 pounds.At 6 months, he weighed 11.2 pounds. Amanda weighed 6 pounds when she was born, and 12.9 pounds at 6 months. Which baby had a greater percent increase in weight? Explain
Answer:
✅Amanda had a greater percent increase in weight.
Step-by-step explanation:
The percent change in Ryan’s weight was 42/7 or 60%. The percent change in Amanda’s weight was 6.9/6, or 115%. Amanda had a greater percent increase in weight.
IamSugarBee
Answer:
The percent change in Ryan’s weight was 4.2/7, or 60%. The percent change in Amanda’s weight was 6.9/6 , or 115%. Amanda had a greater percent increase in weight.
Step-by-step explanation:
its the sample answer i just did it
Here is a solid square-based pyramid.
The base of the pyramid is a square of side 12cm.
The height of the pyramid is 8cm.
X is the midpoint of QR and XT = 10cm.
A) Draw the front elevation of the pyramid from the direction of the arrow. Use a scale of 1 square to 1cm.
B) Work out the total surface area of the pyramid.
Answer:
Step-by-step explanation:
A. The front elevation of the pyramid in the direction of the arrow is herewith attached to this answer.
B. Base of the pyramid is a square of side 12 cm.
The height of the pyramid is 8 cm.
Slant height, XT, is 10 cm.
The total surface area of the pyramid can be determined by adding the surface areas that make up the shape.
Area of the triangular face = [tex]\frac{1}{2}[/tex] × base × slant height
= [tex]\frac{1}{2}[/tex] × 12 × 10
= 60 [tex]cm^{2}[/tex]
Area of the square base = length × length
= 12 × 12
= 144 [tex]cm^{2}[/tex]
Total surface area of the pyramid = area of the base + 4 (area of the triangular face)
= 144 + 4(60)
= 144 + 240
= 384 [tex]cm^{2}[/tex]
Therefore, total surface area of the pyramid is 384 [tex]cm^{2}[/tex].
Which graph has the parent function 1/x?
Answer:
The graph of parent function [tex]f(x)=\frac{1}{x}[/tex] is a hyperbola.
Step-by-step explanation:
A rational function is described as the fraction of polynomials, where the denominator has degree of at least 1 .
Or it can be said that there must be a variable in the denominator.
The general form of a rational function is:
[tex]\text{Rational Function}= f(x)=\frac{p(x)}{q(x)}[/tex]
In this case the parent function provided is: [tex]f(x)=\frac{1}{x}[/tex].
The function is rational.
The graph of parent function [tex]f(x)=\frac{1}{x}[/tex] is a hyperbola.
The graph is attached below.
Suppose that a large mixing tank initially holds 100 gallons of water in which 50 pounds of salt have been dissolved. Another brine solution is pumped into the tank at a rate of 3 gal/min, and when the solution is well stirred, it is then pumped out at a slower rate of 2 gal/min. If the concentration of the solution entering is 4 lb/gal, determine a differential equation (in lb/min) for the amount of salt A(t) (in lb) in the tank at time t > 0. (Use A for A(t).)
Answer:
dA/dt = 12 - 2A/(100 + t)
Step-by-step explanation:
The differential equation of this problem is;
dA/dt = R_in - R_out
Where;
R_in is the rate at which salt enters
R_out is the rate at which salt exits
R_in = (concentration of salt in inflow) × (input rate of brine)
We are given;
Concentration of salt in inflow = 4 lb/gal
Input rate of brine = 3 gal/min
Thus;
R_in = 4 × 3 = 12 lb/min
Due to the fact that solution is pumped out at a slower rate, thus it is accumulating at the rate of (3 - 2)gal/min = 1 gal/min
So, after t minutes, there will be (100 + t) gallons in the tank
Therefore;
R_out = (concentration of salt in outflow) × (output rate of brine)
R_out = [A(t)/(100 + t)]lb/gal × 2 gal/min
R_out = 2A(t)/(100 + t) lb/min
So, we substitute the values of R_in and R_out into the Differential equation to get;
dA/dt = 12 - 2A(t)/(100 + t)
Since we are to use A foe A(t), thus the Differential equation is now;
dA/dt = 12 - 2A/(100 + t)
The table shows ordered pairs of the function y=8-2x What is the value of y when x = 8?
Answer:-8
Step-by-step explanation:
8 - 2 × 8
8 - 16
-8
A four-year study of various brands of bottled water found that 25% of bottled water is just tap water packaged in a bottle. Consider a sample of sevenseven bottled-water brands, and let x equal the number of these brands that use tap water. Complete parts a through d.
a. Is x (approximately) a binomial random variable?
b. Give the probability distribution for x as a formula.
c. Find p(x = 2).
d. Find P(x <= 1).
Answer:
Answers below
Step-by-step explanation:
a. Is x (approximately) a binomial random variable?
b. Give the probability distribution for x as a formula.
c. Find p(x = 2).
d. Find P(x <= 1).