Write a simplified expression for the area of the rectangle below

Write A Simplified Expression For The Area Of The Rectangle Below

Answers

Answer 1

Answer:

12x+40

Step-by-step explanation:

A=l*w

A=20(3/5x+2)

A=4*3x+20*2

A=12x+40

Answer 2

Answer:

[tex] = 12x + 40[/tex]

Step-by-step explanation:

[tex]area = l \times b \\ = 20 \times (\frac{3}{5} x + 2) \\ = \frac{60x}{5} + 40 \\ = 12x + 40[/tex]

hope this helps

brainliest appreciated

good luck! have a nice day!


Related Questions

ASAP! GIVING BRAINLIEST! Please read the question THEN answer CORRECTLY! NO guessing. I say no guessing because people usually guess on my questions.

Answers

Answer:

B. F(x) = 3(x - 2)² - 2

Step-by-step explanation:

→The function F(x) narrowed, meaning the absolute value being multiplied to the function is greater than 1.

→The function F(x) flipped over the x-axis, this means that the number being multiplied has to be a negative.

→The function F(x) shifted to the left 2 units, this means there needs to be a 2 being added.

→The function F(x) shifted downwards 2 units, meaning there needs to be a 2 being subtracted from the whole function.

This gives us the correct answer of "B. F(x) = 3(x - 2)² - 2."

In 2018, the number of students at The Villages High School was 975 and is increasing at a rate of 2.5% per year. Write and use an exponential growth function to project the populating in 2025. Round to the nearest whole number. Help plzzz

Answers

Answer:

[tex]A(t)=975(1.025)^t[/tex]

In 2025,the number of students at the villages high school=1159

Step-by-step explanation:

We are given that in 2018

Number of students at the villages high school=975

Increasing rate,r=2.5%=0.025

We have to write and use of exponential growth function to project the populating in 2025.

[tex]A_0=975,t=0[/tex]

According to question

Number of students at the villages high School is given by

[tex]A(t)=A_0(1+r)^t[/tex]

Substitute the values

[tex]A(t)=975(1+0.025)^t=975(1.025)^t[/tex]

t=7

Substitute the value

Then, the number of students at the villages high school in 2025

[tex]A(7)=975(1.025)^7=1158.96\approx 1159[/tex]

Answer:

1,159 students

Step-by-step explanation:

the exponential growth rate formula:

A = P ( 1 + r)ⁿ

A = amount after growth = ??P = current/original amount = 975 studentsr = yearly growth rate = 2.5% or 0.025n = number of years = 2025 - 2018 = 7

Pop. 2025 = 975 (1 + 0.025)⁷

Pop. 2025 = 975 x 1.025⁷ = 1,158.97 ≈ 1,159 students

Solve the problem.
If a boat uses 25 gallons of gas to go 73 miles, how many miles
can the boat travel on 75 gallons of gas?
24 mi
438 mi
219 mi
239 mi

Answers

Answer:

For this problem we can use the following proportional rule:

[tex] \frac{73 mi}{25 gal}= \frac{x}{75 gal}[/tex]

Where x represent the number of miles that we can travel with 75 gallons. For this case we can use this proportional rule since by definition [tex] D=vt[/tex]. If we solve for x we got:

[tex] x =75 gal (\frac{73 mi}{25 gal}) =219mi[/tex]

And the best answer would be:

219 mi

Step-by-step explanation:

For this problem we can use the following proportional rule:

[tex] \frac{73 mi}{25 gal}= \frac{x}{75 gal}[/tex]

Where x represent the number of miles that we can travel with 75 gallons. For this case we can use this proportional rule since by definition [tex] D=vt[/tex]. If we solve for x we got:

[tex] x =75 gal (\frac{73 mi}{25 gal}) =219mi[/tex]

And the best answer would be:

219 mi

which is pattern 12,24,36,48

Answers

t(n)=n×12, where n=the nth term in the sequence and where 12=a constant. always by 12

Answer:

multiples of 12

Step-by-step explanation: when looking at the GCF, the answer is 12

A glucose solution is administered intravenously into the bloodstream at a constant rate r. As the gulcose is added, it is converted into other substances and removed from the bloodstream at a rate that is proportional to the concentration at the time. Thus a model for the concentration C=C(t) of the glucose solution in the bloodstream is
dC/dt=r-kC
Where r an dk are positive constants.
1. Suppose that the concentration at time t=0 is C0. Determine the concentration at any time t by solving the differential equation.
2. Assuming that C0

Answers

Answer:

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}[/tex]

[tex]C(t) =\dfrac{ r}{k}- e^{ -kt}[/tex]   ,thus, the  function is said to be an increasing function.

Step-by-step explanation:

Given that:

[tex]\dfrac{dC}{dt}= r-kC[/tex]

[tex]\dfrac{dC}{r-kC}= dt[/tex]

Taking integration on both sides ;

[tex]\int\limits\dfrac{dC}{r-kC}= \int\limits \ dt[/tex]

[tex]- \dfrac{1}{k}In (r-kC)= t +D[/tex]

[tex]In(r-kC) = -kt - kD \\ \\ r- kC = e^{-kt - kD} \\ \\ r- kC = e^{-kt} e^{ - kD} \\ \\r- kC = Ae^{-kt} \\ \\ kC = r - Ae^{-kt} \\ \\ C = \dfrac{r}{k} - \dfrac{A}{k}e ^{-kt} \\ \\[/tex]

[tex]C(t) =\frac{ r}{k} - \frac{A}{k}e^{ -kt}[/tex]

here;

A is an integration constant

In order to determine A, we have [tex]C(0) = C0[/tex]

[tex]C(0) =\frac{ r}{k} - \frac{A}{k}e^{0}[/tex]

[tex]C_0 =\frac{r}{k}- \frac{A}{k}[/tex]

[tex]C_{0} =\frac{ r-A}{k}[/tex]

[tex]kC_{0} =r-A[/tex]

[tex]A =r-kC_{0}[/tex]

Thus:

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}[/tex]

2. Assuming that C0 < r/k, find lim t→[infinity] C(t) and interpret your answer

[tex]C_{0} < \lim_{t \to \infty }C(t) \\ \\C_0 < \dfrac{r}{k} \\ \\kC_0 <r[/tex]

The equation for C(t) can  be rewritten as :

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}C(t) =\dfrac{ r}{k} - \left (+ve \right )e^{ -kt} \\ \\C(t) =\dfrac{ r}{k}- e^{ -kt}[/tex]

Thus;  the  function is said to be an increasing function.

Last weekend, Lena worked 7.5 hours on Friday, 9.75 hours on Saturday, and 6.25 hours on Sunday.

She earns £8.60 per hour. How much did she earn in total?

Answers

You will need to add all of the hours and multiple by 8.60 that is going to give you the total of =202.1

Answer:202.1

Step-by-step explanation:

7.5hrs +9.75hrs+6.25hrs=23.5

8.60 X 23.5 =202.1 pounds

Let two cards be dealt successively, without replacement, from a standard 52-card deck. Find the probability of the event. The first card is a queen and the second is a seven

Answers

Answer: 4 / 663

Step-by-step explanation:

There are 4 queens in a deck of 52 cards.

Probability = 4/52 = 1/13

There are 4 sevens

Probability = 4/51

Total probability = 1/13 x 4/51 = 4 / 663

The probability of drawing a queen first and a seven-second is 3/613.

What is probability?

Probability is defined as the possibility of an event being equal to the ratio of the number of favorable outcomes and the total number of outcomes.

There are 4 queens in a standard deck, and once one queen is drawn, there are 51 cards left, including 3 sevens.

So, the probability of drawing a queen first is 4/52 or 1/13, and the probability of drawing a seven-second is 3/51.

By the multiplication rule of probability, multiply the probabilities of each event occurring:

P(Queen and Seven) = P(Queen) × P(Seven after Queen)

P(Queen and Seven) = (1/13) × (3/51)

P(Queen and Seven) = 3/613

Thus, the probability of drawing a queen first and a seven-second is 3/613.

Learn more about the probability here:

brainly.com/question/11234923

#SPJ2

How can you use mathematics to help scientists explore Martian Craters ? 

Answers

Answer:

Mathematics could make scientists to have a preliminary understanding of the dimensions, perimeters, areas and volumes of different craters on Mars.

Step-by-step explanation:

Martian Craters are series of craters formed on the surface of Mars. The study of a planets crater gives an understanding of the properties of matter that lies under the crater.

Mathematics can be applied to determine the dimensions, perimeter, area and volume of the features of a crater using appropriate conversions and theorems.

The Pi in the sky theorem can be applied to determine the area and perimeter, even volume of different craters on the Mars surface. Also, eingenfunction expansion theorem gives a preliminary knowledge of the craters.

By measurements and conversions processes, the features of Martian crater could be studied from images.

The base of a rectangular prism is 20 cm 2. If the volume of the prism is 100 cm 3, what is its height?

Answers

Answer:

Step-by-step explanation:

Answer:

height = 5

Step-by-step explanation:

The volume of a prism is V = l*w*h

You are not given any information about the exact values of l and w.

You do know however that L and w when multiplied together = 20, so you can put that in for l*w. Then the formula becomes

V = 20*h

You are told that the volume is 100. Now the problem is simplified. You get

100 = 20 * h               Divide both sides by 20

100/20 = 20*h/20     Combine like terms.

5 = h

normally distributed with an unknown population mean and a population standard deviation of 4.5 points. A random sample of 45 scores is taken and gives a sample mean of 84. Find a 90% confidence interval

Answers

Answer:

= ( 82.90, 85.10) points

Therefore at 90% confidence interval (a,b)= ( 82.90, 85.10) points

Step-by-step explanation:

Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.

The confidence interval of a statistical data can be written as.

x+/-zr/√n

Given that;

Mean x = 84

Standard deviation r = 4.5

Number of samples n = 45

Confidence interval = 90%

z(at 90% confidence) = 1.645

Substituting the values we have;

84+/-1.645(4.5/√45)

84+/-1.645(0.670820393249)

84+/-1.10

= ( 82.90, 85.10) points

Therefore at 90% confidence interval (a,b)= ( 82.90, 85.10) points

Translate to a system of equations: Twice a number plus three times a second number is negative one. The first number plus four times the second number is two.

Answers

Answer:

work is shown and pictured

Mist (airborne droplets or aerosols) is generated when metal-removing fluids are used in machining operations to cool and lubricate the tool and work-piece. Mist generation is a concern to OSHA, which has recently lowered substantially the workplace standard. The article "Variables Affecting Mist Generation from Metal Removal Fluids" (Lubrication Engr., 2002: 10-17) gave the accompanying data on x = fluid flow velocity for a 5% soluble oil (cm/sec) and y = the extent of mist droplets having diameters smaller than some value:
x: 89 177 189 354 362 442 965
y: .40 .60 .48 .66 .61 .69 .99
a. Make a scatterplot of the data. By R.
b. What is the point estimate of the beta coefficient? (By R.) Interpret it.
c. What is s_e? (By R) Interpret it.
d. Estimate the true average change in mist associated with a 1 cm/sec increase in velocity, and do so in a way that conveys information about precision and reliability.
e. Suppose the fluid velocity is 250 cm/sec. Find the mean of the corresponding y in a way that conveys information about precision and reliability. Use 95% confidence level. Interpret the resulting interval. By hand, as in part d.
f. Suppose the fluid velocity for a specific fluid is 250 cm/sec. Predict the y for that specific fluid in a way that conveys information about precision and reliability. Use 95% prediction level. Interpret the resulting interval. By hand, as in part d.

Answers

Answer:

Step-by-step explanation:

a) image attached

b) Lets do the analysis in R , the complete R snippet is as follows

x<- c(89,177,189,354,362,442,965)

y<- c(.4,.6,.48,.66,.61,.69,.99)

# scatterplot

plot(x,y, col="red",pch=16)

# model

fit <- lm(y~x)

summary(fit)

#equation is

#y = 0.4041 + 0.0006211*X

# beta coeffiecients are

fit$coefficients

coef(summary(fit))[, "Std. Error"]

# confidence interval of slope

confint(fit, 'x', level=0.95)

The results are

> summary(fit)

Call:

lm(formula = y ~ x)

Residuals:

1 2 3 4 5 6 7

-0.05940 0.08595 -0.04151 0.03602 -0.01895 0.01136 -0.01346

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.041e-01 3.459e-02 11.684 8.07e-05 ***

x 6.211e-04 7.579e-05 8.195 0.00044 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05405 on 5 degrees of freedom

Multiple R-squared: 0.9307,   Adjusted R-squared: 0.9168 # model is able to capture 93% of the variation of the data

F-statistic: 67.15 on 1 and 5 DF, p-value: 0.0004403 , p value is less than 0.05 , hence model as a whole is significant

> fit$coefficients

(Intercept) x

0.4041237853 0.0006210758

> coef(summary(fit))[, "Std. Error"]

(Intercept) x

3.458905e-02 7.579156e-05

> confint(fit, 'x', level=0.95)

2.5 % 97.5 %

x 0.0004262474 0.0008159042

c)

> x=c(89,177,189,354,362,442,965)

> y=c(0.40,0.60,0.48,0.66,0.61,0.69,0.99)

>

> ### linear model

> model=lm(y~x)

> summary(model)

Call:

lm(formula = y ~ x)

Residuals:

1 2 3 4 5 6 7

-0.05940 0.08595 -0.04151 0.03602 -0.01895 0.01136 -0.01346

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 4.041e-01 3.459e-02 11.684 8.07e-05 ***

x 6.211e-04 7.579e-05 8.195 0.00044 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05405 on 5 degrees of freedom

Multiple R-squared: 0.9307, Adjusted R-squared: 0.9168

F-statistic: 67.15 on 1 and 5 DF, p-value: 0.0004403

s_e is the Residual standard error from the model and its estimated value is 0.05405. s_e is the standard deviation of the model.  

d) 95% confidence interval

> confint(model, confidence=0.95)

2.5 % 97.5 %

(Intercept) 0.3152097913 0.4930377793

x 0.0004262474 0.0008159042

Comment: The estimated confidence interval of slope of x does not include zero. Hence, x has the significant effect on y at 0.05 level of significance.

 e)

> predict(model, newdata=data.frame(x=250), interval="confidence", level=0.95)

fit lwr upr

1 0.5593927 0.5020485 0.616737

f)

> predict.lm(model, newdata=data.frame(x=250), interval="prediction", level=0.95)

fit lwr upr

1 0.5593927 0.4090954 0.7096901

Which expression is equivalent to log Subscript 8 Baseline 4 a (StartFraction b minus 4 Over c Superscript 4 Baseline EndFraction)?

Answers

Answer:

[tex]\log_84+\log_8a+\log_8(b-4)-4\log_8c[/tex].

Step-by-step explanation:

The given expression is

[tex]\log_84a\left(\dfrac{b-4}{c^4}\right)[/tex]

Using the properties of logarithm, we get

[tex]\log_84+\log_8a+\log_8\left(\dfrac{b-4}{c^4}\right)[/tex]     [tex][\because \log_a mn=\log_a m+\log_a n][/tex]

[tex]\log_84+\log_8a+\log_8(b-4)-\log_8c^4[/tex]     [tex][\because \log_a \frac{m}{n}=\log_a m-\log_a n][/tex]

[tex]\log_84+\log_8a+\log_8(b-4)-4\log_8c[/tex]     [tex][\because \log_a x^n =n\log_a x][/tex]

Therefore, the required expression is [tex]\log_84+\log_8a+\log_8(b-4)-4\log_8c[/tex].

Answer:

B on edge

Step-by-step explanation:

e
65. the perpendicular
bisector of the
segment with
endpoints (-5/2,-2)
and (3, 5)
HELP PLEASE! Picture included!

Answers

Answer:

  44x +56y = 95

Step-by-step explanation:

To write the equation of the perpendicular bisector, we need to know the midpoint and we need to know the differences of the coordinates.

The midpoint is the average of the coordinate values:

  ((-2.5, -2) +(3, 5))/2 = (0.5, 3)/2 = (0.25, 1.5) = (h, k)

The differences of the coordinates are ...

  (3, 5) -(-2.5, -2) = (3 -(-2.5), 5 -(-2)) = (5.5, 7) = (Δx, Δy)

Then the perpendicular bisector equation can be written ...

  Δx(x -h) +Δy(y -k) = 0

  5.5(x -0.25) +7(y -1.5) = 0

  5.5x -1.375 +7y -10.5 = 0

Multiplying by 8 and subtracting the constant, we get ...

  44x +56y = 95 . . . . equation of the perpendicular bisector

I need help with this one

Answers

Answer:

2 2/3

Step-by-step explanation:

Line segment ON is perpendicular to line segment ML
What is the length of chord ML?
0
20 units
24 units
26 units
30 units
13
P
8
M
N
Mark this and return

Answers

Answer:

The correct answer is B (24 units)

Step-by-step explanation:

What’s the correct explanation for this question?

Answers

Step-by-step explanation:

=> The volume of a triangular pyramid can be found using the formula V = 1/3AH where A = area of the triangle base, and H = height of the pyramid

=> The volume of a cone can be found by V = 1/3(Ab)(H) where Ab is base area and H is the height of the cone

The difference between both is that is it's base. A cone has a polygonal base while a pyramid has a tetragonal base

Consider the following set of sample data.
18 26 30 42 50 52 52 76 78 84
For the given data, the mean is_______, the median is________, and the mode is_______.
Suppose the value 76 in the data is mistakenly recorded as 55 instead of 76. For the sample with this error, the mean is_________, the median is______, and the mode is_______. The mean_____, the median_______, and the mode______. Suppose the value 76 in the original sample is inadvertently removed from the sample. For the sample with this value removed, the mean is_______, the median is_______, and the mode is________. The mean_________, the median_______, and the mode________.

Answers

Answer:

For the given data, the mean is 50.8, the median is 51, and the mode is 52.

For the sample with this error, the mean is 48.7, the median is 51, and the mode is 52.

For the sample with this value removed, the mean is 43.2, the median is 50, and the mode is 52.

Step-by-step explanation:

We are given the following set of sample data below;

18, 26, 30, 42, 50, 52, 52, 76, 78, 84.

The formula for calculating mean is given by;

         Mean  =  [tex]\frac{\text{Sum of all data values}}{\text{Total number of observations}}[/tex]

                     =  [tex]\frac{18+ 26+ 30+ 42+ 50+ 52+ 52+ 76+ 78+ 84}{10}[/tex]  

                     =  [tex]\frac{508}{10}[/tex]  =  50.8

For calculating median, we have to observe that the number of observations (n) in our data is even or odd, i.e;

If n is odd, then the formula for calculating median is given by;

                    Median  =  [tex](\frac{n+1}{2})^{th} \text{ obs.}[/tex]

If n is even, then the formula for calculating median is given by;

                    Median  =  [tex]\frac{(\frac{n}{2})^{th}\text{ obs.} +(\frac{n}{2}+1)^{th}\text{ obs.} }{2}[/tex]

Now, here in our data the number of observations is even, i.e. n = 10.

So, Median  =  [tex]\frac{(\frac{n}{2})^{th}\text{ obs.} +(\frac{n}{2}+1)^{th}\text{ obs.} }{2}[/tex]

                    =  [tex]\frac{(\frac{10}{2})^{th}\text{ obs.} +(\frac{10}{2}+1)^{th}\text{ obs.} }{2}[/tex]

                    =  [tex]\frac{5^{th}\text{ obs.} +6^{th}\text{ obs.} }{2}[/tex]

                    =  [tex]\frac{50+52 }{2}[/tex]  =  51

A Mode is a value that appears the maximum number of times in our data.

In our data, the value 52 is appera]ing maximum number of times, i.e. 2 times which means that mode of our data is 52.

Now, suppose the value 76 in the data is mistakenly recorded as 55 instead of 76. For the sample with this error,

Mean will be changed as value has been changed.

            New Mean  =   [tex]\frac{18+ 26+ 30+ 42+ 50+ 52+ 52+ 55+ 78+ 84}{10}[/tex]  

                                =  [tex]\frac{487}{10}[/tex]  =  48.7

There will be no change in median because there is no change in the 5th and 6th observation of the data.

Also, there will be no change in mode as stiil 52 appears maximum number of times in our data.

Now, suppose the value 76 in the original sample is inadvertently removed from the sample. For the sample with this value removed,

Mean will be changed as value has been removed from data.

            New Mean  =   [tex]\frac{18+ 26+ 30+ 42+ 50+ 52+ 52+ 78+ 84}{9}[/tex]  

                                =  [tex]\frac{432}{10}[/tex]  =  43.2

Median will also get changed because the number of observation is now odd, i.e. n = 9

            So, Median  =  [tex](\frac{n+1}{2})^{th} \text{ obs.}[/tex]

                                 =  [tex](\frac{9+1}{2})^{th} \text{ obs.}[/tex]

                                 =  [tex]5^{th} \text{ obs.}[/tex] = 50

Also, there will be no change in mode as stiil 52 appears maximum number of times in our data.

what is the common ratio of the geometric sequence below ?
-96,48,-24,12,-6... ​

Answers

Answer:

r = - [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

The common ratio r is the ratio between consecutive terms in the sequence.

r = [tex]\frac{48}{-96}[/tex] = [tex]\frac{-24}{48}[/tex] = [tex]\frac{12}{-24}[/tex] = [tex]\frac{-6}{12}[/tex] = - [tex]\frac{1}{2}[/tex]

Answer:

-1/2 or b on edge

Step-by-step explanation:

Any help would be great

Answers

Answer:

30%

Step-by-step explanation:

fat ÷ total

15 ÷ 50

.3

30%

Answer:

30%

Step-by-step explanation:

To find the percent from fat, take the calories from fat and divide by the total

15/50

.3

Multiply by 100%

30%

The following data represent the number of flash drives sold per day at a localcomputer shop and their prices.Price Units Sold34 336 432 635 530 938 240 1a. Develop the estimated regression equation that could be used to predict thequantity sold given the price. Interpret the slope.b. Did the estimated regression equation provide a good fit? Explain.c. Compute the sample correlation coefficient between the price and the number offlash drives sold. Use a= 0.01 to test the relationship between price and units sold.d. How many units can be sold per day if the price of flash drive is set to $28.

Answers

Answer:

a)3145 x 0.01 = 31.45  3145- 31.45 = 3113.55

Compute the sample correlation 3113.55 -? we find the least square pressing at least 15x on the calculator then minus this from 3113.55 to find a better fit and minimum regression.

We add the differences of units then divide by distribution as seen below.

b) unsure.

c) = (see below) just test each number shown unit sold per day / price then x can show the differences in each number from day 1 to day 2.

d) = 16 sold.

Step-by-step explanation:

a) We count the units up and deduct from it from the equation p is recognized as units sold. R1 is cost R2 is total days.

b) The line of best fit is described by the equation ŷ = bX + a, where b is the slope of the line and a is the intercept (i.e., the value of Y when X = 0).

c) r 2= decimal ; the regression equation has accounted for percentage of the total sum of squares. You cna do this one.

d) = 16 sold at $28 each. - Why ? We using 7 day data and prove a how many units can be sold p/d if the price of flash drive is set to $28 each per unit.

Day 1 = 34  /  28  =  1      =    1.21428571429 = 1 no difference day prior.

Day 2 = 336   / 28   = 12  = 12 = difference day prior is 11

Day 3 = 432  / 28  = 15    =  15.4285714286   = 15 difference day prior is 3

Day 4 = 635  / 28 =  23   =  22.6785714286  = 23 difference day prior is 8

Day 5  = 530  /  28 = 19    =  18.9285714286  = 19 difference day prior is minus - 4

Day 6 = 938  / 28  =  34   = 33.5 = 34 difference day prior is 15

Day 7 = 240  / 28  =   9    =   8.57142857143 = 9 difference day prior is minus -25

Total days 7 = Total revenue / price = average units sold

Average units sold total = 1+ 12+15 +23 +19+34+9 = 113 rounded.

Average units sold total = 1.21428571429 + 12 + 15.4285714286

+ 22.6785714286

+18.9285714286

+ 33.5

+ 8.57142857143 =  112.321428572 units sold weekly when priced at $28

To answer D we divide this by 7  to show;

112.321428572/ 7 = 16.0459183674

Daily units sold = 16


The length of a field is twice it's breadth. If the length is 30cm. Calculate the perimeter of the field.​

Answers

Answer:

b=30/2=15

peri= 90

Step-by-step explanation:

HELP PLEASE!!
NEED ANSWER ASAP!!!

A farmer in China discovers a mammal
hide that contains 54% of its original

Find age of the mammal hide to the nearest year.

amount of C-14
N=N0e^-kt
N = Noe
No = inital amount of C-14 (at time t = 0)
N = amount of C-14 at time t
k = 0.0001
t = time, in years

Answers

Answer:

6163.2 years

Step-by-step explanation:

A_t=A_0e^{-kt}

Where

A_t=Amount of C 14 after “t” year

A_0= Initial Amount

t= No. of years

k=constant

In our problem we are given that A_t is 54% that is if A_0=1 , A_t=0.54

Also , k=0.0001

We have to find t=?

Let us substitute these values in the formula

0.54=1* e^{-0.0001t}

Taking log on both sides to the base 10 we get

log 0.54=log e^{-0.0001t}

-0.267606 = -0.0001t*log e

-0.267606 = -0.0001t*0.4342

t=\frac{-0.267606}{-0.0001*0.4342}

t=6163.20

t=6163.20 years

PLEASE MARK BRAINLY

One number is 4 plus one half of another number. Their sum is 31. Find the numbers.

Answers

Answer:

18, 13

Step-by-step explanation:

x=4+1/2y

x+y=31

4+1/y+y=31

3/2y=27

y=18

x=31-18=13

Answer:

13 & 18

Step-by-step explanation:

Create the formulas:

0.5x+4=y

x+y=31

0.5x+4=y

Multiply both sides by 2

x+8=2y

x+y=31

Subtract 31 from both sides

x+y-31=0

Subtract y from both sides

x-31= -y

Multiply both sides by -1

-x+31=y

Multiply both sides by 2

-2x+62=2y

Combine equations:

-2x+62=x+8

Add 2x to both sides

62=3x+8

Subtract 8 from both sides

3x=54

Divide both sides by 3

x=18

0.5x+4=y

Subtract y from both sides

0.5x-y+4=0

Subtract 0.5x from both sides

-y+4= -0.5x

Multiply both sides by -1

y-4=0.5x

Multiply both sides by 2

2y-8=x

x+y=31

Subtract y from both sides

x= -y+31

Combine equations:

2y-8= -y+31

Add y to both sides

3y-8=31

Add 8 to both sides

3y=39

Divide both sides by 3

y=13

divide the following polynomials ( 9 x 4 + 3 x 3 y − 5 x 2 y 2 + x y 3 ) ÷ ( 3 x 2 + 2 x 2 y − x y 2 )

Answers

Answer:

2(-2y+9)/3+y

Step-by-step explanation:

What’s the correct answer for this question?

Answers

Answer:

C

Step-by-step explanation:

A cylinder is formed when rotating the 3-D figure around y-axis

Consider the following dice game, as played at a certain gambling casino: players 1 and 2 roll a pair of dice in turn. the bank then rolls the dice to determine the outcome according to the following rule: player i,i=1,2, wins if his roll is strictly


Ii={1 if i wins, 0 otherwise}


and show that I1 and I2 are positively correlated. Explain why this result was to be expected.

Answers

Answer:

they are positively correlated.

Step-by-step explanation:

We can calculate the individal expectations first. FIrst player will win if that player's roll is greater than the bank's roll. There are (6 possible rolls of player 1 * 6 possible rolls of bank =) 36 total possible rolls, out of which player 1 will win in 15 cases.

[tex]\therefore E(I_i) = 1\cdot \frac{15}{36} + 0 \cdot \frac{21}{36} = \frac{5}{12} \approx 0.4167[/tex]

For the joint expectation, there are (6 possible rolls of player 1 * 6 possible rolls of player 2 * 6 possible rolls of bank =) 216 total possible rolls.

Cases where both players win: Expectation = $2.

If bank rolls 1, both players will win in 5*5 = 25 cases. P1 is one of {2,3,4,5,6}, P2 is one of {2,3,4,5,6}

If bank rolls 2, both players will win in 4*4 = 16 cases.

If bank rolls 3, both players will win in 3*3 = 9 cases.

If bank rolls 4, both players will win in 2*2 = 4 cases.

If bank rolls 5, both players will win in 1*1 = 1 cases.

If bank rolls 6, both players will win in 0*0 = 0 cases.

Total cases = 25+16+9+4+1+0 = 55 cases.

Cases where player 1 wins $1 and player 2 loses: Expectation = $1.

If bank rolls 1, player 1 will win and player 2 will lose in 5*1 = 5 cases. P1 is one of {2,3,4,5,6}, P2 is {1}

If bank rolls 2, player 1 will win and player 2 will lose in 4*2 = 8 cases.

If bank rolls 3, player 1 will win and player 2 will lose in 3*3 = 9 cases.

If bank rolls 4, player 1 will win and player 2 will lose in 2*4 = 8 cases.

If bank rolls 5, player 1 will win and player 2 will lose in 1*5 = 5 cases.

If bank rolls 6, player 1 will win and player 2 will lose in 0*6 = 0 cases.

Total cases = 5+8+9+8+5+0 = 35

Cases where player 2 wins $1 and player 1 loses: Expectation = $1.

This is the same as above with player 1 and 2 exchanged.

Total cases = 35

Cases where both players lose: Expectation = $0.

If bank rolls 1, both players will lose in 1*1 = 1 cases. P1 is {1}, P2 is {1}

If bank rolls 2, both players will lose in 2*2 = 4 cases.

If bank rolls 3, both players will lose in 3*3 = 9 cases.

If bank rolls 4, both players will lose in 4*4 = 16 cases.

If bank rolls 5, both players will lose in 5*5 = 25 cases.

If bank rolls 6, both players will lose in 6*6 = 36 cases.

Total cases = 1+4+9+16+25+36 = 91 cases.

Total of all cases (we expect this to be 216 as mentioned above) = 55+35+35+91=216

So, joint expectation is:

[tex]E(I_1I_2) = \frac{2\cdot 55 +1\cdot 35+1\cdot 35+0\cdot 91}{216} = \frac{180}{216}= \frac{5}{6} \approx 0.8333[/tex]

So, the covariance is given by:

[tex]\texttt{Cov}(I_1I_2) =E(I_1I_2) -E(I_1)\cdot E(I_2)= \frac{5}{6}-\frac{5}{12}\cdot\frac{5}{12}=\frac{95}{144} \approx 0.6597[/tex]

As this is greater than 0 and closer to 1, they are positively correlated.

The reason why this result is expected is because the same bank roll is being used for both players. So, it is very likely that both players will win if the bank roll is 1 or even 2. Also, it is very likely that both players will lose if the bank roll is 6, 5, or even 4. This shows positive correlation between the events.

m is directly proportional to r squared when r=2 m=14 work out the value of r when m = 224

Answers

Answer:

32

Step-by-step explanation:

r:m

2:14

1:7

m=224

r=224 divided by 7

224/7=32

Edit: unless it is proportional to r^2 in which case it is a different answer

Answer:

m=504

Step-by-step explanation:

help asap, will get branliest !!​

Answers

Answer:

D

Step-by-step explanation:

Lines EF and GH are already parallel. Translating them 2 units to the side without changing how far apart they are vertically means they won't intersect and will remain the same distance apart.

Answer:

D

Step-by-step explanation:

They are parallel lines

What is the simplified value of the exponential expression 27 1/3?
1/3
1/9
3
9

Answers

Answer:3

Step-by-step explanation:

Answer:

C.3

Step-by-step explanation:

Other Questions
If this trapezoid is moved through the translation (x+3,y-2), what will be the coordinates of be? Which of the following are true of trademarks?Check all of the boxes that apply.They protect logos.They protect fabric.They show who the maker of the item is.They can be registered with the government. Which of the following describes one advantage of living in an urban area?A. High-rise developments reduce population density.B. There's easy access to cultural attractions.C. Apartment buildings provide a lot of privacy.D. Zoning laws help keep crime low. what function is increasing? will give brainlist ! Please help theres a picture to explain more 11070X=? What is the name of the line of latitude represented by the letter D?A)Tropic of CapricornB)Tropic of CapricornAntarctic CircleD)Arctic Circle Order the numbers from least to greatest based on their absolute values.|23|, |37|, |6|, |18|, |24|, |2| Most of the costs associated with using renewable resources are due to _______.a.overuse of resourcesb.atmospheric pollutionc.lack of availabilityd.global warmingPlease select the best answer from the choices providedABCD Which number produces an irrational number when multiplied by 1/4 You have just turned 30 years old, have just received your MBA, and have accepted your first job. Now you must decide how much money to put into your retirement plan. You are required to specify a fixed percentage of your salary that you want to contribute. Assume that your starting salary is $ 70 comma 000 per year and it will grow 1.8 % per year until you retire. Every dollar in the plan earns 6.5 % per year. You cannot make withdrawals until you retire on your sixty-fifth birthday. After that point, you can make withdrawals as you see fit. You decide that you will plan to live to 100 and work until you turn 65. You estimate that to live comfortably in retirement, you will need $ 97 comma 000 per year starting at the end of the first year of retirement and ending on your 100th birthday. What percentage of your income do you need to contribute to the plan every year to fund your retirement income? ((x - 4) + (x + 2)) * 2x 2x2 8x2 2x 8x2 + 2x 8 Organ pipe A, with both ends open, has a fundamental frequency of 475 Hz. The third harmonic of organ pipe B, with one end open, has the same frequency as the second harmonic of pipe A. Use 343 m/s for the speed of sound in air. How long are (a) pipe A and (b) pipe B? write a paragraph on plastic and pollution within 100 words 4. Which of these terms describes the process of acid rain wearing away limestone?Acryptic erosionB.chemical weatheringC.cryptobiotic weatheringD.chemical erosion A farmer was interest in determining how many grasshoppers were in his field. He knows that the distribution of grasshoppers may not be normally distributed in his field due to growing conditions. As he drives his tractor down each row he counts how many grasshoppers he sees flying away. After several rows he figures the mean number of flights to be 57 with a standard deviation of 12. What is the probability of the farmer will count 52 or fewer flights on average in the next 40 rows down which he drives his tractor Create a problem using the Pythagorean theorem. Then, solve the problem youve created showing all steps. Let f(x) = -2x + 7 and g(x) = -6x + 3. Find fg and state its domain. The attempted assassination of President Teddy Roosevelt caused so much public outrage that the insanity defense was greatly restricted.True OrFalse Which is an example of matter cycling through the bodies of living things?A. Whales swimming in the oceanB. Whales eating planktonC. People visiting the aquariumD. Plankton moving with the tideAnswer: B whales eating plankton Propane (C3H8) is widely used in liquid form as a fuel for barbecue grills and camp stoves. For 67.7 g of propane, determine the following.(a) Calculate the moles of compound.mol(b) Calculate the grams of carbon.g