Answer:
he tripped ballanced forces ballanced forces
Help. Don’t mind the highlighter answers i don’t know if there right
A convex lens is also known as a converging lens because it causes the incident light rays that are travelling parallel to its main axis to converge.
A convex lens has an outward curvature. In comparison to the edges, the middle is thicker. The rays of light bend in the direction of one another when they travel through a convex lens. On the other side of the lens, the rays only come together at one location. Convex lenses amplify or provide the impression that objects are larger.
The image is upside down in relation to the original object and is also oriented inverted from right to left in the convex lens. The term "inverted" refers to such a position. The real image formed by the convex lens is inverted.
To learn more about convex lens, click:
https://brainly.com/question/27087947
#SPJ1
As the pendulum swings from position A to position B, what is the relationship of kinetic energy to potential energy (neglect friction)? (5 points)
The kinetic energy increase is equal to the potential energy decrease.
The potential energy increase is equal to the kinetic energy decrease.
The kinetic energy and potential energy remain the same.
The kinetic energy increase is more than the potential energy decrease.
As the pendulum swings from position A to position B, the potential energy decreases while the kinetic energy increases. According to the law of conservation of energy, the total energy in a system remains constant, neglecting friction. Therefore, the potential energy lost by the pendulum is converted into kinetic energy. The correct relationship of kinetic energy to potential energy as the pendulum swings from position A to position B is:
The potential energy decrease is equal to the kinetic energy increase.
So, the answer is option B.
Answer:
The potential energy increase is equal to the kinetic energy decrease.
As clothing tumble in a dryer, they can become charged. If a small piece of lint with a charge of +1.62 E−19 C is attracted to the clothing by a force of 2.0 E−9 N, what is the magnitude of the electric field at this location?
0.38 E10 N/C
1.2 E10 N/C
3.2 E10 N/C
3.6 E10 N/C
Answer:
1.2 E10 N/C
Explanation:
The force between two charged objects can be calculated using Coulomb's law:
F = k * q1 * q2 / r^2
where F is the force, k is Coulomb's constant (k = 8.99 x 10^9 N m^2 / C^2), q1 and q2 are the charges of the two objects, and r is the distance between them.
Rearranging this equation to solve for the electric field at a point, we get:
E = F / q
where E is the electric field strength and q is the charge at that point.
Substituting the given values, we get:
E = (2.0 x 10^-9 N) / (1.62 x 10^-19 C)
E = 12345.68 N/C
Therefore, the magnitude of the electric field at this location is 1.235 x 10^4 N/C.
I don’t understand this pls help
2. Review the chart above. What information about ultraviolet radiation supports or
contradicts the safety of solar radiation exposure to astronauts on the international
space station?
The table shows the amount of time astronauts spent on the surface of Moon during
The information about ultraviolet radiation supports or contradicts the safety of solar radiation exposure to astronauts on the international space station. They have wore suits that protects the astronaut from the UV light.
A space station is a sort of space habitat because it can sustain a human crew in orbit for a lengthy period of time. Major landing or propulsion systems are absent. An artificial satellite, also known as an orbital station or orbital space station, is a kind of orbital spaceflight. To allow other spacecraft to dock and transfer personnel and cargo, stations need to have docking ports. Depending on the programmed, a given orbiting outpost has a different role. Military launches have also taken place, although scientific launches of space stations have predominated. astronaut have wore suits that protects the astronaut from the UV light.
To know more about Space stations :
https://brainly.com/question/13451310
#SPJ1.
A is a sphere that is traveling with velocity of (3,7)m/s and had a mass of 5 kg .it collide with sphere B and both particle move together with velocity of (1,4)m/s after the collision. Sphere B has a mass of 4 kg . Find the velocity of B before the collision
The velocity of sphere B is -1.475 m/s. Which is in opposite direction to the direction of sphere A.
What is velocity?Velocity is the rate of change of displacement.
To calculate the velocity of sphere B before collision, we use the formula below
Formula:
u = [V(M+m)-Mu']/m................... Equation 1Where:
u = Velocity of sphere B before collisionV = Velocity of both particles after collisionM = Mass of sphere Am = Mass of sphereu' = Velocity of sphere B before collisionFrom the question,
Given:
V = 1.4 m/sM = 5 kgm = 4 kgu' = 3.7 m/sSubstitute these values into equation 1
u = [1.4(5+4)-(5×3.7)]/4u = (12.6-18.5)/4u = -5.9/4u = -1.475Hence, the velocity of sphere B is -1.475 m/s.
Learn more about velocity here: https://brainly.com/question/25749514
#SPJ1
Complete the following sentences:
Wave speed is NOT dependent on _________ or ____________. Instead, wave speed only changes when the ______________ changes. This means that if a sound wave is traveling in pure water and the frequency doubles, the wavelength must _________.
What is the S-P difference (sec)?
What is the amplitude (mm)?
What is the distance (km)?
What is the magnitude (M)?
(a) The S-P difference (sec) is 40 sec.
(b) The amplitude (mm) is 10 mm
(c) The distance (km) is 380 km
(d) The magnitude (M) is 4.5
What is the S-P wave difference (sec)?
The S-P wave difference (sec) is a measure used in seismology to determine the distance between a seismic station and an earthquake source.
From the graph, the S-P difference, that is between S and P = 40 s - 0 s
= 40 s
The distance (km) corresponding to 40 sec is 380 km.
The amplitude of the wave is the maximum displacement of the wave and it is equal to 10 mm.
The corresponding magnitude of the wave is 4.5.
Learn more about S-P wave difference here: https://brainly.com/question/15225142
#SPJ1
(•) How many electrins represent a Change of -70 mic?
The number of electrons represent a Change of -70 μC is 4.3 × 10¹⁴.
Electric charge is the physical property of matter that experiences force when it is placed in electric field. F = qE where q is amount of charge, E = electric field and F = is force experienced by the charge. there are two types of charges, positive charge and negative charge which are generally carried by proton and electron resp. like charges repel each other and unlike charges attract each other. the flow charges is called as current. Elementary charge is amount of charge a electron is having, whose value is 1.602 x 10⁻¹⁹ C
The value of elementary charge that is charge on 1 electron is 1.6× 10⁻¹⁹ C
-70 μC = N × 1.6× 10⁻¹⁹ C
N = -70 μC / 1.6× 10⁻¹⁹ C
N = -70 μC / 1.6× 10⁻¹⁹ C
N = 4.3 × 10¹⁴ electrons
To know more about Charge :
https://brainly.com/question/3412043
#SPJ1.
A ball of mass 200g falls freely under gravity from a height of 50m. find the time taken to fall through a distance of 30m. given that the acceleration due to gravity g = 10m/s^2.
The time taken by the ball to fall through a distance of 30m is, 2 seconds
To calculate the time taken to fall through a distance of 30m, we have given data as,
mass of ball = 200g
g = 10 m/s^2
Initial height = 50 meter
Final height = 30 meter
So by the laws of motion, we have,
Δh = (ut) + (at²/2)
where, (u = initial velocity), and (t = time)
So,
50-30 = (0.t) + [10 x t²)/2]
20 = 5t²
Therefore, t = ± (2 seconds)
On eliminating the negative value as time can`t be negative here, we get
t = 2 seconds
Therefore, the time taken by the ball to fall through a distance of 30m is, 2 seconds
Read more about free fall at:
https://brainly.com/question/12167131
The current-potential difference graph for a resistor is a straight line as long as the is constant. What is the missing word?
Answer:
Potential Difference = Voltage = Resistance * Current
As long the resistance is a constant the PD will be a straight line when plotted against the current.
Economics NCS Topic Test No 5. Perfect Market 1.3. Give ONE term for each of the following descriptions. Write uonly the term next to the question numbers (1.3.1 to 1.3.5) in the ANSWER BOOK. Abbreviations, acronyms and examples will NOT be accepted. 1.3.1 Actual expenditure of business such as wages and interest 1.3.2 The cost that changes as more or less outputs are produced 1.3.3 An institution that can make final decisions by reviewing the decisions of the competition commission and Tribunal. 1.3.4 A word that describe the characteristics of differentiated product in oligopoly or monopolistic competition. 1.3.5 A period when inputs or factors of production are fixed. (5x1) (5) TOTAL SECTION A: [201
1.3.1 - Operating costs
1.3.2 - Variable costs
1.3.3 - Competition Appeal Court
1.3.4 - Product differentiation
1.3.5 - Short run
The Titanic had a mass of 52,800 tonnes and was travelling at 41.74 km/h when
the iceberg was sighted. By the time it hit the iceberg 30 seconds later, it had
slowed to 38.5 km/h
What was the force?
Answer:
Explanation:
mv^2/2/t=712,2kN
The force
Answer: .
Explanation: .
6.3 A probability found through quantum mechanics. In the test of Bells
theorem, experiment 6.2, what is the probability given by quantum
mechanics that, if the orientation settings are different, the two
detectors will flash different colors?
According to the given information, regardless of the orientation settings, the two detectors will flash different colors with probability . This prediction is based on quantum mechanics.
How to explain the experimentIn the experiment described, a pair of atoms are produced from a central source and detected by two detectors that are separated by a distance of nearly seven miles.
Each detector has the possibility of being oriented as A, B, or C, and is mounted with two colored lamps, a red lamp, and a green lamp.
According to the predictions of quantum mechanics, if the orientation settings of the two detectors are the same, then the two detectors always flash different colors.
Learn more about detector on
https://brainly.com/question/29569820
#SPJ1
6.
Sonography uses infrasonic waves to create images of objects found inside other objects.
True
MacBook Air
False
Answer:
False.
Explanation:
Sonography uses high-frequency sound waves, not infrasonic waves, to create images of objects found inside other objects. These sound waves bounce off the internal structures of the body and are detected by a transducer, which converts them into images that can be visualized on a screen.
Infrasonic waves are sound waves with frequencies lower than the range of human hearing, typically below 20 Hz.
Consider a ring, sphere and Solidey clinder all with the same mass. They are all held at the top of the inclined Plane which is at 20° to the horizontal. the top of the inclined Plane is Im high. The shapes are released simultaneously and allowed to roll down the inclined plane. Assume the abjects roll with out slipping and that they are all made from the same material. Assume the coefficient of static friction bin the objects and the plane is 0-3-
a) worklout what order
they would get to the bottom of the slope.
b) How long will it take each shape to reach the bottom of the Slope ?
c) which shapes have the greater moment of inertia ?
d) determine the linear acceleration(a)
e) calculate the tangential (linear) Veloci ty of each shapes-
Answer:
a) The order in which the shapes reach the bottom of the slope will be the sphere, solid cylinder, and ring.
b) The time it takes for each shape to reach the bottom of the slope can be calculated using the following equation:
t = (2d / g)^(1/2)
Where t is the time, d is the height of the inclined plane (1m in this case), and g is the acceleration due to gravity (9.8 m/s^2).
For the sphere:
t = (2 x 1 / 9.8)^(1/2) = 0.45 seconds
For the solid cylinder:
t = (2 x 1 / 9.8)^(1/2) x (5/7) = 0.36 seconds
For the ring:
t = (2 x 1 / 9.8)^(1/2) x (2/5) = 0.28 seconds
c) The moment of inertia depends on the shape of the object and how the mass is distributed around its axis of rotation. For a solid sphere, the moment of inertia is given by I = (2/5)MR^2, for a solid cylinder it is I = (1/2)MR^2, and for a ring it is I = MR^2. Therefore, the order of increasing moment of inertia is the ring, the solid cylinder, and the sphere.
d) The linear acceleration of each shape can be calculated using the following equation:
a = gsinθ / (1 + I / MR^2)
Where a is the linear acceleration, g is the acceleration due to gravity (9.8 m/s^2), θ is the angle of the inclined plane (20° in this case), I is the moment of inertia, M is the mass, and R is the radius.
For the sphere:
a = (9.8 x sin20) / (1 + (2/5)) = 2.34 m/s^2
For the solid cylinder:
a = (9.8 x sin20) / (1 + (1/2)) = 3.29 m/s^2
For the ring:
a = (9.8 x sin20) / (1 + 1) = 4.16 m/s^2
e) The tangential (linear) velocity of each shape at the bottom of the slope can be calculated using the following equation:
v = ωR
Where v is the tangential velocity, ω is the angular velocity, and R is the radius.
The angular velocity can be calculated using the following equation:
ω = (2a / R)^(1/2)
For the sphere:
ω = (2 x 2.34 / 0.05)^(1/2) = 21.8 rad/s
v = 21.8 x 0.05 = 1.09 m/s
For the solid cylinder:
ω = (2 x 3.29 / 0.05)^(1/2) = 30.7 rad/s
v = 30.7 x 0.05 = 1.53 m/s
For the ring:
ω = (2 x 4.16 / 0.05)^(1/2) = 36.4 rad/s
v = 36.4 x 0.05 = 1.82 m/s
mark me brilliant
Answer:
c
Explanation:
Four point masses 2kg, 4kg, 6kg and 8kg are placed at the corners of Square ABCD of 2cm long respectively. Find the Position of centre of mass of the system from the corner A.
please help me I give you 50 coins
Eight identical point charges of Q coul each are placed at the corners of a cube whose sides have a length of 10 cm.
α. Find the electric field at the center of the cube.
b. Find the electric field at the center of a face of the cube.
c. Find the field at the center of the cube if one of the corner charges is removed
The electric field at the center of the cube is approximately 5.12 × 10⁴ N/C.
The electric field at the center of a face of the cube is approximately 4.54 × 10⁴ N/C.
The electric field at the center of the cube if one of the corner charges is removed is approximately 4.54 × 10⁴ N/C.
(a) To find the electric field at the center of the cube, we can use the principle of superposition, which states that the total electric field at a point in space is the vector sum of the electric fields due to each individual charge. Since all eight charges are identical and have the same distance to the center of the cube, the electric field due to each charge has the same magnitude and direction.
Using Coulomb's law, we can calculate the magnitude of the electric field due to one charge at the center of the cube as:
E = (kQ) / r²
where k is the Coulomb constant, Q is the charge on each point charge, and r is the distance from the charge to the center of the cube. Since the charges are at the corners of a cube with sides of length 10 cm, the distance from each charge to the center is sqrt√/2 times the length of the side, or 5√(3) cm.
Thus, the magnitude of the electric field due to one charge at the center of the cube is:
E = (kQ) / (5√(3) cm)² = 1.24 × 10⁴ N/C
Since there are eight charges, the total electric field at the center of the cube is:
E_total = 8E = 9.95 × 10⁴ N/C
(b) To find the electric field at the center of a face of the cube, we can again use the principle of superposition. Since the face of the cube is equidistant from four of the charges, the electric field due to those charges has the same magnitude and direction, while the electric field due to the other four charges cancels out.
So, the magnitude of the electric field at the center of a face of the cube is:
E_face = 4E = 4.96 × 10⁴ N/C
(c) If one of the corner charges is removed, the electric field at the center of the cube is no longer spherically symmetric. However, we can still use the principle of superposition to calculate the electric field due to the remaining seven charges. The electric field due to these charges at the center of the cube has the same magnitude as the electric field due to one charge at the center of a face of the cube.
Since the distance from the center to each of the remaining charges is √(2) times the length of the side of the cube.
Thus, the magnitude of the electric field due to the remaining charges is:
E_remaining = 7E = 3.18 × 10⁴ N/C
Therefore, the electric field at the center of the cube if one of the corner charges is removed is approximately 4.54 × 10⁴ N/C, which is the average of the electric fields at the centers of adjacent faces of the cube.
To know more about the Electric field, here
https://brainly.com/question/14530652
#SPJ1
4 A student notices that she gets a shock when she touches a metal door handle she has been charged by walking across a carpet. Would she get a shock if the handle was made of plastic?
Answer:
Not likely
Explanation:
She might feel a slight shock if she touches a plastic door handle after walking across a carpet, but not nearly as much as when she touches a metal handle. This is because plastic is an insulator, which means it does not conduct electricity very well. Metal is an excellent conductor. When the student drags her feet across a carpet, she builds up a negative electric charge on her body. Free electrons are released from the carpet due to friction between the carpet and her shoes, and the electrons collect on the surface of her body. If she touches a metal object like a door handle, the electrons flow from her body to the metal, resulting in a static discharge--a shock. However, if she touches a plastic object, the charge will not flow as easily and she is less likely to feel a shock. The electrons on her body repel the electrons in the metal door knob, leaving the surface of the metal doorknob positively charged, so the electrons jump across a short air gap to the metal door and she feels an electrical shock. This won't happen so dramatically with a plastic handle because the electrons in plastic won't be as easily repelled as in a metal handle.
a) Two asteroids collide and stick together. The first asteroid has mass of 18 × 10^3 kg and is initially moving at 780 m/s. The second asteroid has mass of 23 × 10^3 kg and is moving at 1050 m/s. Their initial velocities made an angle of 15° with respect to each other. What is their final speed and direction with respect to the velocity of the first asteroid?
The final velocity's angle with regard to the first asteroid's velocity is the same as the angle of the first asteroid's beginning velocity, which is 15° with respect to the x-axis.
How to determine final speed and direction?To solve this problem, using the law of conservation of momentum, the two asteroids stick together, so consider them as a single system.
Let's start by finding the initial momentum of the system:
p₁i = m₁v₁i = (18 × 10³ kg)(780 m/s) = 1.404 × 10⁷ kg⋅m/s
p₂i = m₂v₂i = (23 × 10³ kg)(1050 m/s) = 2.415 × 10⁷ kg⋅m/s
The initial momentum of the system is the vector sum of these momenta:
pi ni = p₁i + p₂i = (1.404 + 2.415) × 10⁷ kg⋅m/s = 3.819 × 10⁷ kg⋅m/s
Find the final velocity and direction of the system. Since the two asteroids stick together, final mass is the sum of their initial masses:
mf = m₁ + m₂ = (18 × 10³ kg) + (23 × 10³ kg) = 41 × 10³ kg
To find the final velocity, using the law of conservation of momentum again:
pf in = mf vfin
Since momentum is conserved:
pfin = pini
Therefore:
mf vfin = pini
vfin = pini / mf = (3.819 × 10⁷ kg⋅m/s) / (41 × 10³ kg) = 930.49 m/s
To find the direction of the final velocity, using trigonometry, define the x-axis to be parallel to the initial velocity of the first asteroid, and the y-axis to be perpendicular to the x-axis. Initial velocity of first asteroid has components:
v₁ix = v₁i cos(15°) = 758.19 m/s
v₁iy = v₁i sin(15°) = 199.78 m/s
Similarly, the initial velocity of the second asteroid has components:
v₂ix = v₂i cos(-15°) = 1041.02 m/s
v₂iy = v₂i sin(-15°) = -269.41 m/s
(Note that we use -15° for the second asteroid since its velocity makes an angle of 165° with respect to the x-axis.)
The total momentum of the system has components:
pfinx = pini = 3.819 × 10⁷ kg⋅m/s
pfiny = 0
Therefore, the final velocity of the system makes an angle θ with respect to the x-axis, where:
tan θ = pfiny / pfinx = 0
Since the y-component of the final velocity is zero, the final velocity is parallel to the x-axis.
Therefore, the direction of the final velocity with respect to the velocity of the first asteroid is the same as the direction of the initial velocity of the first asteroid, which is 15° with respect to the x-axis.
Find out more on asteroid here: https://brainly.com/question/11996385
#SPJ1
a satellite revolves around the earth in an orbit of radius 42000000m. find the value of g and its orbital speed at this hieght.
Answer:
Step 1: Given data
Acceleration due to gravity on the surface of the earth is g.
The radius of the earth is R and x is the height of the satellite above the earth's surface.
The mass of the satellite is m.
Step 2: Calculate the orbital speed of the satellite.
We know that,
mv2R+x=GMmR+x2
v=GMR+x
v=GMR2×R2R+x
Step 3: Final answer
v=gR2R+x
We can also write it as
v=gR2R+x12
Q8 (10pts)
You are working with cartesian unit vectors and ŷ in the plane of the board. Your friend is introducing a
new unit vector  = 0.52 + qŷ, but isn't sure what value q should have. Solve for q and make a
recommendation for what value they could use. If you determine more than one possible value for g,
mention this in your recommendation.
The length one vectors i, j, and k, which stand for conventional measure vectors in three different dimensions, contribute along the positive x, y, and z axes, respectively.
What are the Cartesian plane's unit vectors?Unit vectors i and j, which run along the x-axis and y-axis, respectively, define the Cartesian coordinate system. The radial unit vector r, which indicates the direction away from the origin, and the unit vector t, which is orthogonal (perpendicular) to the radial direction, together create the polar coordinate system.
Can a unit vector be created by adding two unit vectors?The size of the discrepancy is three if the product of two vectors with units is a unit vector. steps to determine the size of Consider a and b, two unit vectors whose total is a unit vector c.
To know more about conventional measure visit :
https://brainly.com/question/11037454
#SPJ1
An object vibrates with a frequency of 2200 Hz to produce sound waves that travel through air with a speed of 340 m/s. Adjacent compressions (i.e., wavelengths) in the sound wave are a distance of meters apart.
The adjacent compressions in the sound wave are 0.155 meters apart.
This distance is also known as the wavelength of the wave. We are given the frequency of the vibration and the speed of sound in air. The formula for wavelength is:
wavelength (λ) = speed of sound (v) / frequency (f)
We are given the frequency of the sound wave as 2200 Hz and the speed of sound through air as 340 m/s.
Plugging these values into the formula gives:
λ = 340 m/s / 2200 Hz = 0.155 meters
Therefore, adjacent compressions (i.e., wavelengths) in the sound wave are a distance of 0.155 meters apart.
To know more about the Wavelength, here
https://brainly.com/question/14024587
#SPJ1
4-What is the equivalent resistance of this circuit?
( )32 Ω
( )43 Ω
( )48 Ω
( )74 Ω
Explanation:
The parallel resistors ( 10 and 40 Ω) have an equivalent resistance of
( 40 * 10 ) / ( 40 + 10 ) = 8 Ω
Then you can add all of the series resistances to find the total resistance
15 + 25 + 8 Ω = 48 Ω
Remember V = IR ....then V/R = I
Current = V/ R = 55 v / 48 Ω = 1.15 A
Two small Styrofoam balls that are separated (between their centers) by 4 cm experience a force of attraction of 15 N. If the balls are separated by 8 cm, the force between them would be ___ N.
Answer:
f = 15/4 = 3.75
Explanation:
3. You may have seen this question previously but now you will approach it using energy
concepts.
A pair of sleds weighs 25 kg and experience a frictional force of 25 N. If a dog team applies a
175 N force pulling it 12 m find:
a) the work done by friction.
b) the work done by the dog team.
c) the net work done (using the net force). How does then net work compare to the answers
from the previous two parts of the question?
d) What form of energy does the frictional force represent? What form of energy does the net
force produce?
a) Work done by friction is 300 J.
b) Work done by the dog team is 2100 J
c) Net work done 1800 J.
d) loss of mechanical energy.
How to determine work done?a) The work done by friction can be calculated using the formula
W = Fd, where F = frictional force and d = distance moved.
Therefore, W = 25 N × 12 m = 300 J.
b) The work done by the dog team can be calculated using the same formula, where F = force applied by the dog team.
Therefore, W = 175 N × 12 m = 2100 J.
c) The net work done is the sum of the work done by the dog team and the work done by friction.
Therefore, the net work done is
2100 J - 300 J = 1800 J.
The net work done is positive, which means that the sleds have gained energy.
d) The frictional force represents the loss of mechanical energy due to the interaction between the sleds and the ground. This energy is converted into thermal energy or heat. The net force produced by the dog team produces kinetic energy, which is the energy of motion of the sleds.
Find out more on work done here: https://brainly.com/question/8119756
#SPJ1
6.1 Instantaneous communication. In your own words, explain why you
cannot send a message instantaneously using the mechanism of ex-
periment 6.1. If quantum mechanics were deterministic rather than
probabilistic, yet the distant atoms still always left from opposite
exits of a stern gerlach analyzer, would you then be able to send a message instantaneously?
What if the operator of the left-hand Stern-Gerlach analyzer were
somehow able to force his atom to come out of the + exit?
We can see here in one's own words, instantaneous communication would still not be conceivable even if quantum mechanics were predictable and the results of measurements could be predicted in advance. This is because, even if they were entangled, any attempt to change the state of one atom would inevitably change the state of the other atom.
What is quantum mechanics?The behavior and interaction of particles at the atomic and subatomic scales is the subject of quantum mechanics, a subfield of physics. It offers a mathematical framework for describing the probabilistic nature of physical occurrences in the microscopic world as well as the wave-particle duality of matter.
Until they are measured or observed, particles in quantum mechanics do not have fixed positions or attributes, and the measurement process might have an impact on the system being examined.
Learn more about quantum mechanics on https://brainly.com/question/26095165
#SPJ1
An engine using 1 mol of an ideal gas initially at 18.7 L and 370 K performs a cycle
consisting of four steps:
1) an isothermal expansion at 370 K from
18.7 L to 33 L ;
2) cooling at constant volume to 209 K ;
3) an isothermal compression to its original
volume of 18.7 L; and
4) heating at constant volume to its original
temperature of 370 K .
Find its efficiency. Assume that the
heat capacity is 21 J/K and the universal gas constant is 0.08206 L · atm/mol/K =
8.314 J/mol/K
the laboratory for a body. I in rth. Total:[4] (2) bout a point? ...[1] hat are they? [2] le which is ntally by an (11 iform metre rule Figure 4.1 below shows astone of mass 2kg which drops from the top of a cliff and takes two seconds to strike the ground Acceleration of free fall.g=10m/s². Stone T 77 Figure 4.1 (a) Name the form of energy possessed by the stone before it falls. (b) Determine the height of the cliff (c) Calculate (i) Ground Height,h.......... [2] The kinetic energy of the stone when half way down. [1] Kinetic energy......... The final velocity of the stone as it strikes the [2] stone Klif
The stone possesses potential energy at the top of the cliff, which is converted to kinetic energy as it falls toward the ground. Using the formula for the distance traveled by a freely falling object, we can calculate that the height of the cliff is 20 meters. The ground height is equal to zero, and when the stone is halfway down, it has a kinetic energy of 100 Joules. Using the formula for the final velocity of a freely falling object, we can calculate that the stone's final velocity as it strikes the ground is 20 m/s.
(a) The form of energy possessed by the stone before it falls is potential energy. When the stone is at the top of the cliff, it has the potential to do work due to its position relative to the ground. This potential energy is converted into kinetic energy as the stone falls towards the ground.
(b) We can use the formula for the distance traveled by a freely falling object to determine the height of the cliff:
d = 1/2 * g * t^2
where d is the distance, g is the acceleration due to gravity, and t is the time taken to fall.
Substituting the given values, we get:
d = 1/2 * 10m/s^2 * (2s)^2
d = 20 meters
Therefore, the height of the cliff is 20 meters.
(c)
(i) The ground height h is equal to zero since it is the reference level.
(ii) When the stone is halfway down, it has fallen a distance of d/2 = 10 meters. At this point, all of the potential energy has been converted to kinetic energy. We can use the formula for kinetic energy to calculate the kinetic energy of the stone:
KE = 1/2 * m * v^2
where KE is the kinetic energy, m is the mass of the stone, and v is its velocity.
Substituting the given values, we get:
KE = 1/2 * 2kg * (2 * g * d/2)
KE = 100 Joules
Therefore, the kinetic energy of the stone when halfway down is 100 Joules.
(iii) To find the final velocity of the stone as it strikes the ground, we can use the formula for the final velocity of a freely falling object:
v = sqrt(2 * g * d)
where v is the final velocity, g is the acceleration due to gravity, and d is the distance fallen.
Substituting the given values, we get:
v = sqrt(2 * 10m/s^2 * 20m)
v = sqrt(400)
v = 20 m/s
Therefore, the final velocity of the stone as it strikes the ground is 20 m/s.
To learn more about Gravitational potential energy click:
brainly.com/question/31096472
#SPJ1