Answer:
The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].
Explanation:
As CD is acceleration uniformly, the following equation of motion can be used to determine the angular acceleration:
[tex]\dot n^{2} = \dot n_{o}^{2} + 2\cdot \ddot n \cdot \Delta n[/tex]
Where:
[tex]\dot n_{o}[/tex] - Initial angular speed, measured in revolutions per minute.
[tex]\dot n[/tex] - Final angular speed, measured in revolutions per minute.
[tex]\ddot n[/tex] - Angular acceleration, measured in revolution per square minute.
[tex]\Delta n[/tex] - Change in angular position, measured in revolutions.
The angular acceleration is cleared and calculated:
[tex]\ddot n = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \Delta n}[/tex]
Given that [tex]\dot n_{o} = 0\,\frac{rev}{min}[/tex], [tex]\dot n = 430\,\frac{rev}{min}[/tex] and [tex]\Delta n = 4\, rev[/tex], the angular acceleration is:
[tex]\ddot n = \frac{\left(430\,\frac{rev}{min} \right)^{2}-\left(0\,\frac{rev}{min} \right)^{2}}{2\cdot (4\,rev)}[/tex]
[tex]\ddot n = 23112.5\,\frac{rev}{min^{2}}[/tex]
The angular accelaration measured in radians per square second is:
[tex]\alpha = \left(23112.5\,\frac{rev}{min^{2}} \right)\cdot \left(2\pi\,\frac{rad}{rev}\right)\cdot \left(\frac{1}{3600}\,\frac{min^{2}}{s^{2}} \right)[/tex]
[tex]\alpha \approx 40.339\,\frac{rad}{s^{2}}[/tex]
Net torque experimented by the CD during its accleration is equal to the product of its moment of inertia with respect to its axis of rotation and angular acceleration:
[tex]\tau = I \cdot \alpha[/tex]
Where:
[tex]I[/tex] - Moment of inertia, measured in [tex]kg \cdot m^{2}[/tex].
[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.
In addition, a CD has a form of a uniform disk, whose moment of inertia is:
[tex]I = \frac{1}{2}\cdot m \cdot r^{2}[/tex]
Where:
[tex]m[/tex] - Mass of the CD, measured in kilograms.
[tex]r[/tex] - Radius of the CD, measured in meters.
If [tex]m = 0.017\,kg[/tex] and [tex]r = 0.07\,m[/tex], then:
[tex]I = \frac{1}{2}\cdot (0.017\,kg)\cdot (0.07\,m)^{2}[/tex]
[tex]I = 4.165\times 10^{-5}\,kg\cdot m^{2}[/tex]
Now, the net torque exerted on CD is:
[tex]\tau = (4.165\times 10^{-5}\,kg\cdot m^{2})\cdot \left(40.339\,\frac{rad}{s^{2}} \right)[/tex]
[tex]\tau = 1.680\times 10^{-3}\,N\cdot m[/tex]
The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].
Complete the first and second sentences, choosing the correct answer from the given ones.
1. The water temperature in the dish depends on the A / B / C / D.
A. average kinetic energy of water molecules
B. total kinetic energy of water molecules
C. water mass. D. potential energy of the container with water
2. The internal energy of the water in the vessel is E / F / G.
E. potential energy of the vessel with water
F. average kinetic energy of water molecules
G. sum of kinetic energy and potential water molecules
Answer:
Hope this helps :)
Explanation:
1. A
2. G (because the basic definition of internal energy is, the sum of kinetic and potential energies of water molecules)
50 points!! please help :((
Answer:
Loudness: decreases
Amplitude: decreases
Pitch: stays the same
Frequency: stays the same
Explanation:
1.
An oscilloscope measures how much the microphone is vibrating, or how much electricity it is sending. This means that a louder noise will register higher on the oscilloscope. Since the size of the waves at Y is lower than at X, the loudness of the sound has decreased.
2.
Similarly to loudness, amplitude measures how far the crests of the waves are from the nodes. Since Y is closer to the center line than X, it has a lower amplitude.
3 and 4.
The pitch and frequency, for our purposes, are essentially the same thing here. They are dependent on how close together the waves on the oscilloscope are, or how quickly the microphone is vibrated. Since this stays the same throughout the entire sound, they both stay the same.
Hope this helps!
Convert from standard form to scientific notation:
0.00000013
A)1.3 x 10-7
B)13 x 108
C)1.3 x 107
D)13 x 10-8
Espresso is a coffee beverage made by forcing steam through finely ground coffee beans. Modern espresso makers generate steam at very high pressures and temperatures, but in this problem we'll consider a low-tech espresso machine that only generates steam at 100?C and atomospheric pressure--not much good for making your favorite coffee beverage.The amount of heat Q needed to turn a mass m of room temperature ( T1) water into steam at 100?C ( T2) can be found using the specific heat c of water and the heat of vaporization Hv of water at 1 atmosphere of pressure.Suppose that a commercial espresso machine in a coffee shop turns 1.50 kg of water at 22.0?C into steam at 100?C. If c=4187J/(kg??C) and Hv=2,258kJ/kg, how much heat Q is absorbed by the water from the heating resistor inside the machine?Assume that this is a closed and isolated system.Express your answer in joules to three significant figures.Q = _________________ J
Answer:
Q = 3877 KJ
Explanation:
Since, the system is closed and isolated. Therefore, the law of conservation of energy can be written as:
Heat Absorbed By Water (Q) = Heat required to raise the temperature of water (Q₁) + Heat required to convert water to steam (Q₂)
Q = Q₁ + Q₂ ----- equation (1)
Now, for Q₁:
Q₁ = m C ΔT
where,
m = Mass of Water = 1.5 kg
C = Specific Heat of Water = 4187 J/kg.°C
ΔT = Change in Temperature of Water = T₂ - T₁ = 100°C - 22°C = 78°C
Therefore,
Q₁ = (1.5 kg)(4187 J/kg.°C)(78°C)
Q₁ = 490 x 10³ J =490 KJ
Now, for Q₂:
Q₂ = m H
where,
m = Mass of Water = 1.5 kg
H = Heat of Vaporization of Water = 2258 KJ/kg
Therefore,
Q₂ = (1.5 kg)(2258 KJ/kg)
Q₂ = 3387 KJ
Substituting the values in equation (1), we get:
Q = Q₁ + Q₂
Q = 490 KJ + 3387 KJ
Q = 3877 KJ
write the answer:
physics ... i need help
Answer:
6 gallons
Explanation:
At 30 mph, the fuel mileage is 25 mpg.
After 5 hours, the distance traveled is:
30 mi/hr × 5 hr = 150 mi
The amount of gas used is:
150 mi × (1 gal / 25 mi) = 6 gal
a) Write the names of the materials used in the ohm law according to the Figure 1?
b) If the voltage of a circuit is 12 V and the resistance is 40 , What is the generated power?
Answer:
a. i. conducting wire
ii high-pass and low-pass filters
iii. Cobra-4 Xpert-link
iii. voltage source
b. Power generated is 3.6 W.
Explanation:
Ohm's law state that the current passing through a metallic conductor, e.g wire is directly proportional to the potential difference across its ends, provided temperature is constant.
i.e V = IR
i. conducting wire
ii high-pass and low-pass filters
iii. Cobra-4 Xpert-link
iii. voltage source
b. Given that; V = 12 V and R = 40 Ohm's.
P = IV
From Ohm's law, I = [tex]\frac{V}{R}[/tex]
So that;
P = [tex]\frac{V^{2} }{R}[/tex]
= [tex]\frac{12^{2} }{40}[/tex]
= [tex]\frac{144}{40}[/tex]
= 3.6 W
The power is 3.6 W.
A visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 6.01 s. What is the height of the tower
Answer:
The height of the tower is 8.96 m.
Explanation:
We have, a visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 6.01 s.
It is required to find the height of the tower. Let it is l. The time period of a simple pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
l is length of pendulum, or height of tower
[tex]l=\dfrac{T^2g}{4\pi^2}\\\\l=\dfrac{(6.01)^2\times 9.8}{4\pi^2}\\\\l=8.96\ m[/tex]
So, the height of the tower is 8.96 m.
n astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity changes, each taking place in a time interval 11.2 s . What are the average acceleration in each interval? Assume that the positive direction is to the right.
Answer:-
-1 m/s^2
Explanation:
The average acceleration is given by dividing the change in velocity by change in time;
[tex]a_f=\frac{v_f-v_i}{t_f-t_i}[/tex]
[tex]=\frac{(0-11.2)}{(11.2-0)}=-1 m/s^2[/tex]
the point to be noted here is if the velocity is to the left we substitute it with a negative sign and if it is to the right we substitute it with a positive sign.
An object, with mass 70 kg and speed 21 m/s relative to an observer, explodes into two pieces, one 4 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame
Answer:
K = 3.9 kJ
Explanation:
The kinetic energy ([tex]K_{T}[/tex]) added is given by the difference between the final kinetic energy and the initial kinetic energy:
[tex] K_{T} = K_{f} - K_{i} [/tex]
The initial kinetic energy is:
[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} [/tex]
Where m₁ is the mass of the object before the explosion and v₁ is its velocity
[tex] K_{i} = \frac{1}{2}m_{1}v_{1}^{2} = \frac{1}{2}70 kg*(21 m/s)^{2} = 1.54 \cdot 10^{4} J [/tex]
Now, the final kinetic energy is:
[tex] K_{f} = \frac{1}{2}m_{2}v_{2}^{2} + \frac{1}{2}m_{3}v_{3}^{2} [/tex]
Where m₂ and m₃ are the masses of the 2 pieces produced by the explosion and v₁ and v₂ are the speeds of these pieces
Since m₂ is 4 times as massive as m₃ and v₃ = 0, we have:
[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}v_{2}^{2} + \frac{1}{2}*\frac{1}{5}m_{1}*0 [/tex] (1)
By conservation of momentum we have:
[tex] p_{i} = p_{f} [/tex]
[tex] m_{1}v_{1} = m_{2}v_{2} + m_{3}v_{3} [/tex]
[tex] m_{1}v_{1} = \frac{4}{5}m_{1}v_{2} + \frac{1}{5}m_{1}*0 [/tex]
[tex] v_{2} = \frac{5}{4}v_{1} [/tex] (2)
By entering (2) into (1) we have:
[tex] K_{f} = \frac{1}{2}*\frac{4}{5}m_{1}(\frac{5}{4}v_{1})^{2} = \frac{1}{2}*\frac{4}{5}70 kg(\frac{5}{4}*21 m/s)^{2} = 1.93 \cdot 10^{4} J [/tex]
Hence, the kinetic energy added is:
[tex] K_{T} = K_{f} - K_{i} = 1.93 \cdot 10^{4} J - 1.54 \cdot 10^{4} J = 3.9 \cdot 10^{3} J [/tex]
Therefore, the kinetic energy added to the system during the explosion is 3.9 kJ.
I hope it helps you!
cellus
An object ends up at a position of
327 m after a displacement of -144 m.
What was its initial position?
(Unit = m)
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,
[tex]d=\text{final position}-\text{initial position}\\\\-144=327-\text{initial position}\\\\\text{initial position}=327+144\\\\\text{initial position}=471\ m[/tex]
So, its initial position was 471 m.
A bicycle wheel has an initial angular velocity of 1.10 rad/s . Part A If its angular acceleration is constant and equal to 0.200 rad/s2 , what is its angular velocity at t = 2.50 s ? (Assume the acceleration and velocity have the same direction) Express your answer in radians per second. ω = nothing rads Request Answer Part B Through what angle has the wheel turned between t = 0 and t = 2.50 s ? Express your answer in radians. Δθ = nothing rad Request Answer Provide Feedback
Let [tex]\theta[/tex], [tex]\omega[/tex], and [tex]\alpha[/tex] denote the angular displacement, velocity, and acceleration of the wheel, respectively.
(A) The wheel has angular velocity at time [tex]t[/tex] according to
[tex]\omega=\omega_0+\alpha t[/tex]
so that after 2.50 s, the wheel will have attained an angular velocity of
[tex]\omega=1.10\dfrac{\rm rad}{\rm s}+\left(0.200\dfrac{\rm rad}{\mathrm s^2}\right)(2.50\,\mathrm s)=\boxed{1.60\dfrac{\rm rad}{\rm s}}[/tex]
(B) The angular displacement of the wheel is given by
[tex]\theta=\theta_0+\omega_0t+\dfrac\alpha2t^2\implies\Delta\theta=\omega_0t+\dfrac\alpha2t^2[/tex]
After 2.50 s, the wheel will have turned an angle [tex]\Delta\theta[/tex] equal to
[tex]\Delta\theta=\left(1.10\dfrac{\rm rad}{\rm s}\right)(2.50\,\mathrm s)+\dfrac12\left(0.200\dfrac{\rm ram}{\mathrm s^2}\right)(2.50\,\mathrm s)^2=\boxed{3.38\,\mathrm{rad}}[/tex]
A subatomic particle created in an experiment exists in a certain state for a time of before decaying into other particles. Apply both the Heisenberg uncertainty principle and the equivalence of energy and mass to determine the minimum uncertainty involved in measuring the mass of this short-lived particle.
Answer:
Δm Δt> h ’/ 2c²
Explanation:
Heisenberg uncertainty principle, stable uncertainty of energy and time, with the expressions
ΔE Δt> h ’/ 2
h’= h / 2π
to relate this to the masses let's use Einstein's relationship
E = m c²
let's replace
Δ (mc²) Δt> h '/ 2
the speed of light is a constant that we can condense exact, so
Δm Δt> h ’/ 2c²
the heat capacity of 0.125Kg of water is measured to be 523j/k at a room temperature.Hence, calculate the heat capacity of water
(a) per unit mass
(b) per unit volume
Answer:
A. 4148 J/K/Kg
B. 4148 J/K/L
Explanation:
A. Heat capacity per unit mass is known as the specific heat capacity, c.
C = Heat capacity/mass(kg)
C = (523 J/K) / 0.125 Kg = 4148 J/K/Kg
B. Volume of water = mass/density
Density of water = 1 Kg/L
Volume of water = 0.125 Kg/ 1Kg/L
Volume of water = 0.125 L
Heat capacity per unit volume = (523 J/K) / 0.125 L
Heat capacity per unit volume = 4148 J/K/L
Consider a weather balloon floating in the air. There are three forces acting on this balloon: the force of gravity is FG, the force from lift towards balloon is FL, and the force from the wind is labeled Fw. The orientation of these forces along with a coordinate system is given below:
Assume that || FG || = 20 N, || FL ||= 25 N, and || Fw ll = 15 N.
Required:
Find the magnitude of the resultant force acting on the weather balloon and round your answer to two decimal places.
A pendulum on a planet, where gravitational acceleration is unknown, oscillates with a time period 5 sec. If the mass is increased six times, what is the time period of the pendulum?
Explanation:
We have, a pendulum on a planet, oscillates with a time period 5 sec. The formula used to find the time period is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
l is length of the pendulum
g is acceleration due to gravity on which it is placed
It is clear that, the time period of pendulum is independent of the mass. Hence, if the mass is increased six times, its time period remains the same.
When Marcel finds the distance L from the previous part, it turns out to be greater than Lend, the distance from the pivot to the end of the seesaw. Hence, even with Jacques at the very end of the seesaw, the twins Gilles and Jean exert more torque than Jacques does. Marcel now elects to balance the seesaw by pushing sideways on an ornament (shown in red) that is at height h above the pivot. (Figure 3)With what force in the rightward direction, Fx, should Marcel push? If your expression would give a negative result (using actual values) that just means the force should be toward the left.Express your answer in terms of W, Lend, w, L2, L3, and h.
Answer:
Fx = - (1/h)( wL2 + wL3 - wLend )
Explanation:
Assuming The twins Gilles and Jean has a weight ( w ) each
The torque that would balance the equation would be = wL2 + wL3 -------- 1
THEREFORE the ccw torques are = wLend + Fh ----------- 2
hence equation 2 equals equation 1
= wLend + Fh = wL2 + wL3 --------- 3
equation 3 can as well be represented as
F = ( 1/h) ( wL2 + wL3 - wLend )---------- 4
From equation 4 it can be seen that F is on the left hand side therefore the value of Fx is negative
therefore equation 4 is represented as
Fx = - (1/h)( wL2 + wL3 - wLend )
Suppose that 7.4 moles of a monatomic ideal gas (atomic mass = 1.39 × 10-26 kg) are heated from 300 K to 500 K at a constant volume of 0.74 m3. It may help you to recall that CV = 12.47 J/K/mole and CP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.
1) How much energy is transferred by heating during this process?2) How much work is done by the gas during this process?3) What is the pressure of the gas once the final temperature has been reached?4) What is the average speed of a gas molecule after the final temperature has been reached?5) The same gas is now returned to its original temperature using a process that maintains a constant pressure. How much energy is transferred by heating during the constant-pressure process?6) How much work was done on or by the gas during the constant-pressure process?
Answer:
Explanation:
1 ) Since it is a isochoric process , heat energy passed into gas
= n Cv dT , n is no of moles of gas , Cv is specific heat at constant volume and dT is rise in temperature .
= 7.4 x 12.47 x ( 500 - 300 )
= 18455.6 J.
2 ) Since there is no change in volume , work done by the gas is constant.
3 ) from , gas law equation
PV = nRT
P = nRT / V
= 7.4 x 8.3 x 500 / .74
= .415 x 10⁵ Pa.
4 ) Average kinetic energy of gas molecules after attainment of final temperature
= 3/2 x R/ N x T
= 1.5 x 1.38 x 10⁻²³ x 500
= 1.035 x 10⁻²⁰ J
1/2 m v² = 1.035 x 10⁻²⁰
v² = 2 x 1.035 x 10⁻²⁰ / 1.39 x 10⁻²⁶
= 1.49 x 10⁶
v = 1.22 x 10³ m /s
5 ) In this process , pressure remains constant
gas is cooled from 500 to 300 K
heat will be withdrawn .
heat withdrawn
= n Cp dT
= 7.4 x 20.79 x 200
= 30769.2 J .
6 )
gas will have reduced volume due to cooling
reduced volume = .74 x 300 / 500
= .444 m³
change in volume
= .74 - .444
= .296 m³
work done on the gas
= P x dV
pressure x change in volume
= .415 x 10⁵ x .296
= 12284 J.
Inside a stereo speaker, you will find two permanent magnets: one on the cone and one near the cone. True of false?
Answer:
false
Explanation:
A camera takes a picture that is the correct brightness and the correct zoom level, but the depth-of-focus is too small. One way to increase the depth-of-focus is to increase the f-number. Assuming that we will make changes that have the overall effect to:
1. increase the f-number, and
2. keep the brightness and the zoom level the same, which changes should we make to the aperture diameter and to the shutter time? (keep in mind we're talking about the time the shutter is open; we aren't talking about the shutter speed)
a. Increase the aperture diameter, decrease the shutter time
b. Decrease the aperture diameter, increase the shutter time
c. Increase both the aperture diameter as well as the shutter time
d. Decrease both the aperture diameter as well as the shutter time
a 15-nC point charge is at the center of a thin spherical shell of radius 10cm, carrying -22nC of charge distributed uniformly over its surface. find the magnitude and direction of the electric field (a) 2.2cm,(b)5.6cm,and (c)14 cm from the point charge.
Answer:
A) E = 278925.62 N/C with direction; radially out.
B) E = 43048.47 N/C with direction radially out.
C) E = -3214.29 N/C with direction radially in.
Explanation:
From Gauss' Law, the Electric field for any spherically symmetric charge or charge distribution is the same as the point charge formula. Thus;
E = kQ/r²
where;
Q is the net charge within the distance r.
We are given the charge Q = 15-nC and
spherical shell of radius 10cm
A) The distance r = 2.2 cm = 0.022 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²
E = 278925.62 N/C
This will be radially out ,since the net charge is positive.
B) The distance r = 5.6 cm = 0.056 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²
E = 43048.47 N/C
This will be radially out ,since the net charge is positive.
C) The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Q = 15 nC - 22 nC
Q = -7 nC = -7 x 10^(-9) C
and;
E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²
E = -3214.29 N/C
This will be radially in, since the net charge is negative. You can indicate this with a negative answer.
A) When The distance r is = 2.2 cm = 0.022 m is between the surface and also the point charge, also that so only the point charge lies within this distance and also Q = 15 NC = 15 x 10^(-9) C
Then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²Then E = 278925.62 N/CThen This will be radially out since the net charge is positive.
B) When The distance r = 5.6 cm = 0.056 m is between the surface and also the point charge, so only the point charge lies within this distance and also Q = 15 nC = 15 x 10^(-9) C
then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²Then E = 43048.47 N/CAfter that This will be radially out since the net charge is positive.
C) Then when The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Then Q = 15 nC - 22 nCAfter that Q = -7 nC = -7 x 10^(-9) CWhen E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²Then E = -3214.29 N/C Thus, This will be radially in, since the net charge is negative.Find out more information about magnitude here:
https://brainly.com/question/13502329
Water flows at 0.850 m/s from a hot water heater, through a 450-kPa pressure regulator. The pressure in the pipe supplying an upstairs bathtub 3.70m above the heater is 414-kPa. What's the flow speed in this pipe?
Answer:
The velocity is [tex]v_2= 0.45 \ m/s[/tex]
Explanation:
From the question we are told that
The initial speed of the hot water is [tex]v_1 = 0.85 \ m/s[/tex]
The pressure from the heater [tex]P_1 = 450 \ KPa = 450 *10^{3} \ Pa[/tex]
The height of the hot water before flowing is [tex]h_1 = 0 \ m[/tex]
The height of bathtub above the heater is [tex]h_2 = 3.70 \ m[/tex]
The pressure in the pipe is [tex]P_2 = 414 KPa = 414 *10^{3} \ Pa[/tex]
The density of water is [tex]\rho = 1000 \ kg/m^3[/tex]
Apply Bernoulli equation
[tex]P_1 + \rho gh_1 +\frac{1}{2} \rho v_1^2 = \rho g h_2 + \frac{1}{2}\rho v_2 ^2[/tex]
Substituting values
[tex](450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) = (1000 * *9.8*3.70) + (0.5*1000*v_2^2 )[/tex]
=> [tex]v_2^2 = \frac{ (450 *10^{3}) + (1000 * 9.8 *0 ) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}[/tex]
=> [tex]v_2= \sqrt{ \frac{ (450 *10^{3}) + (1000 * 9.8 * 0) + (0.5 * 1000 * 0.85^2) -[ (1000 * *9.8*3.70) ]}{0.5*1000}}[/tex]
=> [tex]v_2= 0.45 \ m/s[/tex]
A small block with a mass of 0.120 kg is attached to a cord passing through a hole in a frictionless, horizontal surface (Fig. 6.34). The block is originally revolving at a distance of 0.40 m from the hole with a speed of 0.70 m/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.10 m. At this new distance, the speed of the block is observed to be 2.80 m/s.
(a) What is the tension in the cord in the original situation when the block has speed v = 0.70 m/s? (b) What is the tension in the cord in the final situation when the block has speed v = 2.80 m/s? (c) How much work was done by the person who pulled on the cord?
Answer:
a) 0.147 N
b) 9.408 N
c) 9.261 N
Explanation:
The tension on the cord is the only force keeping the block in circular motion, thus representing the entirety of its centripetal force [tex]\frac{mv^{2} }{r}[/tex]. Plugging in values for initial and final states and we get answers for a and b. The work done by the person causes the centripetal force to increase, and thus is the difference between the final tension and the initial tension.
The Gulf Stream off the east coast of the United States can flow at a rapid 3.8 m/s to the north. A ship in this current has a cruising speed of 8.0 m/s . The captain would like to reach land at a point due west from the current position.
At this heading, what is the ship's speed with respect to land?
Answer:
61.6° west of South
Explanation:
The ship goes to the south at an equal rate just like water flows to the north. Thus, the velocities would balance making the ship move towards the west.
Since we're dealing with water, the ship goes 3.8 m / s to the South, but a lot still remains to the west. Finding this would require us drawing a triangle. 3.8 m/s point down side and the hypotenuse is 8
cos(θ) = [adjacent/hypotenuse]
Cos θ = 3.8/8
Cos θ = 0.475
θ = cos^-1 (0.475)
θ = 61.6°
Therefore the angle is 61.6° west of South.
A ball is thrown upward from the ground with an initial speed of 19.2 m/s; at the same instant, another ball is dropped from a building 18 m high. After how long will the balls be at the same height above the ground?
Answer:
0.938 seconds
Explanation:
For the ball thrown upwards, we use the formula below to solve it:
[tex]s = ut - \frac{1}{2}gt^2[/tex]
where s = distance moved
u = initial speed = 19.2 m/s
t = time taken
g = acceleration due to gravity = 9.8 [tex]m/s^2[/tex]
Let x be the height at which both balls are level, this means that:
=> [tex]x = 19.2t - 4.9t^2[/tex]________(1)
For the ball dropped downwards, we use the formula below:
[tex]s = ut + \frac{1}{2}gt^2[/tex]
u = 0 m/s
At the point where both balls are level:
s = 18 - x
=> [tex]18 - x = 0 + 4.9t^2[/tex]
=> [tex]x = 18 - 4.9t^2[/tex]__________(2)
Equating both (1) and (2):
[tex]19.2t - 4.9t^2 = 18 - 4.9t^2\\\\=> 19.2t = 18\\\\t = 18/19.2 = 0.938 secs[/tex]
They will be level after 0.938 seconds
Near the top of the Citigroup Center building in New York City, there is an object with mass of 4.8 x 105 kg on springs that have adjustable force constants. Its function is to dampen wind-driven oscillations of the building by oscillating at the same frequency as the building is being driven-the driving force is transferred to the object, which oscillates instead of the entire building X 50%
Part (a) What effective force constant, in N/m, should the springs have to make them oscillate with a period of 1.2 s? k = 9.5 * 106 9500000 X Attempts Remain 50%
Part (b) What energy, in joules, is stored in the springs for a 1.6 m displacement from equilibrium?
Answer:
The force constant is [tex]k =1.316 *10^{7} \ N/m[/tex]
The energy stored in the spring is [tex]E = 1.68 *10^{7} \ J[/tex]
Explanation:
From the question we are told that
The mass of the object is [tex]M = 4.8*10^{5} \ kg[/tex]
The period is [tex]T = 1.2 \ s[/tex]
The period of the spring oscillation is mathematically represented as
[tex]T =2 \pi \sqrt{ \frac{M}{k}}[/tex]
where k is the force constant
So making k the subject
[tex]k = \frac{4 \pi ^2 M }{T^2}[/tex]
substituting values
[tex]k = \frac{4 (3.142) ^2 (4.8 *10^{5}) }{(1.2)^2}[/tex]
[tex]k =1.316 *10^{7} \ N/m[/tex]
The energy stored in the spring is mathematically represented as
[tex]E = \frac{1}{2} k x^2[/tex]
Where x is the spring displacement which is given as
[tex]x = 1.6 \ m[/tex]
substituting values
[tex]E = \frac{1}{2} (1.316 *10^{7}) (1.6)^2[/tex]
[tex]E = 1.68 *10^{7} \ J[/tex]
A compact disk, which has a diameter of 12.0 cm, speeds up uniformly from zero to 4.30 rev/s in 3.05 s . Part A What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 2.00 rev/s
Answer:
[tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]
Explanation:
Angular acceleration
[tex]\begin{aligned}
\alpha &=\frac{\left(\omega_{f}-\omega_{i}\right)}{t} \\
\omega_{i} &=0 \\
\omega_{f} &=4.30 \mathrm{rev} / \mathrm{s} \\
&=4.30 \times 2 \pi \mathrm{rad} / \mathrm{s} \\
&=27.02 \mathrm{rad} / \mathrm{s} \\
\alpha &=\frac{(27.02-0)}{3.15} \\
&=8.57 \mathrm{m} / \mathrm{s}^{2}
\end{aligned}[/tex]
a)Tangential acceleration
[tex]\begin{aligned}
a &=r \alpha \\
&=\frac{12}{2} \times 10^{-2} \times 8.57 \\
a &=0.51 \mathrm{m} / \mathrm{s}^{2}
\end{aligned}[/tex]
The tangential acceleration of the disc is [tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]
This question involves the concepts of the equations of motion for angular motion.
The tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed reaches 2 rev/s will be "0.532 m/s²".
First, we will use the first equation of motion for the angular motion to find out the angular acceleration:
[tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]
where,
[tex]\alpha[/tex] = angular acceleration = ?
[tex]\omega_f[/tex] = final angular speed = (4.3 rev/s)[tex](\frac{2\pi\ rad}{1\ rev})[/tex] = 27.02 rad/s
[tex]\omega_i[/tex] = initial angular speed = 0 rad/s
t = time taken = 3.05 s
Therefore,
[tex]\alpha =\frac{27.02\ rad/s-0\ rad/s}{3.05\ s}\\\\\alpha= 8.86\ rad/s^2[/tex]
Now, the tangential acceleration can be given as follows:
[tex]a=r\alpha\\a=(\frac{diameter}{2})(8.86\ rad/s^2)\\\\a=(\frac{0.12\ m}{2})(8.86\ rad/s^2)\\\\[/tex]
a = 0.532 m/s²
Learn more about the angular motion here:
brainly.com/question/14979994?referrer=searchResults
The attached picture shows the angular equations of motion.
A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic field that produces on it an upward force exactly equal in magnitude to the wire's weight, causing the wire to "levitate."
Required:
a. What is the field's magnitude?
b. What is the field's direction?
Answer:
The classification of that same issue in question is characterized below.
Explanation:
The given values are:
Current, I = 50.0 A
Diameter, d = 0.10 cm
(a)...
As we know,
⇒ Magnetic force = Copper wire's weight
So,
⇒ [tex]B\times I\times L=M\times g[/tex]
On putting the estimated values, we get
⇒ [tex]B\times 50\times 1=7.037\times 10^{-3}\times 9.81[/tex]
⇒ [tex]50B=69.03297\times 10^{-3}[/tex]
⇒ [tex]B=1.38\times 10^{-3} \ T[/tex]
(b)...
As we know,
⇒ [tex]m=\delta\times L\times \frac{\pi \ d^2}{4}[/tex]
⇒ [tex]=8960\times 1\times \frac{\pi \ (0.001)^2}{4}[/tex]
⇒ [tex]=2240\times \pi \ 0.000001[/tex]
⇒ [tex]=7.037\times 10^{-3} \ kg[/tex]
A potential difference of 71 mV is developed across the ends of a 12.0-cm-long wire as it moves through a 0.27 T uniform magnetic field at a speed of 6.0 m/s. The magnetic field is perpendicular to the axis of the wire.
Required:
What is the angle between the magnetic field and the wire's velocity?
Answer:
Explanation: please see attached file I attached the answer to your question.
The angle between the magnetic field and the wire's velocity is 33.2 degrees.
Calculation of the angle:Since the potential difference = 71mv = 71 *10 ^-3 V
The length is 12 cm = 0.12m
The magnetic field i.e. B = 0.27T
The speed or v = 4 m/s
here we assume [tex]\theta[/tex] be the angle
So,
e = Bvl sin[tex]\theta[/tex]
So,
[tex]Sin\theta[/tex] = e/bvl
= 71*10^-3 / 0.27 *4*0.12
= 0.5478
= 33.2 degrees
Therefore, the angle should be 33.2 degrees
Learn more about an angle here: https://brainly.com/question/14661707
g it as been suggested that solar powered space ships could get a boost from a laser either on earth or in orbit around earth. the laser would have to be very powerful to give any measurable benefit to the ship. if the laser produces a 0.18-m diameter beam of 490-nm light, what is the minimum angular spread of the beam?
Answer:
The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians (or 3.32 μrad).
Explanation:
The minimum angular spread of a wave is the ratio of its narrowest diameter to its wavelength.
From Rayleigh's formula,
Angular spread = 1.22 (wavelength ÷ diameter)
= 1.22 (λ ÷ D)
Given that:
diameter, D = 0.18 m and wavelength, λ = 490 nm, then;
Angular spread of the laser beam = 1.22 (λ ÷ D)
= 1.22[tex](\frac{490*10^{-9} }{0.18})[/tex]
= 1.22× 2.7222 × [tex]10^{-6}[/tex]
= 3.3211 × [tex]10^{-6}[/tex] rad
The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians.
A 1100 kg car pushes a 1800 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the car push against the ground with a force of 4500 N.A) What is the magnitude of the force of the car on the truck?B) What is the magnitude of the force of the truck on the car?
Answer:The answer is 3000 N.
Force (F) is the multiplication of mass (m) and acceleration (a).
F = m · a
It is given:
mc = 1000 kg
mt = 2000 kg
total force: F = 4500 N
total mass: m = mc + mt
Let's calculate acceleration which is common:
a = F/m = F/(mc + mt) = 4500/(1000 + 2000) = 4500/3000 = 1.5 m/s²
Now, when we know acceleration, let's calculate force on the truck:
Ft = mt · a = 2000 · 1.5 = 3000 N
Explanation: