what should you do when working with a heat source? always assume that glassware and metal objects are hot. with a volatile chemical? work in the fume hood with a bottle containing a chemical? all of these

Answers

Answer 1

When working with a heat source, one should always assume that glassware and metal objects are hot. Option A is correct.

Working with a heat source requires special precautions to ensure safety in the laboratory. Heat sources such as Bunsen burners, hot plates, and ovens can generate high temperatures that can cause burns or fires if not handled properly. One important safety rule when working with a heat source is to assume that glassware and metal objects are hot.

This means that one should avoid touching or handling these objects without protective equipment, even if they appear to be cool or inactive. This is because they may still be hot from exposure to the heat source and can cause burns or injuries. Other safety measures when working with a heat source include using appropriate personal protective equipment, such as heat-resistant gloves and safety goggles, and ensuring good ventilation in the laboratory to prevent exposure to fumes or volatile chemicals. Option A is correct.

What should you do when working with a heat source?

Always assume that glassware and metal objects are hot. With a volatile chemicalWork in the fume hood with a bottle containing a chemicalAll of these

To know more about the Glassware, here

https://brainly.com/question/31039573

#SPJ4


Related Questions

Part A
Predict the sign of the entropy change, ΔS∘, for each of the reaction displayed.
Drag the appropriate items to their respective bins.
Help
Reset
Ag+(aq)+Cl−(aq)→AgCl(s)
2KClO3(s)→2KCl(s)+3O2(g)
2N2O(g)→2N2(g)+O2(g)
2Mg(s)+O2(g)→2MgO(s)
C7H16(g)+11O2(g)→7CO2(g)+8H2O(g)
H2O(l)→H2O(g)
Positive
Negative
SubmitHintsMy AnswersGive UpReview Part
Part B
Calculate the standard entropy change for the reaction
2Mg(s)+O2(g)→2MgO(s)
using the data from the following table:
Substance ΔH∘f (kJ/mol) ΔG∘f (kJ/mol) S∘ [J/(K⋅mol)]
Mg(s) 0.00 0.00 32.70
O2(g) 0.00 0.00 205.0
MgO(s) -602.0 -569.6 27.00
Express your answer to four significant figures and include the appropriate units.
ΔS∘ =

Answers

The standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] is -326.3 J/(K⋅mol).

What is entropy?

Entropy is a measure of the energy available to do work that is contained within a system. It is a measure of the randomness or disorder within a system. In thermodynamics, entropy is an important concept because it measures the amount of energy that is not available to do work. Entropy is often associated with the amount of energy that is released when a system undergoes a change.

The standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] can be calculated using the equation given below:

ΔS° =ΣS°products−ΣS∘reactants

Substituting the given values in the equation,

ΔS° = [2(27.00 J/(K⋅mol))]−[(32.70 J/(K⋅mol))+(205.0 J/(K⋅mol))]

ΔS° = -326.3 J/(K⋅mol)

Therefore, the standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] is -326.3 J/(K⋅mol).

To learn more about entropy

https://brainly.com/question/419265

#SPJ4

Reactions of lithium with various oxidizing


agents have been examined for use in batteries. A particularly well studied case is that of the lithium-sulfur battery. What is the


potential that is possible for a battery that


operates on the reaction of Li(s) with S(s)?


The individual reduction potentials are given


here:


Li+ + eâ â Li E⦠= â3. 05 V


S + 2 eâ â S2â E⦠= â0. 48 V


Answer in units of V

Answers

The result is negative, this means the reaction is not spontaneous under standard conditions. In other words, a lithium-sulfur battery cannot be constructed under standard conditions.

To calculate the potential for the reaction of Li(s) with S(s), we need to use the reduction potentials and the Nernst equation:

Ecell = Ereduction(cathode) - Ereduction(anode)

where Ereduction is the reduction potential, cathode is the reduction half-reaction occurring at the cathode (where reduction occurs) and anode is the oxidation half-reaction occurring at the anode (where oxidation occurs).

In this case, Li(s) is the anode and S(s) is the cathode. So, we need to flip the sign of the reduction potential for the anode:

Ecell = E(S2-/S) - (-E(Li+/Li))

Ecell = 0.48 V - 3.05 V

Ecell = -2.57 V

To know more about lithium-sulfur battery refer to-

https://brainly.com/question/31104871

#SPJ11

A student has a sample of copper (I) sulfate hydrate. If the hydrate has a mass of 20 grams and the anhydrous salt has a mass of 12 grams, what is the percent of water in the sample? %

Answers

Student has a sample of copper (I) sulfate hydrate, then the percent of water in the sample is 40%.

What is meant by a hydrate?

In chemistry, a hydrate is a compound that contains water molecules that are chemically bound to the atoms or ions of the compound.

Mass of the anhydrous salt is given as 12 grams.

So, mass of water = total mass - mass of anhydrous salt

mass of water = 20 g - 12 g

mass of water = 8 g

Now, % water = (mass of water ÷ total mass) × 100

% water = (8 g ÷ 20 g) × 100

% water = 40%

Therefore, the percent of water in the sample is 40%.

To know more about hydrate, refer

https://brainly.com/question/16275027

#SPJ1

Why porphyry copper is not generally found near areas where volcanic activity, often associated with plate collisions, has occurred in the past

Answers

Typically, the hydrothermal activity connected to magmatic intrusions in the Earth's crust produces porphyry copper deposits.

Although plate collisions and volcanic activity can supply the heat and fluid sources required for such hydrothermal activity, porphyry copper deposits are typically not found in regions where these processes have previously taken place because of the intense deformation and alteration associated with these occurrences that can destroy or displace the deposits. Furthermore, rather than porphyry copper deposits, the intense volcanic activity may lead to the formation of other types of the mineral deposits, such as epithermal or massive sulfide deposits hosted by the volcano.

To know more about porphyry copper deposits, here

brainly.com/question/25633332

#SPJ1

g why does the addition of ammonia increase the solubility of the slightly soluble salt agcl? group of answer choices ammonia forms a very soluble complex ion by coordinating to ag and removing it from the solution. this shifts the solubility equilibrium to the right. ammonia reacts with chloride ion, removing it from solution and shifting the solubility equilibrium to the right. ammonia breaks down into hydrogen gas and nitrogen gas, which react with the solid agcl and make it more soluble. ammonia is a lewis acid, which reacts with the chloride lewis base and makes the solid more soluble. ammonia surrounds the agcl molecules and pulls them into solution making them more soluble.

Answers

The addition of ammonia increase the solubility of slightly soluble salt AgCl as : ammonia forms very soluble complex ion by coordinating to Ag and removing it from solution. This shifts the solubility equilibrium to right.

Why does the addition of ammonia increase solubility of slightly soluble salt AgCl?

When ammonia (NH₃) is added to a solution containing AgCl, it can coordinate with silver ions (Ag+) to form a complex ion called [Ag(NH₃)₂]+, which is highly soluble in water. This complex ion removes the Ag+ ions from the solution, thereby decreasing the concentration of Ag+ in the solution. According to Le Chatelier's principle, this will shift the equilibrium of AgCl dissolution reaction to the right, resulting in increase in the solubility of AgCl.

To know more about solubility, refer

https://brainly.com/question/23946616

#SPJ1

If an electron is released during radioactive decay which type of Decay has taken place a gamma decay b beta decay c electromagnetic decay d alpha decay​

Answers

If an electron is released during radioactive decay, the type of decay that has taken place is beta decay.

In beta decay, a neutron within the nucleus is converted into a proton, releasing an electron (also called a beta particle) in the process.

In alpha decay an alpha particle is emitted from the atomic nucleus and a new atomic nucleus is formed. So, no release of electron is there.

In gamma decay the unstable nuclei release excess energy by continuous electromagnetic process. This does not involve release of electron.

The electromagnetic decay also do not involve the release of an electron.

Thus option b is the correct answer.

To know more about beta decay visit:

https://brainly.com/question/27770519

#SPJ11

Write a net ionic equation for the reaction that occurs when sodium carbonate (aq) and excess hydroiodic acid are combined. ​

Answers

A net ionic equation for the reaction that occurs when sodium carbonate (aq) and excess hydroiodic acid are combined.

CO₃²⁻(aq) + 2H⁺(aq) -> H2O(l) + CO2(g)

The balanced equation for the reaction between sodium carbonate (Na2CO3) and excess hydroiodic acid (HI) is:

Na2CO3(aq) + 2HI(aq) → 2NaI(aq) + CO2(g) + H2O(l)

The ionic equation is:

2Na⁺(aq) + CO₃²⁻(aq) + 2H⁺(aq) + 2I⁻(aq) -> 2Na⁺(aq) + 2I⁻(aq) + H2O(l) + CO2(g)

The spectator ions are Na+ and CO32-.

Next, we can cancel out the spectator ions (Na⁺ and I⁻) to get the net ionic equation:

CO₃²⁻(aq) + 2H⁺(aq) -> H2O(l) + CO2(g)

That's the net ionic equation for the reaction between sodium carbonate and excess hydroiodic acid.

To know more about the net ionic equation, click below.

https://brainly.com/question/15466794

#SPJ11

When read the procedures for this experiment, you find that you will need two burets. What is the purpose of the second buret?

Answers

The second buret is used for titrating a standard solution of known concentration against the analyte solution.

The second buret is typically used in titration experiments, where a standard solution of known concentration is used to determine the concentration of an unknown analyte solution. The first buret is filled with the analyte solution, and the second buret is filled with the standard solution. The standard solution is slowly added to the analyte solution until the endpoint of the reaction is reached.

The volume of the standard solution required to reach the endpoint is recorded, and the concentration of the analyte solution can be calculated using stoichiometry and the known concentration of the standard solution. The second buret is essential for accurately measuring the volume of the standard solution added to the analyte solution and ensuring accurate results.

To learn more about analyte solution, here

https://brainly.com/question/31182268

#SPJ4

C (g) + e (g) <-- --> 2 w (g)
initially, there are 3.5 moles of w placed in a 2.5 l evacuated container. equilibrium is allowed to establish and the value of k = 2.34 e-5 for the reaction under current conditions. determine the concentration of e at equilibrium.

a. [e] = 8.352 e -6
b. [e] = 0.00578
c. [e] = 0.00289
d. cannot solve using 5% approximation rule

Answers

The answer is (d) cannot solve using 5% approximation rule.

The balanced equation for the reaction is:

C(g) + e(g) ⇌ 2W(g)

The equilibrium constant expression is given by:

Kc = [W]^2 / [C][e]

At equilibrium, let's assume that x moles of C react with x moles of e to produce 2x moles of W. Therefore, the equilibrium concentrations are:

[C] = (3.5 - x) mol/L

[e] = (x) mol/L

[W] = (2x) mol/L

Substituting these values :

Kc = [(2x)^2] / [(3.5 - x)(x)]

Simplifying this expression:

4x^2 + 2.34x - 8.19 = 0

Solving this quadratic equation :

x = (-2.34 ± sqrt(2.34^2 - 4(4)(-8.19))) / (2(4))

x = (-2.34 ± 3.64) / 8

We can ignore the negative root as it does not make physical sense. Therefore:

x = 0.4575 mol/L

Thus, the concentration of e at equilibrium is:

[e] = 0.4575 mol/L

Therefore, the answer is (d) cannot solve using 5% approximation rule.

To know more about equilibrium concentrations refer here:

https://brainly.com/question/13043707

#SPJ11

150.0g of steam at 145°C would need to lose how many joules of energy to become a liquid at 98°C? How
many cal of energy would that be?

Answers

The amount of heat that would be given out is 14.1kJ.

What is the heat capacity?

Heat capacity is a physical property that describes the amount of heat required to raise the temperature of a substance by one degree Celsius. We know that the heat capacity of steam is 2J/g/°C.

We can tell that;

H = mcdT

H = heat that is absorbed or evolved

m = mass of the object

c = Heat capacity of the object

dT = temperature change

Then we have that;

H = 150 * 2 * (98 - 145)

H = -14.1kJ This is the heart lost

Learn more about heat capacity:https://brainly.com/question/29766819

#spj1

P4 +O2–> P2O3


If there is 65. 1 g P4 and 34. 2 g O2, what is the Limiting Reactant? How much Product


is formed (in grams)?

Answers

Limiting reactant: O2  and Amount of product formed: 47.7 g P2O3

To determine the limiting reactant and the amount of product formed, we need to first calculate the amount of product that can be formed from each reactant, assuming they completely react.

From the balanced chemical equation:

[tex]P4 + O2 → P2O3[/tex]

The stoichiometry of the reaction shows that 1 mole of P4 reacts with 5 moles of O2 to form 2 moles of [tex]P2O3[/tex]. Therefore, we need to calculate the number of moles of each reactant:

Number of moles of P4 = 65.1 g / 123.9 g/mol = 0.525 mol

Number of moles of O2 = 34.2 g / 32.0 g/mol = 1.069 mol

Next, we can calculate the amount of product that can be formed from each reactant:

From P4: (0.525 mol P4) x (2 mol P2O3 / 1 mol P4) x (109.9 g/mol P2O3) = 115.6 g P2O3

From O2: (1.069 mol O2) x (2 mol P2O3 / 5 mol O2) x (109.9 g/mol P2O3) = 47.7 g P2O3

Therefore, we can see that the amount of P2O3 that can be formed from O2 is lower than that of P4. This indicates that O2 is the limiting reactant, and P4 is in excess.

The maximum amount of product that can be formed is 47.7 g P2O3. This is the amount of product that would be formed if all the O2 was consumed. Therefore, the answer is:

Limiting reactant: O2

Amount of product formed: 47.7 g P2O3

To know more about Limiting reactant refer to-

https://brainly.com/question/14225536

#SPJ11

An ethanol plant distills alcohol from corn. The distiller processes 2. 0 t/h of feed containing 15% alcohol and 82% water; the rest is inert material. The bottoms (waste) produced is 85% of the feed and contains 94% water, 3. 5% inert material, and 2. 5% alcohol. The vapor (product) from the top of the distiller is passed through a condenser and cooled to produce the final product. Determine the rate of production of the final product and its composition

Answers

To determine the rate of production of the final product and its composition, we can start by calculating the mass balance for the alcohol in the system.

Given:

Feed rate = 2.0 t/h

Alcohol content in the feed = 15%

Water content in the feed = 82%

Bottoms composition: 94% water, 3.5% inert material, and 2.5% alcohol

We can assume that the inert material remains constant throughout the process, so we only need to consider the alcohol and water components.

Calculation of alcohol mass in the feed:

Alcohol mass in feed = Feed rate * Alcohol content

= 2.0 t/h * 0.15

= 0.3 t/h

Calculation of water mass in the feed:

Water mass in feed = Feed rate * Water content

= 2.0 t/h * 0.82

= 1.64 t/h

Calculation of alcohol mass in the bottoms:

Alcohol mass in bottoms = Alcohol mass in feed * Bottoms composition (alcohol)

= 0.3 t/h * 0.025

= 0.0075 t/h

Calculation of water mass in the bottoms:

Water mass in bottoms = Water mass in feed * Bottoms composition (water)

= 1.64 t/h * 0.94

= 1.5416 t/h

Calculation of alcohol mass in the product:

Alcohol mass in product = Alcohol mass in feed - Alcohol mass in bottoms

= 0.3 t/h - 0.0075 t/h

= 0.2925 t/h

Calculation of water mass in the product:

Water mass in product = Water mass in feed - Water mass in bottoms

= 1.64 t/h - 1.5416 t/h

= 0.0984 t/h

Therefore, the rate of production of the final product is 0.2925 t/h, and its composition is approximately 2.5% alcohol and 97.5% water.

To know more aboutproduction refer here

https://brainly.com/question/22852400#

#SPJ11

Given the following balanced reaction of hydrogen peroxide decomposing to form oxygen gas and water, how many moles of oxygen gas, O2, are produced from 0. 980 moles of hydrogen peroxide?





0. 490 mol


0. 50 mol


1. 96 mol

Answers

0.490 moles of oxygen gas, O₂, are produced from 0. 980 moles of hydrogen peroxide, option A is correct.

The balanced chemical equation for the decomposition of hydrogen peroxide is:

2 H₂O₂ → 2 H₂O + O₂

According to the equation, 1 mole of oxygen gas is created for every 2 moles of hydrogen peroxide that breaks down.

So, to find the number of moles of oxygen gas produced from 0.980 moles of hydrogen peroxide, we can use a proportion:

1 mole of O₂ is created from 2 moles of H₂O₂.

0.980 moles of H₂O₂ produces x moles of O₂

x = (0.980 mol × 1 mol O₂) ÷ 2 mol H₂O₂

x = 0.490 mol

Hence, option A is correct.

To learn more about oxygen follow the link:

brainly.com/question/21220673

#SPJ4

The complete question is:

Given the following balanced reaction of hydrogen peroxide decomposing to form oxygen gas and water, how many moles of oxygen gas, O₂, are produced from 0. 980 moles of hydrogen peroxide?

A) 0.490 mol

B) 0.50 mol

C) 1.96 mol

What is the freezing point of a solution in which 2. 50 grams of sodium chloride are added to 230. 0 mL of water

Answers

The freezing point of the solution is -0.3462 °C. When, 2. 50 grams of sodium chloride are added to 230. 0 mL of water.

To calculate the freezing point of the solution, we use the freezing point depression equation;

[tex]ΔT_{f}[/tex] = [tex]K_{f.m}[/tex]

where [tex]ΔT_{f}[/tex] is the change in freezing point, [tex]K_{f}[/tex] is the freezing point depression constant of water (1.86 °C/m), and m is the molality of the solution.

First, we calculate the molality (m) of the solution;

Molar mass of NaCl = 58.44 g/mol

Number of moles of NaCl = 2.50 g / 58.44 g/mol

= 0.0428 mol

Mass of water=230.0 mL x 1.00 g/mL

= 230.0 g

molality (m) = 0.0428 mol / 0.230 kg

= 0.186 mol/kg

Now we can plug in the values into the freezing point depression equation;

[tex]ΔT_{f}[/tex] = 1.86 °C/m x 0.186 mol/kg = 0.3462 °C

The freezing point of pure water is 0 °C, so the freezing point of the solution is;

Freezing point = 0 °C - 0.3462 °C

= -0.3462 °C

Therefore, the freezing point of the solution is -0.3462 °C.

To know more about freezing point here

https://brainly.com/question/2292439

#SPJ4

Phosphorus-32 has a half-life of 14. 0 days. Starting with 8. 00 g of 32P , how many grams will remain after 98. 0 days ?

Answers

Starting with 8.00 g of Phosphorus-32 (32P) with a half-life of 14.0 days, after 98.0 days, 0.125 g of  32P will remain.

The half-life of a radioactive isotope is the time required for half of the original sample to decay. In this case, the half-life of 32P is 14.0 days, which means that after 14.0 days, half of the 32P will decay, leaving 4.00 g.

To find out how much 32P remains after 98.0 days, we need to determine the number of half-lives that have passed. Dividing 98.0 days by 14.0 days gives us 7.

Therefore, after 7 half-lives, the amount of 32P that remains can be calculated as:

Amount remaining = (1/2)⁷ x 8.00 g = 0.125 g

Therefore, after 98.0 days, 0.125 g of 32P will remain.

To know more about half-life, refer here:

https://brainly.com/question/24710827#

#SPJ11

Use the half-reaction method to balance the following equation, which is in an acidic solution: CIO (ag) + I - (ag) -› I (s) + CI- (ag)

Answers

The balanced equation using the half-reaction method for the given redox reaction in acidic solution is: CIO₃⁻ (aq) + 3I⁻ (aq) + 6H⁺ (aq) → I₂ (s) + 3CI⁻ (aq) + 3H₂O (l)

The first step in balancing the redox equation using the half-reaction method is to separate the reaction into two half-reactions, one for the oxidation and one for the reduction. In this case, the iodide ion (I⁻) is oxidized to form molecular iodine (I₂) while the chlorate ion (CIO₃⁻) is reduced to form chloride ion (CI⁻). The half-reactions are:

Oxidation half-reaction: I⁻ → I₂

Reduction half-reaction: CIO₃⁻ → CI⁻

Balance the number of atoms of each element in each half-reaction. In the oxidation half-reaction, we have one iodine atom on both sides. In the reduction half-reaction, we have one chlorine atom on both sides. Balance the charges in each half-reaction by adding electrons to the more positive side. In the oxidation half-reaction, we add two electrons to the left side to balance the charge. In the reduction half-reaction, we add six electrons to the left side to balance the charge.

Multiply each half-reaction by a coefficient so that the number of electrons transferred is equal in both half-reactions. In this case, we need to multiply the oxidation half-reaction by three so that it has six electrons, which is the same as the reduction half-reaction. After multiplying and adding the two half-reactions, we get the balanced equation shown above.

To know more about the Half-reaction, here

https://brainly.com/question/29443725

#SPJ1

The formula for ethanol is ch3ch2oh. choose the mole
ratio of h to c in this molecule.

Answers

The mole ratio of H to C in ethanol is 1:3.

The mole ratio of H to C in ethanol, which has a chemical formula of CH3CH2OH, can be determined by looking at the number of atoms of each element present in the molecule. In this case, there are six carbon atoms and two hydrogen atoms. Therefore, the mole ratio of H to C in ethanol is 1:3.

This means that for every one mole of hydrogen atoms in ethanol, there are three moles of carbon atoms present. This ratio is important because it can be used to calculate the amount of reactants needed to produce a certain amount of product in a chemical reaction.

For example, if ethanol was being produced from a reaction involving a certain amount of carbon and hydrogen, the mole ratio of H to C could be used to determine how much of each reactant was needed to produce a specific amount of ethanol.

Overall, understanding the mole ratio of H to C in a molecule like ethanol can be useful in a variety of chemical applications and reactions.

Know more about Mole ratio here:

https://brainly.com/question/15288923

#SPJ11

write the chemical equation of koh dissociating in a solution to form ions. based on how the chemical dissociates, is koh an acid or a base? explain how you know.

Answers

KOH forms K+(aq) + OH-(aq). KOH is therefore a base as it disassociates to produce OH- (hydroxide) ions. If it were an acid, it would disassociate to produce H+ ions.

The chemical equation for KOH dissociating in water to form ions is:

[tex]\rm KOH (aq) \rightarrow K^+(aq) + OH^-(aq)[/tex], which shows that KOH is a base.

A chemical equation is an illustration of a chemical reaction's reactants and products.

Equation for the dissociation of KOH:

[tex]\rm KOH (aq) \rightarrow K^+(aq) + OH^-(aq)[/tex]

In the above mentioned reaction, potassium ions ([tex]\rm K^+[/tex]) and hydroxide ions ([tex]\rm OH^-[/tex]) are generated by the dissociation of KOH.

Based on how the chemical dissociates, KOH is a base. This is because it produces hydroxide ions ([tex]\rm OH^-[/tex]) when it dissociates in water. ([tex]\rm OH^-[/tex]) is produced by base in water.

Therefore, KOH is a base because it produces hydroxide ions ([tex]\rm OH^-[/tex]) when it dissociates in water.

Learn more about Chemical Equation here:

https://brainly.com/question/28294176

#SPJ4

How many moles of O2 are needed to fully combust 5. 67 moles of C4H10?


C4H10(l) + O2(g)→ CO2(g) + H2O(l)

Answers

36.855 moles of O2 are needed to fully combust 5.67 moles of C4H10.

To determine the number of moles of O2 needed to fully combust 5.67 moles of C4H10, first, we need to balance the given chemical equation:

C4H10(l) + O2(g) → CO2(g) + H2O(l)

Balanced equation:
C4H10(l) + 13/2 O2(g) → 4 CO2(g) + 5 H2O(l)

Now, we can use stoichiometry to find the moles of O2 required. Here's a step-by-step explanation:

Step 1: Identify the given and unknown values.
Given: moles of C4H10 = 5.67 moles
Unknown: moles of O2

Step 2: Use the balanced equation to find the mole ratio between C4H10 and O2.
Mole ratio (C4H10 : O2) = 1 : 13/2

Step 3: Use the mole ratio to determine the moles of O2 required for complete combustion.
(5.67 moles C4H10) * (13/2 moles O2 / 1 mole C4H10) = X moles O2

Step 4: Calculate the moles of O2.
X = 5.67 * (13/2) = 36.855 moles O2

So, 36.855 moles of O2 are needed to fully combust 5.67 moles of C4H10.

To know more about moles, visit:

https://brainly.com/question/31597231#

#SPJ11

For a particular reaction at 121. 3 °C, ΔG=53. 29 kJ/mol, and ΔS=623. 51 J/(mol⋅K). Calculate ΔG for this reaction at −79. 6°C

Answers

The change in Gibbs free energy for a reaction will be ∆G = 76.8 kJ/mol, as calculated in the below section.

Using the below relationship for change in Gibbs free energy, the change in enthalpy can be calculated as follows.

∆G = ∆H - T∆S

We can use this equation to find ∆H:

∆H = ∆G + T∆S

∆G = -64.76 kJ/mol

T = 132 + 273 = 405K

∆S = 676.54 J/Kmol = 0.677 kJ/Kmol

(change units to match those of ∆G)

∆H = -64.76 + (405)(0.677) = -64.76 + 274

∆H = + 209.4 kJ/mol

Now we can use this to find ∆G at -77.1ºC  (196K)

∆G = ∆H - T∆S

∆G = 209.4 kJ/mol - (196K)(0.677 kJ/Kmol)

∆G = 209.4 - 132.6

∆G = 76.8 kJ/mol

To learn more about Gibbs free energy check the link below-

https://brainly.com/question/9179942

#SPJ4

What is the minimum voltage needed to cause the electrolysis cacl2?

Answers

To cause the electrolysis of CaCl2, a minimum voltage of 4.23 volts is needed.

This voltage is required to overcome the energy barrier of the chemical reaction and initiate the dissociation of the CaCl2 compound into its constituent elements, calcium and chlorine ions.

Electrolysis is the process of using an electric current to drive a chemical reaction. In the case of CaCl2, the electrolysis will involve the decomposition of the CaCl2 into its component ions, calcium (Ca2+) and chloride (Cl-) ions. This process requires energy, which can be supplied by an external electric current.

The minimum voltage needed to cause electrolysis can be estimated using the standard reduction potential (E0) of the reaction. For the reduction of Ca2+ to calcium metal, the standard reduction potential is -2.87 volts, and for the oxidation of Cl- to chlorine gas, the standard reduction potential is -1.36 volts.

The overall reaction for the electrolysis of CaCl2 is:

CaCl2 → Ca + Cl2

The standard reduction potential for this reaction can be calculated by adding the standard reduction potential for the reduction of Ca2+ to calcium metal and the standard reduction potential for the oxidation of Cl- to chlorine gas:

E0 = -2.87 V + (-1.36 V) = -4.23 V

This means that a minimum voltage of 4.23 volts would be needed to drive the electrolysis of CaCl2. However, this is only an estimate, and the actual voltage required may be higher due to factors such as the resistance of the electrolyte solution, the efficiency of the electrodes, and other experimental conditions.


To know more about electrochemical cell:

https://brainly.com/question/31435269

#SPJ11

Here are the atomic masses of hypothetical elements:


X = 13. 25 amu


Y = 69. 23 amu


Z = 109. 34 amu


What is the % composition by mass of Y in the hypothetical compound


with formula X2Y5Z3?


Enter your answer to two decimal places. Do not include the % sign, just


the numerical answer.

Answers

The percentage composition by mass of Y in the hypothetical compound X2Y5Z3 is 34.53%.

To calculate the percentage composition by mass of Y in the hypothetical compound X2Y5Z3, we first need to calculate the total molar mass of the compound:

Total molar mass = (2 moles of X x 13.25 amu/mole) + (5 moles of Y x 69.23 amu/mole) + (3 moles of Z x 109.34 amu/mole)
Total molar mass = 26.50 amu + 346.15 amu + 328.02 amu
Total molar mass = 700.67 amu

Next, we can calculate the percentage composition by mass of Y:

percentage composition by mass of Y = (mass of Y / total molar mass) x 100%
percentage composition by mass of Y = (5 moles of Y x 69.23 amu/mole / 700.67 amu) x 100%
percentage composition by mass of Y = 34.53%

Therefore, the percentage composition by mass of Y in the hypothetical compound X2Y5Z3 is 34.53%.

Know more about Percentage Composition here:

https://brainly.com/question/11952337

#SPJ11

A student adds 7.00 g of dry ice (solid co2) to an empty balloon. what will be the volume of the balloon at stp after all the dry ice sublimes (converts to gaseous co2)

Answers

The volume of the balloon after the dry ice sublimes will be 3.40 L at STP.

The balanced chemical equation for the sublimation of solid CO₂ is:

CO₂(s) → CO₂(g)

At STP (standard temperature and pressure), which is 0°C (273.15 K) and 1 atm (101.325 kPa), one mole of any ideal gas occupies 22.4 L of volume. We can use this information to calculate the volume of CO₂ gas produced by the sublimation of 7.00 g of dry ice.

First, we need to convert the mass of dry ice to moles of CO₂ using the molar mass of CO₂, which is 44.01 g/mol:

7.00 g CO₂ × (1 mol CO₂/44.01 g CO₂) = 0.159 moles CO₂

Next, we can use the ideal gas law to calculate the volume of CO₂ gas produced:

PV = nRT

where P is the pressure (1 atm), V is the volume we want to find, n is the number of moles of CO₂ (0.159 moles), R is the gas constant (0.08206 L·atm/mol·K), and T is the temperature (273.15 K):

V = nRT/P = (0.159 mol)(0.08206 L·atm/mol·K)(273.15 K)/(1 atm) = 3.40 L

To know more about sublimes, refer here:

https://brainly.com/question/28626755#

#SPJ11

write the net ionic equation for the acid-base hydrolysis equilibrium that is established when ammonium nitrate is dissolved in water.

Answers

The net ionic equation when the ammonium nitrate is dissolved in the water :

NH₄NO₃(s) + H₂O(l) ⇄ NH₄⁺(aq)  + NO₃⁻(aq)

The component that will ionizes in the aqueous solution that is the ammonium ion. The nitrate ion is that does not ionize in the aqueous solution.

The acid-base hydrolysis in equilibrium that is the established when the ammonium nitrate is dissolved in the water, the net ionic equation is as :

NH₄NO₃(s) + H₂O(l) ⇄ NH₄⁺(aq)  + NO₃⁻(aq)

The ions has the equal and the oppisite charges. They both can combine in the electrically neutral ratio of the 1:1.  The net ionic equation can be depicts by the molecules and the ions.

To learn more about net ionic equation here

https://brainly.com/question/29299745

#SPJ4

The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C represent individual particles. Based on the graph, which of the following statements is likely to be true?

Group of answer choices

Particle A and C are more likely to participate in the reaction than particle B.

Most of the particles of the two gases have very high speeds.

A fewer number of particles of gas at T1 are likely to participate in the reaction than the gas at T2.

The average speed of gas particles at T2 is lower than the average speed of gas particles at T1.

Answers

A fewer number of particles of gas at T1 are likely to participate in the reaction than the gas at T2.

What is the true statement?

A gas's molecular energies are distributed in accordance with temperature according to the Maxwell-Boltzmann distribution, and the most likely energy rises with increasing temperature.

The peak of the energy distribution changes to higher energies as a gas's temperature rises, and an increase in the proportion of molecules with higher energies follows. The likelihood of high-energy gas molecule collisions, which may result in chemical reactions or other types of energy transfer.

Learn more about gases:https://brainly.com/question/19695466

#SPJ1

Balance the Following Equations:

Instruction: While balancing equation write the physical state of

reactants and products as well as any reaction conditions.

1) CuSO4 + KI →Cu2I2 + K2SO4 + I2

2) NH3 + O2 →NO + H2O

3)Fe2O3 + CO → Fe + CO2

4) Cu + AgNO3 → Cu(NO3)2 + Ag

5) Pb(NO3)2 + H2SO4 → PbSO4 + HNO3

6) CaCO3 + HCl → CaCl2 + H2O(l) + CO2

7)MnO2 + HCl → MnCl2 + H2O + Cl2


I will report any comments that are not appropriate for the question asked or simply typed something for the points. Only answer if u know​

Answers

While balancing equation write the physical state of reactants and products as well as any reaction conditions.

What is reactants ?

Reactants are the substances that are present at the start of a chemical reaction. They are typically the substances that are used up during the reaction and are converted into different products. Reactants are usually written on the left side of a chemical equation, while the products are written on the right side. Reactants are essential components of any chemical reaction and are essential in order for the reaction to take place. Reactants are also known as substrates or starting materials.

Balancing the Following Equations:

1) CuSO4(s) + 2KI(aq) → Cu2I2(s) + K2SO4(aq) + I2(g)

2) 2NH3(g) + O2(g) → 2NO(g) + 2H2O(g)

3) 3Fe2O3(s) + 4CO(g) → 6Fe(s) + 3CO2(g)

4) Cu(s) + 2AgNO3(aq) → Cu(NO3)2(aq) + 2Ag(s)

5) 2Pb(NO3)2(aq) + H2SO4(aq) → PbSO4(s) + 2HNO3(aq)

6) CaCO3(s) + 2HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)

7) 2MnO2(s) + 4HCl(aq) → 2MnCl2(aq) + 2H2O(l) + Cl2(g)

To learn more about reactants

https://brainly.com/question/26283409

#SPJ4

What is the mass percentage of a solution that contains 152 g of KNO3 in 7.86 kg of water

Answers

Answer:

the mass percentage of the solution containing 152 g of KNO3 in 7.86 kg of water is 1.90%.

Explanation:

To find the mass percentage of a solution, we need to divide the mass of the solute by the mass of the solution and then multiply by 100%.

The mass of the solution is the sum of the mass of the solute (152 g) and the mass of the solvent (7.86 kg or 7860 g).

mass of solution = mass of solute + mass of solvent

mass of solution = 152 g + 7860 g

mass of solution = 8012 g

Now, we can calculate the mass percentage:

mass percentage = (mass of solute / mass of solution) x 100%

mass percentage = (152 g / 8012 g) x 100%

mass percentage = 1.90%

the mass percentage of the solution containing 152 g of KNO3 in 7.86 kg of water is 1.90%.

Which group of the periodic table contains element t?

Answers

Hi! Element "t" does not exist in the periodic table.  

The known chemical elements are listed in the periodic chart in increasing atomic number order. Elements that have comparable chemical and physical properties are grouped together in columns referred to as "groups" in the table's rows and columns. The periodic table has 18 groups, numbered from 1 to 18.

In chemical equations and formulas, each element in the periodic table is represented by a distinct symbol made up of one or two letters. For instance, the letters "H" and "He" stand for hydrogen, "C" stands for carbon, and so on.

If you could provide me with more information about the element you are referring to, such as its full name or its atomic number, I would be happy to help you locate it on the periodic table and tell you which group it belongs to.

To know more about the periodic table, click here;

https://brainly.com/question/31672126

#SPJ11

20. 0 g of Potassium reacts with water to produce Potassium hydroxide and hydrogen gas.


2 K + 2 H2O —> 2 KOH + H2


How many miles of hydrogen are there?

Answers

To solve this problem, we need to use the balanced chemical equation for the reaction of Potassium and water:

2K + 2H2O → 2KOH + H2

This equation tells us that for every 2 moles of Potassium that react with water, we get 1 mole of hydrogen gas.

So, if we have 20.0 g of Potassium, we need to first convert this to moles using the molar mass of Potassium:

20.0 g K x (1 mol K / 39.10 g K) = 0.511 mol K

Now we can use the stoichiometry of the balanced equation to find the moles of hydrogen produced:

0.511 mol K x (1 mol H2 / 2 mol K) = 0.255 mol H2

Therefore, there are 0.255 moles of hydrogen produced in the reaction.:

2K + 2H2O → 2KOH + H2

This equation tells us that for every 2 moles of Potassium that react with water, we get 1 mole of hydrogen gas.

So, if we have 20.0 g of Potassium, we need to first To solve this problem, we need to use the balanced chemical equation for the reaction of Potassium and water:

2K + 2H2O → 2KOH + H2

This equation tells us that for every 2 moles of Potassium that react with water, we get 1 mole of hydrogen gas.

So, if we have 20.0 g of Potassium, we need to first convert this to moles using the molar mass of Potassium:

20.0 g K x (1 mol K / 39.10 g K) = 0.511 mol K

Now we can use the stoichiometry of the balanced equation to find the moles of hydrogen produced:

0.511 mol K x (1 mol H2 / 2 mol K) = 0.255 mol H2

Now we can use the stoichiometry of the balanced equation to find the moles of hydrogen produced:

0.511 mol K x (1 mol H2 / 2 mol K) = 0.255 mol H2

Therefore, there are 0.255 moles of hydrogen produced in the reaction.

To know more about stoichiometry click here:

brainly.com/question/14935523

#SPJ11

Consider the reaction below. At equilibrium, which species would be present in higher concentration? Justify your answer in terms of thermodynamic favorability and the equilibrium constant.



4NH₃(g) + 3 O₂ (g) ⇆ 2N₂ + 6 H₂O(g) ΔG = -1360 kJ/mol

Answers

The given reaction is a reversible reaction where reactants (4NH₃(g) + 3 O₂(g)) combine to form products (2N₂ + 6H₂O(g)) and vice versa. At equilibrium, both reactants and products are present in concentrations such that the rate of the forward reaction is equal to the rate of the backward reaction. This state is called equilibrium.

To determine which species would be present in higher concentration at equilibrium, we need to analyze the thermodynamic favorability of the reaction. The change in Gibbs free energy (ΔG) is a measure of thermodynamic favorability, where a negative ΔG indicates that the reaction is spontaneous and favorable in the forward direction.

In this case, the given value of ΔG is -1360 kJ/mol, which is a large negative value. This suggests that the forward reaction (4NH₃(g) + 3 O₂(g) → 2N₂ + 6H₂O(g)) is highly favorable thermodynamically.The equilibrium constant (Kc) is another important parameter that helps to determine the species present at equilibrium.

Kc is the ratio of the product of the concentrations of the products raised to their stoichiometric coefficients to the product of the concentrations of the reactants raised to their stoichiometric coefficients. The higher the value of Kc, the greater the concentration of the products at equilibrium.

In this reaction, the equilibrium constant is calculated by using the formula:

Kc = ([N₂]² [H₂O]⁶) / ([NH₃]⁴ [O₂]³)

As the value of Kc is greater than 1, it suggests that at equilibrium, the products (N₂ and H₂O) would be present in higher concentrations as compared to the reactants (NH₃ and O₂). This is due to the thermodynamic favorability of the reaction, where the forward reaction is more favorable than the backward reaction.

In conclusion, at equilibrium, the species present in higher concentrations would be N₂ and H₂O, due to the thermodynamic favorability of the reaction and the high value of the equilibrium constant.

To know more about reversible reaction  refer here

https://brainly.com/question/16614705#

#SPJ11

Other Questions
Sin-1 (-1/2) exact value Two similar cylinders have heights 6cm and 30cm. The volume of the smaller cylinder is 90cm3. What is the volume of the larger cylinder? Which expression is equivalent to 5^3 10^-2? PLS HELP ME FAST!!!Write an expression for the sequence of operations described below. Subtract 5 from 7, then divide 3 by the result.Type x if you want to use a multiplication sign. Type / if you want to use a division sign. Do not simplify any part of the expression. A shipping company must design a closed rectangular shipping crate with a square base. The volume is 12288ft3. The material for the top and sides costs $2 per square foot and the material for the bottom costs $10 per square foot. Find the dimensions of the crate that will minimize the total cost of material. Whistle Works manufacturers safety whistle keychains. They have the following information available to prepare their master budget: Whistle Works sells each whistle for $12. It takes 3 ounces of metal to produce each whistle at a cost of $0. 50 per ounce. They prefer to have 10% of materials required for the following month's production in ending inventory as well. What is the total cost of direct materials for November to meet production needs A man earned wages of 38,800 received 1600 in interest from savings account and contributed to 3200 to tax deferred retirement plan he was entitled to personal exemption of 2900 and had had deductions totaling 4950 find his gross income adjust gross income and taxable income This question has two parts. First, answer Part A. Then, answer Part B.Part AMrs. Miller is ordering an L-shaped countertop with the dimensions shown for her kitchen.349-ft3-A15 ft3 ft What is the idea that the threat of complete annihilation would prevent two nuclear powers from starting a nuclear war?A) Mutually Assured Nuking (MAN) B) The Arms Race C) Mutually Assured Destruction (MAD) Eliminate D) Demobilization Find the equation of the axis ofsymmetry for this function.f(x) = -4x + 8x - 28Hint: To find the axis of symmetry, use the equation: x =FR2aSimplify your answer completely. Enterthe number that belongs in the green box.x = [?]Enter Complete the next two tasks based on your previous reading of "Arab and the Camel."In your own words, give a 4-6 sentence summary in Spanish about the story.In 4-6 Spanish sentences, write about what you think the moral of the story is. What lesson do you think the story is trying to teach? Feel free to use a personal example to demonstrate your point. This question has two parts. First, answer Part A. Then, answer Part B. Part A How does the narrator help the reader understand Ruths personality? Aby allowing the reader to observe how Ruth interacts with Dorian B by allowing the reader to observe how Dorian treats Ruth C by allowing the reader to understand Ruths opinion of both Darius and Dorian D by allowing the reader to observe how Darius treats Ruth and Dorian differently Part B Select the excerpt from the passage that supports the response in Part A. A "What are you talking about? his mother said, setting down her book and pulling her reading glasses from their perch on her nose. " B "If Dorian picked a few pieces of the white vegetable off for his plate, Darius would think: I bet now he can spell it. " C "No, sweetheart, Dorian won that bee, she said, but you came really close. Youd studied so hard, and I was so proud of you!" D "So why cant she keep her memory organized? Dorian thought, and then immediately wished he hadnt. " Find the solution to the linear system using Gaussian elimination x+2y=5 2x+3y=6 Roy made a pizza that is 12 inches in diameter. He knows he can eat about 84. 8 in, at what angle should Roy cut the pizza in radians? Round your answer to the tenths place The mean age of students in a Large math class is less than 30. A simple random sample of the students has a mean age of 29.3Choose the correct answer Unit 8: right triangles & trigonometry homework 4 trigonometry finding sides and angles An object of mass 20 g is moving in a horizontal circle of radius 250 cm at a speed of 50 cm/s. What is the centripetal acceleration experienced by the object? Write an equation to show the total length of the bandages if they are placed end-to-endThere is an image attached btw The defeat of the English at the battle of Yorktown was a military factor that led to the end of the American Revolution. What was one economic factor? What was one political factor? Which statement could be made based on the diagram below?A) m3 + m6 = 90B) 3 = 6C) 3 = 5D) m4 + m5 = 180