Answer:
99.8
Explanation:
most massive the sun is at the center of the universe
Volume of an block is 5 cm3. If the density of the block is 250 g/cm3, what is the mass of the block ?
Answer:
The mass of the block is 1250g.
Explanation:
Given that the formula for density is ρ = mass/volume. Then you have to substitute the values into the formula :
[tex]ρ = \frac{mass}{volume} [/tex]
Let density = 250,
Let volume = 5,
[tex]250 = \frac{m}{5} [/tex]
[tex]m = 250 \times 5[/tex]
[tex]m = 1250g[/tex]
Escaping from a tomb raid gone wrong, Lara Croft (m = 62.0 kg) swings across an alligator-infested river from an 8.80-m-long vine. If her speed at the bottom of the swing is 6.30 m/s and she makes it safely across the river, what is the minimum breaking strength of the vine?
Answer:
887.2 N
Explanation:
Given that
Mass of Lara, m = 62 kg
Length of the vine, l = 8.8 m
Speed of the swing, v = 6.3 m/s Then,
We start by calculating her weight.
w = mass * acceleration
w = mg
w = 62 * 9.8
w = 607.6 N
F(c) = mv²/l, on substituting
F(c) = (62 * 6.3²) / 8.8
F(c) = 2460.78 / 8.8
F(c) = 279.6 N
T - 607.6 N = 279.6 N
T = 607.6 N + 279.6 N
T = 887.2 N
Thus, the minimum breaking strength of the vine is 887.2 N
The minimum breaking strength of the vine is about 900N.
TensionTension is a force developed by a rope, string, or cable when stretched under an applied force.
Given:
Mass (m) = 62 kg, length (l) = 8.8 m, velocity (v) = 6.3 m/s, g = 10 m/s².
Weight(W) = m * g = 62 * 10 = 620N
centripetal force = F(c) = mv²/l = 62 * 6.3² / 8.8 = 279.6N
T - W = F(c)
T - 620 = 279.6
T = 900N
The minimum breaking strength of the vine is about 900N.
Find out more on Tension at: https://brainly.com/question/24994188
The starships of the Solar Federation are marked with the symbol of the Federation, a circle, whereas starships of the Denebian Empire are marked with the Empire's symbol, an ellipse whose major axis is n times its minor axis (a=nb in the figure ).
How fast, relative to an observer, does an Empire ship have to travel for its markings to be confused with those of a Federation ship? Use c for the speed of light in a vacuum.
Express your answer in terms of n and c.
Complete question
The complete question is shown on the first uploaded image
Answer:
The velocity is [tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]
Explanation:
From the question we are told that
a = nb
The length of the minor axis of the symbol of the Federation, a circle, seen by the observer at velocity v must be equal to the minor axis(b) of the Empire's symbol, (an ellipse)
Now this length seen by the observer can be mathematically represented as
[tex]h = t \sqrt{1 - \frac{v^2}{c^2} }[/tex]
Here t is the actual length of the major axis of of the Empire's symbol, (an ellipse)
So t = a = nb
and b is the length of the minor axis of the symbol of the Federation, (a circle) when seen by an observer at velocity v which from the question must be the length of the minor axis of the of the Empire's symbol, (an ellipse)
i.e h = b
So
[tex]b = nb [\sqrt{1 - \frac{v^2}{c^2} } ][/tex]
[tex][\frac{1}{n} ]^2 = 1 - \frac{v^2}{c^2}[/tex]
[tex]v^2 =c^2 [1- \frac{1}{n^2} ][/tex]
[tex]v^2 =c^2 [\frac{n^2 -1}{n^2} ][/tex]
[tex]v = c* \sqrt{1 - \frac{1}{n^2} }[/tex]
A jeep starts from rest with a constant acceleration of 4m/s2.At the same time a car travels with a constant speed of 36km/h overtake and passes the jeep how far beyond the starting point will the jeep overtakes the car?
Answer:
25m
Explanation:
Let's assume the Jeep attains a velocity of 36km/h ; a constant speed same with that of the car.
While the Jeep is accelerating to that speed, the car with that speed passes it.
Now we can calculate the time taken for the Jeep to attain the velocity of 36km/h on her constant acceleration.
This time is t = v/a; from Newton's Law of Motion:
a = V-U / t ; a-acceleration
V is final velocity = 36km/h
U is initial velocity 0 since the body starts from rest.
Hence t = 36000/3600 ÷ 4 = 2.5s
Note conversting from km/h to m/s we multiply by 1000/3600.
But the distance covered by the car while the Jeep just accelerates is
S = U × t = 10× 2.5 = 25m.
Note From Newton's law of Motion, distance for constant speed is defined as: U × t
Hence the Car would be 25m off the starting point just as the Jeep accelerates. It would overtake the Jeep when it just covers 25m from the Jeep starting point.
A string is stretched between fixed supports separated by 72.0 cm. It is observed to have resonant frequencies of 370 and 555 Hz, and no other resonant frequencies between these two.(a) What is the lowest resonant frequency for this string?(b) What is the wave speed for this string?
Answer:
(a) f = 185 Hz
(b) v = 266.4 m/s
Explanation:
(a) The lowest frequency can be calculated by using the following formula for the calculation of the modes (resonant frequencies) in a string:
[tex]f_n=\frac{nv}{2L}[/tex]
[tex]f_n=nf[/tex]
n: order of the mode
v: velocity of the waves in the string
L: length of the string = 72.0cm = 0.72m
fn: frequency of the n-th mode
With the information about two consecutive modes you can find the lowest resonant frequency. First you find the resonant mode n:
[tex]f_n=nf\\\\f_{n-1}=(n-1)f\\\\\frac{f_n}{f_{n-1}}=\frac{n}{n-1}[/tex]
you solve the previous equation for n:
[tex](n-1)f_n=nf_{n-1}\\\\555n-555=370n\\\\n=3[/tex]
With this information you can calculate the lowest resonant frequency:
[tex]f_n=nf\\\\f=\frac{f_n}{n}=\frac{555}{3}=185Hz[/tex]
b) You have information about two consecutive modes fn, fn-1. Then, you can calculate the velocity of the waves:
[tex]f_{n}-f_{n-1}=n\frac{v}{2L}-(n-1)\frac{v}{2L}\\\\f_n-f_{n-1}=\frac{v}{2L}\\\\v=2L(f_n-f_{n-1})[/tex]
fn = 555 Hz
fn-1: 370 Hz
[tex]v=2(0.72m)(555-370)Hz=266.4\frac{m}{s}[/tex]´
hence, the velocityof the waves in the string is 266.4 m/s
510 g squirrel with a surface area of 935 cm2 falls from a 4.8-m tree to the ground. Estimate its terminal velocity. (Use the drag coefficient for a horizontal skydiver. Assume that the squirrel can be approximated as a rectanglar prism with cross-sectional area of width 11.6 cm and length 23.2 cm. Note, the squirrel may not reach terminal velocity by the time it hits the gr
Answer:
The terminal velocity is [tex]v_t =17.5 \ m/s[/tex]
Explanation:
From the question we are told that
The mass of the squirrel is [tex]m_s = 50\ g = \frac{50}{1000} = 0.05 \ kg[/tex]
The surface area is [tex]A_s = 935 cm^2 = \frac{935}{10000} = 0.0935 \ m^2[/tex]
The height of fall is h =4.8 m
The length of the prism is [tex]l = 23.2 = 0.232 \ m[/tex]
The width of the prism is [tex]w = 11.6 = 0.116 \ m[/tex]
The terminal velocity is mathematically represented as
[tex]v_t = \sqrt{\frac{2 * m_s * g }{\dho_s * C * A } }[/tex]
Where [tex]\rho[/tex] is the density of a rectangular prism with a constant values of [tex]\rho = 1.21 \ kg/m^3[/tex]
[tex]C[/tex] is the drag coefficient for a horizontal skydiver with a value = 1
A is the area of the prism the squirrel is assumed to be which is mathematically represented as
[tex]A = 0.116 * 0.232[/tex]
[tex]A = 0.026912 \ m^2[/tex]
substituting values
[tex]v_t = \sqrt{\frac{2 * 0.510 * 9.8 }{1.21 * 1 * 0.026912 } }[/tex]
[tex]v_t =17.5 \ m/s[/tex]
Parallel light rays with a wavelength of 610nm fall on a single slit. On a screen 3.10m away, the distance between the first dark fringes on either side of the central maximum is 4.00mm.
What is the width of the slit?
Answer:
The width of the slit will be ".946 mm".
Explanation:
The given values are:
Wavelength = 610 × 10⁻⁹
Length, L = 3 m
As we know,
⇒ [tex]\frac{y}{L} = \frac{m(wavelength)}{a}[/tex]
On putting the estimated values, we get
⇒ [tex]\frac{2\times 10^{-3}}{3.1} = \frac{(1)(610 X 10^{-9})}{a}[/tex]
On applying cross-multiplication, we get
⇒ [tex]a=9.46\times 10^{-4}[/tex]
⇒ [tex]a = .946 mm[/tex]
A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to: A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rad/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to:__________.
a) 19 s
b) 17 s
c) 21 s
d) 23 s
e) 15 s
Starting from rest, the wheel attains an angular velocity of 25 rad/s in a matter of 10 s, which means the angular acceleration [tex]\alpha[/tex] is
[tex]25\dfrac{\rm rad}{\rm s}=\alpha(10\,\mathrm s)\implies\alpha=2.5\dfrac{\rm rad}{\mathrm s^2}[/tex]
For the next 37 s, the wheel maintains a constant angular velocity of 25 rad/s, meaning the angular acceleration is zero for the duration. After this time, the wheel undergoes an angular acceleration of -1.5 rad/s/s until it stops, which would take time [tex]t[/tex],
[tex]0\dfrac{\rm rad}{\rm s}=25\dfrac{\rm rad}{\rm s}+\left(-1.5\dfrac{\rm rad}{\mathrm s^2}\right)t\implies t=16.666\ldots\,\mathrm s[/tex]
which makes B, approximately 17 s, the correct answer.
The time interval of angular deceleration is 16.667 seconds, whose closest integer is 17 seconds. (B. 17 s.)
Let suppose that the grinding wheel has uniform Acceleration and Deceleration. In this question we need to need to calculate the time taken by the grinding wheel to stop, which is found by means of the following Kinematic formula:
[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex] (1)
Where:
[tex]\omega_{o}[/tex] - Initial angular velocity, in radians per second.
[tex]\omega[/tex] - Final angular velocity, in radians per second.
[tex]\alpha[/tex] - Angular acceleration, in radians per square second.
[tex]t[/tex] - Time, in seconds.
If we know that [tex]\omega = 0\,\frac{rad}{s}[/tex], [tex]\omega_{o} = 25\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.5\,\frac{rad}{s^{2}}[/tex], then the time taken by the grinding wheel to stop:
[tex]t = \frac{0\,\frac{rad}{s}-25\,\frac{rad}{s}}{-1.5\,\frac{rad}{s^{2}} }[/tex]
[tex]t = 16.667\,s[/tex]
The time interval of angular deceleration is 16.667 seconds. (Answer: B)
Please this related question: https://brainly.com/question/10708862
In a Venn diagram, the separate circles contain characteristics unique to each compared and the intersection contains characteristics that are common to both items being compared. This Venn diagram compares the inner and outer planets. What belongs in the center section?
a. -Revolve around the Sun
-Rotate on an axis
-Generally have rings
b. -Revolve around the Sun
-Rotate on axis
-Generally have moons
c. -Rotate around the Sun
-Revolve on an axis
-Generally have moons
d. -Rotate around the Sun
-Revolve on an axis
-Generally have rings
Answer:
B. revolve around the sun
rotate on an axis
generally have moons
Explanation:
edge 2021
Use the Bohr model to address this question. When a hydrogen atom makes a transition from the 5 th energy level to the 2nd, counting the ground level as the first,
A. What is the energy E of the emitted photon in electron volts?、
B. What is the wavelength in nanometers of the emitted photon?
C. What is the radius of the hydrogen atom in nanometers in its initial 5th energy level?
Answer:
A. 2.82 eV
B. 439nm
C. 59.5 angstroms
Explanation:
A. To calculate the energy of the photon emitted you use the following formula:
[tex]E_{n1,n2}=-13.4(\frac{1}{n_2^2}-\frac{1}{n_1^2})[/tex] (1)
n1: final state = 5
n2: initial state = 2
Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):
[tex]E_{5,2}=-13.6(\frac{1}{5^2}-\frac{1}{2^2})=2.82eV[/tex]
B. The energy of the emitted photon is given by the following formula:
[tex]E=h\frac{c}{\lambda}[/tex] (2)
h: Planck's constant = 6.62*10^{-34} kgm^2/s
c: speed of light = 3*10^8 m/s
λ: wavelength of the photon
You first convert the energy from eV to J:
[tex]2.82eV*\frac{1J}{6.242*10^{18}eV}=4.517*10^{-19}J[/tex]
Next, you use the equation (2) and solve for λ:
[tex]\lambda=\frac{hc}{E}=\frac{(6.62*10^{-34} kg m^2/s)(3*10^8m/s)}{4.517*10^{-19}J}=4.39*10^{-7}m=439*10^{-9}m=439nm[/tex]
C. The radius of the orbit is given by:
[tex]r_n=n^2a_o[/tex] (3)
where ao is the Bohr's radius = 2.380 Angstroms
You use the equation (3) with n=5:
[tex]r_5=5^2(2.380)=59.5[/tex]
hence, the radius of the atom in its 5-th state is 59.5 anstrongs
A) The energy E of the emitted photon in electron volts is; E = 2.856 eV
B) The wavelength in nanometers of the emitted photon is; λ = 434.4nm
C) The radius of the hydrogen atom in nanometers in its initial 5th energy level is; rₙ = 1.323 nm
A) Formula for the energy E of the emitted photons is;
E = -13.6([tex]\frac{1}{n_{2}^2} - \frac{1}{n_{1}^2}[/tex])
We are given;
n₂ = 5
n₁ = 2
Thus;
E = -13.6([tex]\frac{1}{5^2} - \frac{1}{2^2}[/tex])
E = 2.856 eV
B) The formula for the wavelength is;
λ = hc/E
where;
h is Planck's constant = 6.626 × 10⁻³⁴ m².kg/s
c is speed of light = 3 × 10⁸ m/s
E is energy of photon
λ is wavelength of the photon
Earlier we saw that E = 2.856 eV. Converting to Joules gives;
E = 4.5758 × 10⁻¹⁹ J
Thus;
λ = (6.626 × 10⁻³⁴ × 3 × 10⁸)/(4.5758 × 10⁻¹⁹)
λ = 4.344 × 10⁻⁷ m
Converting to nm gives;
λ = 434.4nm
C) Formula for the radius of the hydrogen atom is;
rₙ = n²a₀
where;
a₀ is bohr's radius = 5.292 × 10⁻¹¹ m
n = 5
Thus;
rₙ = 5² × 5.292 × 10⁻¹¹
rₙ = 1.323 × 10⁻⁹
rₙ = 1.323 nm
Read more at; https://brainly.com/question/17227537
If you were to drop a rock from a tall building, assuming that it had not yet hit the ground, and neglecting air resistance. What is its vertical displacement (in m) after 4 s? (g = 10 m/s2)
Answer:
d = 80 m
its vertical displacement (in m) after 4 s is 80 m
Explanation:
From the equation of motion;
d = vt + 0.5at^2 ......1
Where;
d = displacement
v = initial velocity = 0 (dropped with no initial speed)
t = time of flight = 4s
a = g = acceleration due to gravity = 10 m/s^2
Substituting the given values into equation 1;
d = 0(4) + 0.5(10 × 4^2)
d = 0.5(10×16)
d = 80 m
its vertical displacement (in m) after 4 s is 80 m
Crystalline germanium (Z=32, rho=5.323 g/cm3) has a band gap of 0.66 eV. Assume the Fermi energy is half way between the valence and conduction bands. Estimate the ratio of electrons in the conduction band to those in the valence band at T = 300 K. (See eq. 10-11) Assume the width of the valence band is ΔΕV ~ 10 eV.
Answer:
= 8.2*10⁻¹²
Explanation:
Probability of finding an electron to occupy a state of energy, can be expressed by using Boltzmann distribution function
[tex]f(E) = exp(-\frac{E-E_f}{K_BT} )[/tex]
From the given data, fermi energy lies half way between valence and conduction bands, that is half of band gap energy
[tex]E_f = \frac{E_g}{2}[/tex]
Therefore,
[tex]f(E) = exp(-\frac{E-\frac{E_g}{2} }{K_BT} )[/tex]
Using boltzman distribution function to calculate the ratio of number of electrons in the conduction bands of those electrons in the valence bond is
[tex]\frac{n_{con}}{n_{val}} =\frac{exp(-\frac{[E_c-E_g/2]}{K_BT} )}{exp(-\frac{[E_v-E_fg/2}{K_BT} )}[/tex]
[tex]= exp(\frac{-(E_c-E_v}{K_BT} )\\\\=exp(\frac{-(0.66eV)}{(8.617\times10^-^5eV/K)(300K)} )\\\\=8.166\times10^-^1^2\approx8.2\times10^{-12}[/tex]
A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A. her moment of inertia decreases and her angular speed decreases B. her moment of inertia decreases and her angular speed increases C. her moment of inertia increases and her angular speed decreases D. her moment of inertia increases and her angular speed decreases E. her moment of inertia increases and her angular speed remains the same.
Answer:
C. her moment of inertia increases and her angular speed decreases
D. her moment of inertia increases and her angular speed decreases
Explanation:
The moment of inertia of a body is the sum of the products of an increment of mass and the square of its distance from the center of rotation. When a spinning person extends her arms, part of her mass increases its distance from the center of rotation, so increases the moment of inertia.
The kinetic energy of a spinning body is jointly proportional to the moment of inertia and the square of the angular speed. Hence an increase in moment of inertia will result in a decrease in angular speed unless there is a change in the rotational kinetic energy.
This effect is used by figure skaters to increase their spin rate by drawing their arms and legs closer to the axis of rotation. Similarly, they can slow the spin by extending arms and legs.
When the person extends her arms, her moment of inertia increases and her angular speed decreases.
_____
Note to those looking for a letter answer
Both choices C and D have identical (correct) wording the way the problem is presented here. You will need to check carefully the wording in any problem you may think is similar.
Some types of spiders build webs that consist of threads made of dry silk coated with a solution of a variety of compounds. This coating leaves the threads, which are used to capture prey, hygroscopic - that is, they attract water from the atmosphere. It has been hypothesized that this aqueous coating makes the threads good electrical conductors. To test the electrical properties of coated thread, researchers placed a 5-mm length of thread between two electrical contacts. The researchers stretched the thread in 1-mm increments to more than twice its original length, and then allowed it to return to its original length, again in 1-mm increments. Some of the resistance measurements are shown.If the conductivity of the thread results from the aqueous coating only, how does the cross-sectional area A of the coating compare when the thread is 13 mm long versus the starting length of 5 mm? Assume that the resistivity of the coating remains constant and the coating is uniform along the thread.If the conductivity of the thread results from the aqueous coating only, how does the cross-sectional area of the coating compare when the thread is 13 long versus the starting length of 5 ? Assume that the resistivity of the coating remains constant and the coating is uniform along the thread.A13mm is about 1/10 A5mm.A13mm is about 1/4 A5mm. === correct answer... I figured it out. R = pL/A. L is 2.5 times. Therefore, A must be 1/4 times.A13mm is about 2/5 A5mm.A13mm is the same as A5mm.
Answer:
A13 mm is about 1/4 A5 mm
Explanation:
Find the attachment
Q) A particle in simple harmonic motion starts its motion from its mean position. If T be the time period, calculate the ratio of kinetic energy and potential energy of the particle at the instant when t = T/12.
t\12 and the parties are spreading ever
Explanation:
my point is that you can get sick if
you sont wash your ha
nds or be
save
Two students are pushing their stalled car down the street. If the net force exerted on
the car by the students is 1000 N at an angle of 20° below horizontal, the horizontal
component of the force is:
(a) greater than 1000 N.
(b) less than 1000 N.
(c) sum of the pushing force and the weight of the students.
(d) (a) and (b)
(e) (a) and (c)
Answer:
B
Explanation:
Because the force has 2 components (horizontal and vertical), the horizontal component must be smaller than the total force. The Pythagorean theorem only adds positive values (because they're squared) so it makes sense. Using trigonometry, 100*cos(-20) yields a horizontal force of around 939.7N, which is less than 1000N.
I really need help with this question someone plz help !
Answer:
The answer is option 2.
Explanation:
Both sides are pulling the rope with equal force where the rope doesn't move. So they have a balanced forces.
A lawn mower has a flat, rod-shaped steel blade that rotates about its center. The mass of the blade is 0.65 kg and its length is 0.55 m. You may want to review (Pages 314 - 318) . Part A What is the rotational energy of the blade at its operating angular speed of 3510 rpm
Complete Question
A lawn mower has a flat, rod-shaped steel blade that rotates about its center. The mass of the blade is 0.65 kg and its length is 0.55 m. You may want to review (Pages 314 - 318) .
Part A What is the rotational energy of the blade at its operating angular speed of 3510 rpm
Part B
If all of the rotational kinetic energy of the blade could be converted to gravitational potential energy, to what height would the blade rise?
Answer:
Part A
[tex]R = 1081 \ J[/tex]
Part B
[tex]h = 169.7 \ m[/tex]
Explanation:
From the question we are told that
The mass of the blade is [tex]m_b = 0.65 \ kg[/tex]
The length is [tex]l = 0.55 \ m[/tex]
The angular speed is [tex]w = 3510 rpm = 3510 * \frac{2 \pi }{60} = 367.6 \ rad/sec[/tex]
Generally the moment of inertia of the of this mower is mathematically evaluated as
[tex]I = \frac{m_b * l^2 }{12}[/tex]
substituting values
[tex]I = \frac{0.65 * 0.55^2 }{12}[/tex]
[tex]I = 0.016 \ kg m^2[/tex]
Generally the rotational kinetic energy of the bland is
[tex]R = \frac{1}{2} * I * w^2[/tex]
substituting values
[tex]R = \frac{1}{2} * 0.016 * 367.6^2[/tex]
[tex]R = 1081 \ J[/tex]
At point where the gravitational potential energy is equal to the rotational kinetic energy we have that
[tex]P = R = m_b * h * g[/tex]
Where P is the gravitational potential energy
substituting values
[tex]1081 = 0.65 * 9.8 * h[/tex]
=> [tex]h = 169.7 \ m[/tex]
A person is swimming 1.1 m beneath the surface of the water in a swimming pool. A child standing on the diving board drops a ball into the pool directly above the swimmer. The swimmer sees the ball dropped from a height of 4.2 m above the water. From what height was the ball actually dropped?
Answer:
The actual height is [tex]A =3.158 \ m[/tex]
Explanation:
From the question we are told that
The depth of the person is [tex]d = 1.1 \ m[/tex]
The apparent height is [tex]D = 4.2 \ m[/tex]
Generally
The refractive index of water is [tex]n_w = 1.33[/tex]
The refractive index of the air is [tex]n_a = 1[/tex]
The apparent depth is mathematically represented as
[tex]D = A [\frac{n_w}{n_a} ][/tex]
substituting values
[tex]4.2 = A [\frac{1.33}{1} ][/tex]
=> [tex]A = \frac{4.2 }{1.33}[/tex]
[tex]A =3.158 \ m[/tex]
The ball was dropped at the height of "3.158 m". To understand the calculation, check below.
Refractive IndexAccording to the question,
Water's refractive index, [tex]n_w[/tex] = 1.33
Air's refractive index, [tex]n_a[/tex] = 1
Apparent height, D = 4.2 m
Person's depth, d = 1.1 m
We know the relation,
→ D = A[[tex]\frac{n_w}{n_a}[/tex]]
By substituting the values, we get
4.2 = A[[tex]\frac{1.33}{1}[/tex]]
By applying cross-multiplication,
A = [tex]\frac{4.2}{1.33}[/tex]
= 3.158 m
Thus the approach above is correct.
Find out more information about refractive index here:
https://brainly.com/question/10729741
The index of refraction of Sophia's cornea is 1.387 and that of the aqueous fluid behind the cornea is 1.36. Light is incident from air onto her cornea at an angle of 17.5° from the normal to the surface. At what angle to the normal is the light traveling in the aqueous fluid?
Answer:
17.85°
Explanation:
To find the angle to the normal in which the light travels in the aqueous fluid you use the Snell's law:
[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]
n1: index of refraction of Sophia's cornea = 1.387
n2: index of refraction of aqueous fluid = 1.36
θ1: angle to normal in the first medium = 17.5°
θ2: angle to normal in the second medium
You solve the equation (1) for θ2, next, you replace the values of the rest of the variables:
[tex]\theta_2=sin^{-1}(\frac{n_1sin\theta_1}{n_2})\\\\\theta_2=sin^{-1}(\frac{(1.387)(sin17.5\°)}{1.36})=17.85\°[/tex]
hence, the angle to normal in the aqueous medium is 17.85°
A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.
Answer:
4.93 m
Explanation:
According to the question, the computation of the height is shown below:
But before that first we need to find out the speed which is shown below:
As we know that
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]Speed = \frac{5}{0.504}[/tex]
= 9.92 m/s
Now
[tex]v^2 - u^2 = 2\times g\times h[/tex]
[tex]9.92^2 = 2\times 9.98 \times h[/tex]
98.4064 = 19.96 × height
So, the height is 4.93 m
We simply applied the above formulas so that the height i.e H could arrive
A flock of ducks is trying to migrate south for the winter, but they keep being blown off course by a wind blowing from the west at 5.0 m/s . A wise elder duck finally realizes that the solution is to fly at an angle to the wind.If the ducks can fly at 7.0 m/s relative to the air, what direction should they head in order to move directly south?
The ducks' flight path as observed by someone standing on the ground is the sum of the wind velocity and the ducks' velocity relative to the wind:
ducks (relative to wind) + wind (relative to Earth) = ducks (relative to Earth)
or equivalently,
[tex]\vec v_{D/W}+\vec v_{W/E}=\vec v_{D/E}[/tex]
(see the attached graphic)
We have
ducks (relative to wind) = 7.0 m/s in some direction θ relative to the positive horizontal direction, or[tex]\vec v_{D/W}=\left(7.0\dfrac{\rm m}{\rm s}\right)(\cos\theta\,\vec\imath+\sin\theta\,\vec\jmath)[/tex]
wind (relative to Earth) = 5.0 m/s due East, or[tex]\vec v_{W/E}=\left(5.0\dfrac{\rm m}{\rm s}\right)(\cos0^\circ\,\vec\imath+\sin0^\circ\,\vec\jmath)[/tex]
ducks (relative to earth) = some speed v due South, or[tex]\vec v_{D/E}=v(\cos270^\circ\,\vec\imath+\sin270^\circ\,\vec\jmath)[/tex]
Then by setting components equal, we have
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\cos\theta+5.0\dfrac{\rm m}{\rm s}=0[/tex]
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\sin\theta=-v[/tex]
We only care about the direction for this question, which we get from the first equation:
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\cos\theta=-5.0\dfrac{\rm m}{\rm s}[/tex]
[tex]\cos\theta=-\dfrac57[/tex]
[tex]\theta=\cos^{-1}\left(-\dfrac57\right)\text{ OR }\theta=360^\circ-\cos^{-1}\left(-\dfrac57\right)[/tex]
or approximately 136º or 224º.
Only one of these directions must be correct. Choosing between them is a matter of picking the one that satisfies both equations. We want
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\sin\theta=-v[/tex]
which means θ must be between 180º and 360º (since angles in this range have negative sine).
So the ducks must fly (relative to the air) in a direction 224º relative to the positive horizontal direction, or about 44º South of West.
PLEASE HELP !
Complete the following sentence. Choose the right answer from the given ones. The internal energy of the body can be changed A / B / C. A. only when the body is warmed or cooled B. when work is done on the body or heat flow C. only when the body does work
B
HOPE IT HELPS LET ME KNOW IF U NEED EXPLANATION
During last year’s diving competition, the divers always pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully extend their limbs to enter straight down as shown. Explain the effect of both actions on their angular velocities and kinetic energy (support your answer with working). Also explain the effect on their angular momentum.
Answer:
the angular speed of the person increases, being able to make more turns and faster.
K₂ = K₁ I₁ / I₂
Explanation:
When the divers are turning the system is isolated, so all the forces are internal and therefore also the torque, therefore the angular momentum is conserved
initial, joint when starting to turn
L₀ = I₁ w₁
final. When you shrink your arms and legs
Lf = I₂ w₂
L₀ = Lf
I₁ w₁ = I₂ w₂
when you shrink your arms and legs the distance to the turning point decreases and since the moment of inertia depends on the distance squared, the moment of inertia also decreases
I₂ <I₁
w₂ = I₁ / I₂ w₁
therefore the angular speed of the person increases, being able to make more turns and faster.
When it goes into the water it straightens the arm and leg, so the moment of inertia increases
I₁> I₂
w₁ = I₂ / I₁ w₂
therefore we see that the angular velocity decreases, therefore the person trains the water like a stone and can go deeper faster.
In both cases the kinetic energy is
K = ½ I w²
the initial kinetic energy is
K₁ = ½ I₁ w₁²
the final kinetic energy is
K₂ = ½ I₂ w₂²
we substitute
K₂ = ½ I₂ (I₁ / I₂ w1² 2
K₂ = ½ I₁² / I₂ w₁² = (½ I₁ w₁²) I₁ / I₂
K₂ = K₁ I₁ / I₂
therefore we see that the kinetic energy increases by factor I₁/I₂
Consider a system of a cliff diver and the earth. The gravitational potential energy of the system decreases by 24,500 J as the diver drops to the water from a height of 44.0 m. Determine her weight in newtons.
Before she jumped from the cliff, her gravitational potential energy was
GPE = (her weight) x (height of the cliff) .
That's exactly the GPE that she lost on the way down to the water. So we can write
24,500 J = (her weight) x (44.0 m)
Divide each side by 44.0 m:
Her weight = 24,500 J / 44 m
Her weight = 556.8 Newtons
(about 125 pounds)
When you "crack" a knuckle, you suddenly widen the knuckle cavity, allowing more volume for the synovial fluid inside it and causing a gas bubble suddenly to appear in the fluid. The sudden production of the bubble, called "cavitation", produces a sound pulse---the cracking sound. Assume that the sound is transmitted uniformly in all directions and that it fully passes from the knuckle interior to the outside, at a distance of 0.29 m from your ear. If the pulse has a sound level of 61 dB at your ear, what is the rate at which energy is produced by the cavitation
Answer:If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + Φ) travels along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = -2.0 mm?
Explanation:
Which is the best description of the scientific theory
Explanation:
a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .
Sr-90 has a half-life of T1/2 = 2.85 a (years). How much Sr-90 will remain in a 5.00 g sample after 5.00 a? Show all of your work. (2 marks)
Answer:
1.48 g
Explanation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is time,
and T is the half life.
A = (5.00 g) (½)^(5.00 a / 2.85 a)
A = 1.48 g
A light spring having a force constant of 115 N/m is used to pull a 9.00 kg sled on a horizontal frictionless ice rink. The sled has an acceleration of 2.10 m/s2. Part A By how much does the spring stretch if it pulls on the sled horizontally
Answer:
Stretch in the spring = 0.1643 (Approx)
Explanation:
Given:
Mass of the sled (m) = 9 kg
Acceleration of the sled (a) = 2.10 m/s ²
Spring constant (k) = 115 N/m
Computation:
Tension force in the spring (T) = ma
Tension force in the spring (T) = 9 × 2.10
Tension force in the spring (T) = 18.9 N
Tension force in the spring = Spring constant (k) × Stretch in the spring
18.9 N = 115 N × Stretch in the spring
Stretch in the spring = 18.9 / 115
Stretch in the spring = 0.1643 (Approx)
An airplane flies 2500 miles east in 245 seconds what is the velocity of the plane?
Speed = (distance) / (time)
Speed = (
Velocity = speed, and its direction
The velocity of the plane is 10.2 miles per second East.
(about 48 times the speed of sound)