What is the image of (-4,12) after a dilation by a scale factor of 1/4 centered at the origin

Answers

Answer 1

Answer:

(-1,4)

Step-by-step explanation:

Divide each imput by 4

Answer 2

The required image of the given point (-4, 12) dilation by a scale factor of 1/4 and centered at the origin is (1, -3).

Given that,
To determine the image of  (-4,12) after dilation by a scale factor of 1/4 centered at the origin.

What is a graph?

The graph is a demonstration of curves that gives the relationship between the x and y-axis.

What is coordinate?

Coordinate, is represented as the values on the x-axis and y-axis of the graph

Here,
For the point, we have a dilation factor of 1/4,
So dilated coordinate,
= (1/4 * - 4 ,   1/4 * 12)
= (-1 , 3)
To form the image across the origin
= - (-1, 3)
= (1, -3)

Thus, the required image of the given point (-4, 12) with a scale factor of 1/4 and centered at the origin is (1, -3).

Learn more about coordinate here:

brainly.com/question/13498438

#SPJ2


Related Questions

Prove the Triangle Proportinality Theorem

Answers

Answer:

Step-by-step explanation:

Given: DE║BC

To prove: [tex]\frac{\text{AD}}{\text{DB}}=\frac{\text{AE}}{\text{EC}}[/tex]

                Statements                           Reasons

1). DE║BC                                   1). Given

2). ∠1 ≅ ∠4, ∠3 ≅ ∠4                2). Corresponding angles theorem

3). ΔADE ~ ΔABC                      3). AA Similarity theorem

4). [tex]\frac{\text{AB}}{\text{AD}}=\frac{\text{AC}}{\text{AE}}[/tex]                                4). Corresponding sides are proportional

5). [tex]\frac{\text{AD+DB}}{\text{AD}}=\frac{\text{AE+EC}}{AE}[/tex]                   5). Segment addition postulate

6). [tex]1+\frac{\text{DB}}{\text{AD}}=1+\frac{\text{EC}}{\text{AE}}[/tex]                   6). [tex]\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}[/tex]

7). [tex]\frac{\text{DB}}{\text{AD}}=\frac{\text{EC}}{\text{AE}}[/tex]                                7). Subtract 1 from both sides

8). [tex]\frac{\text{AD}}{\text{DB}}=\frac{\text{AE}}{\text{EC}}[/tex]                               8). Take the reciprocal of both sides