What is the concentration of hydrochloric acid, HCL(aq) that gives a solution with a pH of 3.69?

Answers

Answer 1

To solve this problem, we need to use the pH formula:

pH = -log[H+]

where [H+] represents the concentration of hydrogen ions in moles per liter (M).

To find [H+], we can rearrange the formula:

[H+] = 10^(-pH)

Substituting pH = 3.69, we get:

[H+] = 10^(-3.69) = 2.21 × 10^(-4) M

Since hydrochloric acid is a strong acid, it completely dissociates in water to give hydrogen ions and chloride ions:

HCl(aq) → H+(aq) + Cl-(aq)

Therefore, the concentration of hydrochloric acid required to give a solution with a pH of 3.69 is also 2.21 × 10^(-4) M.


Related Questions

how many atp molecules are produced by metabolism of an acetyl coa molecule?12 ATP molecules13 ATP molecules14 ATP molecules15 ATP molecules

Answers

The metabolism of an acetyl CoA molecule produces a total of 12 ATP molecules through the process of cellular respiration.

The metabolism of one acetyl  molecule through the Krebs cycle can produce 1 ATP molecule through substrate-level phosphorylation. In addition, the oxidation of NADH and FADH2 produced during the Krebs cycle can generate more ATP through oxidative phosphorylation in the electron transport chain.

However, the exact amount of ATP generated through oxidative phosphorylation depends on various factors, such as the efficiency of the electron transport chain and the availability of oxygen. Overall, the complete metabolism of one molecule of acetyl CoA can generate up to 10 ATP molecules through oxidative phosphorylation.

This occurs through the citric acid cycle and the electron transport chain, which are both part of the metabolic pathway that converts energy from glucose into usable ATP molecules.

To know more about ATP molecules, visit:

https://brainly.com/question/12277357#

#SPJ11

The pressure of a balloon begins at 2. 45 atm and a volume 2. 00 L. If the balloon's pressure increases to 3. 60 atm then what does the volume change to?


Answers

The volume changes to 1.36 L, under the condition pressure of a balloon begins at 2. 45 atm and a volume 2. 00.

For this problem we have to apply  Boyle's law that states  at constant temperature, the pressure and volume of a gas are inversely proportional to each other.

Then, pressure increases, volume decreases and vice versa. The formula for Boyle's law is

P1V1 = P2V2

Here

P1 and V1 = initial pressure and volume

P2 and V2 = final pressure and volume

Applying this formula, we can evaluate the final volume of the balloon

P1V1 = P2V2

(2.45 atm)(2.00 L) = (3.60 atm)(V2)

V2 = (2.45 atm)(2.00 L) / (3.60 atm)

V2 = 1.36 L

To learn more about Boyle's law

https://brainly.com/question/1696010

#SPJ4

35 POINTS -- REAL ANSWERS (please)



For each of your three trials state the following:



⢠heat needed to melt the ice (q) (I got 18* for all)


⢠enthalpy of fusion (I'm not sure how to find the mass of the ice melted)


⢠percent error from the accepted enthalpy of fusion of water of 334 J/g (I don't understand this, we never went over this)

Answers

To calculate the enthalpy of fusion and percent error for each of your three trials. Here are the steps to calculate each value:

1. Heat needed to melt the ice (q): You've already mentioned that you have this value as 18* for all three trials. I'm assuming this is in joules (J).

2. Enthalpy of fusion (ΔHfus): To calculate this, you need the mass of the ice melted (m). You mentioned that you're not sure how to find the mass of the ice melted. Usually, this value is provided in the experiment or you can measure it using a scale. Once you have the mass, use the following formula:

ΔHfus = q / m

3. Percent error: To calculate the percent error, you need the accepted enthalpy of fusion of water, which is 334 J/g. Use the following formula:

Percent error = (|calculated ΔHfus - accepted ΔHfus| / accepted ΔHfus) × 100

Now, perform these calculations for each of your three trials. Note that you'll need to obtain or measure the mass of the ice melted (m) for each trial to calculate the enthalpy of fusion and percent error.

To know more about Enthalpy of fusion:

https://brainly.com/question/28180072

#SPJ11

What mass of KNO3 is needed to create a saturated solution at 60 °C in 240. 0 mL of distilled


water?

Answers

Approximately 148.8 g of KNO₃ is needed to create a saturated solution at 60°C in 240.0 mL of distilled water.

The mass of KNO₃ needed to create a saturated solution at 60°C in 240.0 mL of distilled water depends on the solubility of KNO₃ at that temperature.

The solubility of KNO₃ in water increases with temperature. At 60°C, the solubility of KNO₃ is approximately 62 g per 100 mL of water.

Thus, the quantity of KNO₃ required to form a saturated solution in 240.0 mL of water can be determined using the following procedure.:

Mass of KNO₃ = (62 g/100 mL) x (240.0 mL) = 148.8 g

To know more about price solubility, refer here:

https://brainly.com/question/17647006#

#SPJ11

calculate the volume of 0.150 m hydrochloric acid required to completely neutralize 25.0 ml of 0.250 m iron (iii) hydroxide.

Answers

Answer:

0.125 L HCl solution, or 125 mL HCl solution  (Depending on the units requested)

Explanation:

Major steps:

1. Determine the chemical formulas for each compound

2. Write the unbalanced chemical equation, and balance it

3. Use dimensional analysis to determine the amount of acid needed.

Step 1. Determine the chemical formulas for each compound

hydrochloric acid is [tex]HCl[/tex].  This is from memorization of nomenclature, or consulting a resource.

Iron (iii) hydroxide is [tex]Fe(OH)_3[/tex] . This is from memorization of nomenclature, knowing that the charge on "hydroxide" is a negative 1, and that 3 hydroxide ions will be needed to balance the charge with a Iron (iii), or consulting a resource.

Step 2.  Write the unbalanced chemical equation, and balance it

For "neutralization reactions", an "Acid" and a "Base" will combine to form Water and a "salt".

Unbalanced chemical equation:

[tex]HCl + Fe(OH)_{3} \rightarrow H_{2}O+ FeCl_{3}[/tex]

Balance the equation by increase the number of "Chlorines" on the left, and the number of "hydroxides" (trapped in the 'water') on the right.

Balanced chemical equation:

[tex]3HCl + Fe(OH)_{3} \rightarrow 3H_{2}O+ FeCl_{3}[/tex]

Step 3. Use dimensional analysis to determine the amount of acid needed.

Knowing we have 25.0mL of Iron (iii) hydroxide solution (in milliliters), we first convert to Liters (since concentrations for "molarity" are measured in moles per Liter).

Then convert to convert to moles of Iron(iii) hydroxide using the solution's concentration.

Convert to moles of hydrochloric acid using the mole ratio from the balanced chemical equation.

Lastly convert to volume of the hydrochloric acid solution using that solution's concentration:

[tex]\dfrac{25.0 \text{ mL } Fe(OH)_3 \text{ solution}}{1} * \dfrac{1 \text{ L }}{1000 \text{ mL }} * \dfrac{0.25 \text{ mol } Fe(OH)_3 }{1 \text{ L } Fe(OH)_3 \text{ solution}} * \dfrac{3 \text{ mol } HCl }{1 \text{ mol } Fe(OH)_3 } * \dfrac{1 \text{ L } HCl \text{ solution} }{0.150 \text{ mol } HCl }=[/tex]

[tex]=0.125 \text{ L } HCl \text{ solution}[/tex]

If the requested answer should be measured in milliliters, one last conversion will yield the answer:

[tex]\dfrac{0.125 \text{ L } HCl \text{ solution}}{1} * \dfrac{1000 \text{ mL }}{1 \text{ L }} = 125 \text{ mL } HCl \text{ solution}[/tex]

Observe that the original measurements use 3 significant figures, so each answer should use 3 significant figures (both answers do).

Create the Equation: How many grams of Aluminum Chloride would be made from 42. 7 L of Chlorine gas at STP reacting with 50. 0 g of Aluminum? *


SOMEONE PLEASE HELP ME WITH THIS ONE ASAP

Answers

The reaction of 42.7 L of chlorine gas at STP with 50.0 g of aluminum produces 150.5 g of aluminum chloride.

The balanced chemical equation for the reaction between aluminum and chlorine gas is:

2Al + 3Cl₂ -> 2AlCl₃

To use this equation to calculate the grams of aluminum chloride produced, we need to convert the given volume of chlorine gas to moles using the ideal gas law:

n = PV/RT

At STP, the pressure (P) and temperature (T) are 1 atm and 273 K, respectively. The volume (V) is given as 42.7 L. The gas constant (R) is 0.08206 L atm K⁻¹ mol⁻¹ Plugging these values in, we get:

n = (1 atm * 42.7 L) / (0.08206 L atm K⁻¹ mol⁻¹ * 273 K) = 1.694 mol

Since the stoichiometry of the balanced equation is 2:3 (2 moles of aluminum react with 3 moles of chlorine gas to produce 2 moles of aluminum chloride), we need to calculate how many moles of aluminum are needed to react with 1.694 moles of chlorine gas:

2 mol Al / 3 mol Cl₂ * 1.694 mol Cl₂ = 1.129 mol Al

Finally, we can use the molar mass of aluminum chloride (133.34 g/mol) to calculate the grams of product:

1.129 mol AlCl₃ * 133.34 g/mol = 150.5 g AlCl₃

Therefore, 150.5 g of aluminum chloride would be produced from 42.7 L of chlorine gas at STP reacting with 50.0 g of aluminum.

To know more about the aluminum chloride refer here :

https://brainly.com/question/29446640#

#SPJ11

3. A certain nut crunch cereal contains 11. 0 grams of sugar (sucrose, C12H22011) per


serving size of 60. 0 grams. How many servings of this cereal must be eaten to consume


0. 0350 moles of sugar?

Answers

The number of servings of cereal needed to consume 0.0350 moles of sugar is approximately 0.834 servings.

1. Calculate the molar mass of sucrose (C₁₂H₂₂O₁₁): (12x12) + (1x22) + (16x11) = 144 + 22 + 176 = 342 g/mol.


2. Convert grams of sugar per serving to moles: 11.0 g/serving * (1 mol/342 g) ≈ 0.0322 moles/serving.


3. Divide the desired moles of sugar by moles/serving: 0.0350 moles / 0.0322 moles/serving ≈ 0.834 servings.


So, to consume 0.0350 moles of sugar, you need to eat approximately 0.834 servings of this cereal.

To know more about molar mass click on below link:

https://brainly.com/question/22997914#

#SPJ11

What volume of 10% (w/v) solution of Na2CO3 will be required to neutralise 100 mL of HCI Solution containing 3.63
g of HCl?

Answers

468.5 mL of 10% Na2CO3 solution is required to neutralize 100 mL of HCl solution containing 3.63 g of HCl.

To solve this problem

Calculating the amount of HCl in moles is the first step.

mol = 3.63 g / 36.46 g/mol

moles = 0.0995

mol mass HCl = mass HCl / molar mass HCl

The chemical equation for the neutralization of HCl and Na2CO3 is as follows:

2HCl + Na2CO3 → 2NaCl + CO2 + H2O

The equation states that 2 moles of HCl and 1 mole of Na2CO3 react. As a result, the amount of Na2CO3 needed to neutralize the HCl, in moles, is:

moles Na2CO3 = moles HCl / 2

moles Na2CO3 = 0.0995 mol / 2

moles Na2CO3 = 0.0498 mol

The volume of 10% Na2CO3 solution needed to produce 0.0498 mol of Na2CO3 may now be calculated using the definition of molarity:

moles Na2CO3 = (Na2CO3 concentration) x (Na2CO3 volume).

0.1 g/mL x (volume Na2CO3 / 1000 mL) x (105.99 g/mol) = 0.0498 mol

Na2CO3's volume =  (0.0498 mol x 1000 mL) / (0.1 g/mL x 105.99 g/mol).

Na2CO3 = 468.5 mL of volume

Therefore, 468.5 mL of 10% Na2CO3 solution is required to neutralize 100 mL of HCl solution containing 3.63 g of HCl.

Learn more about molarity here : brainly.com/question/14469428

#SPJ1

You are asked to make a 1. 5 L solution of. 35 M HCl by diluting concentrated 16. 0 M HCI. What


volume of acid would be needed to make the dilution?

Answers

To make a 1.5 L solution of 0.35 M HCl using 16.0 M HCl, you will need 32.81 mL of concentrated acid.

1. Use the dilution formula: M1V1 = M2V2


2. M1 is the initial concentration (16.0 M), V1 is the volume of concentrated acid needed, M2 is the final concentration (0.35 M), and V2 is the final volume (1.5 L).


3. Plug in the values: (16.0 M)(V1) = (0.35 M)(1.5 L)


4. Solve for V1: V1 = (0.35 M)(1.5 L) / 16.0 M


5. V1 = 0.0328125 L, which is equal to 32.81 mL.


6. So, 32.81 mL of concentrated 16.0 M HCl is needed to make the 1.5 L solution of 0.35 M HCl.

To know more about concentrated acid click on below link:

https://brainly.com/question/30327123#

#SPJ11

What percentage of isopropyl alcohol is best for disinfecting?.

Answers

Isopropyl alcohol (IPA) is an effective disinfectant when used in the appropriate concentration.

The Centers for Disease Control and Prevention (CDC) recommends using solutions with at least 70% IPA for disinfecting surfaces against COVID-19.

Higher concentrations (e.g., 90-99%) of isopropyl alcohol may evaporate too quickly to be effective, while lower concentrations (e.g., 50%) may not be strong enough to kill certain types of germs.

It is also important to follow proper application procedures and allow sufficient contact time for the disinfectant to work effectively.

To know more about Isopropyl alcohol refer to-

https://brainly.com/question/14896958

#SPJ11

ASAP. Magnetic field lines cannot be observed using a compass or iron filings.

True or false

Answers

Answer:

false

Explanation:

magnetic field lines can be accurately observed using *iron filling*

False iron fillings and compass can be used

What volume of dichloromethane (ch2cl2) is produced when 149 liters of methane (ch4) react according to the following reaction? (all gases are at the same temperature and pressure. ) methane (ch4)(g) carbon tetrachloride(g) dichloromethane (ch2cl2)(g)'

Answers

The volume of dichloromethane [tex](CH_2Cl_2)[/tex] produced when 149 liters of methane [tex](CH_4)[/tex] react according to the given reaction is approximately 6.224 x [tex]10^5 J/K*m^3[/tex].  

The volume of dichloromethane [tex](CH_2Cl_2)[/tex] produced when 149 liters of methane [tex](CH_4)[/tex] react according to the given reaction is not immediately apparent from the reaction stoichiometry.

The balanced equation for the reaction between methane  [tex](CH_4)[/tex] and carbon tetrachloride (CCl4) to form dichloromethane  [tex](CH_2Cl_2)[/tex] and carbon dioxide (CO2) is:

[tex](CH_4)[/tex] +  [tex]CO_2[/tex] →  [tex](CH_2Cl_2)[/tex] +  [tex]CO_2[/tex]

The balanced equation shows that 1 mole reacts with 1 mole of CCl4 to produce 1 mole of  [tex](CH_2Cl_2)[/tex] and 1 mole of  [tex]CO_2[/tex].

The volume of the gas can be calculated using the ideal gas law:

PV = nRT

To find the number of moles of gas, we can use the molecular masses of the reactants and products:

Molar mass of  [tex](CH_4)[/tex] = 16.04 g/mol

Molar mass of  [tex]CCl_4[/tex] = 89.9 g/mol

Molar mass of   [tex](CH_2Cl_2)[/tex] = 70.1 g/mol

Molar mass of  [tex]CO_2[/tex] = 44.01 g/mol

The number of moles of  [tex](CH_4)[/tex] can be calculated from the initial amount of gas:

149 L of CH4 = 149 x 16.04 g/mol = 2432 g

The number of moles of CCl4 can be calculated from the given volume:

149 L of  [tex](CH_4)[/tex] +  [tex]CCl_4[/tex] →   [tex](CH_2Cl_2)[/tex] +  [tex]CO_2[/tex]

The volume of the gas is given as 149 L, so the number of moles of  [tex]CCl_4[/tex] can be calculated as:

149 L = 149 x 89.9 g/mol = 13,277 g

The number of moles  can be calculated from the given volume and the desired amount of product

149 L of  [tex](CH_4)[/tex] + [tex]CCl_4[/tex] →   [tex](CH_2Cl_2)[/tex] + [tex]CO_2[/tex]

149 L of  [tex](CH_4)[/tex] + [tex]CCl_4[/tex] → 149 x 70.1 g/mol + 13,277 g x 1 mol/13.277 g = 43,691 g

V = nRT

V = 43,691 g x 8.314 J/mol·K = 364,617.5 J/K

1 J/K = 1/1000 L·K

Therefore, the volume of the gas is:

V = 364,617.5 J/K x (1/1000 L·K) = 3.646 x 10^4 L

substitute this value for V in the equation for the volume of  [tex](CH_2Cl_2)[/tex] :

PV = nRT

PV = 149 x 8.314 J/mol·K x (3.646 x [tex]10^4[/tex] L)

PV = 6.224 x   [tex]10^5 J/K*m^3[/tex].  

Therefore, The volume of dichloromethane [tex](CH_2Cl_2)[/tex] produced when 149 liters of methane [tex](CH_4)[/tex] react according to the given reaction is approximately 6.224 x [tex]10^5 J/K*m^3[/tex].  

Learn more about dichloromethane Visit: brainly.com/question/31080842

#SPJ4

Assume that you put the same amount of room-temperature air
in two tires. if one tire is bigger than the other, how will air
pressure in the two tires compare?
the bigger tire will have greater air pressure.
b the smaller tire will have greater air pressure.
both tires will have the same air pressure.
dnot enough information is provided to know the
answer

Answers

The larger tire will have a greater volume, but the amount of air in each tire is the same, so the pressure in both tires will be the same. The correct answer is the option: C.

The pressure of a gas is related to its temperature, volume, and the number of molecules present, according to the Ideal Gas Law: PV = nRT,

Assuming the temperature, number of molecules, and the amount of air in both tires are the same, the pressure of the air in the tires will depend only on the volume of the tires. Therefore, both tires will have the same air pressure. The correct answer is C.

To know more about Ideal Gas Law, here

brainly.com/question/13821925

#SPJ4

--The complete Question is, Assume that you put the same amount of room-temperature air in two tires. if one tire is bigger than the other, how will air pressure in the two tires compare?

A. the bigger tire will have greater air pressure.

B. the smaller tire will have greater air pressure.

C. both tires will have the same air pressure. --

explain how polarity affects surface tension?​

Answers

Because of their polarity, water molecules are strongly attracted to one another, which gives water a high surface tension. The molecules at the surface of the water “stick together” to form a type of 'skin' on the water, strong enough to support very light objects.

You have twisted your ankle and need to apply a cold pack. You squeeze the bag and as the chemical reaction occurs, you can feel that the pack is getting colder. How would you classify this type of reaction? Using what you understand from our lessons in unit 4, explain how the heat transfers between the cold pack and your skin? Also, describe how the law of conservation of energy applies to this system

Answers

The type of reaction that occurs when you squeeze a cold pack is an exothermic reaction. An exothermic reaction is a chemical reaction that releases energy in the form of heat or light. In this case, the reaction between the chemicals inside the cold pack releases heat, which is transferred to your skin when you apply the pack.

The heat transfer between the cold pack and your skin occurs through conduction. Conduction is the transfer of heat between objects that are in direct contact with each other. When you apply the cold pack to your skin, the heat from your skin is transferred to the cold pack through conduction. As the heat is transferred, the cold pack gets warmer and your skin gets cooler.

The law of conservation of energy applies to this system because energy cannot be created or destroyed, only transferred from one form to another. In this case, the chemical reaction inside the cold pack releases energy in the form of heat, which is transferred to your skin through conduction. As the heat is transferred, the temperature of the cold pack decreases, while the temperature of your skin decreases. However, the total amount of energy in the system remains constant.

In summary, when you apply a cold pack to a twisted ankle, the chemical reaction that occurs is an exothermic reaction. The heat transfer between the cold pack and your skin occurs through conduction, and the law of conservation of energy applies to the system as the total amount of energy remains constant.

To know more about exothermic reaction refer here

https://brainly.com/question/10373907?referrer=searchResults

#SPJ11

A balloon contains 4 L of air at 100 kPa.
You squeeze it to a volume of 1 L.
What is the new pressure of air inside the balloon?

Answers

The concept Boyle's law is used here to determine the new pressure of air inside the balloon. For a gas the relationship between volume and pressure is expressed using Boyle's law. The new pressure is 400 kPa.

The Boyle's law states that at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure. The product of pressure and volume of a given mass of gas is constant.

Mathematically PV = k

P₁V₁ = P₂V₂

P₂ = P₁V₁ / V₂

100 × 4 / 1 = 400 kPa

To know more about Boyle's law, visit;

https://brainly.com/question/30367067

#SPJ1

Please help



Boiling off a pot of water


A pot containing 500 g of water is brought to a boil.


The latent heat of vaporization is for water HΔv =2260 kJ/kg



How much heat will it take to completely boil the water (turn it all to steam).



Use the equation q = mHΔv

Answers

The equation q = mHΔv is used to calculate the amount of heat required to vaporize a certain amount of substance. In this case, the substance is water and the latent heat of vaporization is 2260 kJ/kg.

The variable q represents the amount of heat required to vaporize the substance, which is measured in joules (J) or kilojoules (kJ). The variable m represents the mass of the substance being vaporized, which is measured in kilograms (kg). Finally, the variable HΔv represents the latent heat of vaporization, which is a property of the substance and is measured in joules per kilogram (J/kg).

When water is heated, it will begin to evaporate, or turn into a gas. This process requires energy in the form of heat. The amount of heat required to vaporize a certain amount of water can be calculated using the equation q = mHΔv. For example, if we want to vaporize 1 kg of water, we can calculate the amount of heat required by multiplying the mass by the latent heat of vaporization:

q = 1 kg x 2260 kJ/kg
q = 2260 kJ

Therefore, it would require 2260 kJ of heat to vaporize 1 kg of water.

In summary, the equation q = mHΔv is a useful tool for calculating the amount of heat required to vaporize a substance, such as water. The latent heat of vaporization is a property of the substance and is required in order to make these calculations.

To know more about vaporization refer here

https://brainly.com/question/14578189#

#SPJ11

which of the following statements correctly describe protecting groups? select all statements that apply. multiple select question. a reactive functional group is converted into another functional group that does not interfere with the desired reaction. when the oh group of an alcohol is reacted with tbdmscl/imidazole the resulting tbdms ether is known as a protecting group. protecting groups must be easily removed (deprotection) to regenerate the original functional group.

Answers

The  statements correctly describe protecting groups are :

"A reactive functional group converted to another functional group and it will not interfere desired reaction."

"The Protecting group easily removed (deprotection) to the regenerate original functional group."

The protecting group are the molecular formula that will be introduced  the specific functional group and which is present in the poly-functional molecule and the protecting group block the reactivity under the some reaction conditions and which is needed to make the modifications in molecule.

The protecting group readily and the protecting group is selectively introduced to functional group in poly-functional molecule. Protecting group is capable of the selectively removed in under some of the mild conditions when protection is no more longer required.

To learn more about functional group here

https://brainly.com/question/14618322

#SPJ4

A 634. 5 g sample of helium absorbs 125. 7 calories of heat. The specific heat capacity of helium is 1. 241 cal/(g·°C). By how much did the temperature of this sample change, in degrees Celsius?

Answers

The temperature of the helium sample changed by approximately 0.0314 degrees Celsius.

To calculate the temperature change of the helium sample, we can use the formula:

q = mcΔT

where q is the heat absorbed (125.7 calories), m is the mass of the sample (634.5 g), c is the specific heat capacity of helium (1.241 cal/(g·°C)), and ΔT is the temperature change in degrees Celsius. We need to find ΔT.

Rearranging the formula to solve for ΔT, we get:

ΔT = q / (mc)

Now, plug in the given values:

ΔT = 125.7 cal / (634.5 g × 1.241 cal/(g·°C))

ΔT ≈ 0.0314 °C

Therefore, the temperature of the helium sample changed by approximately 0.0314 degrees Celsius.

Know more about Helium Sample here:

https://brainly.com/question/11959989

#SPJ11

A current of 4. 82 A4. 82 A is passed through a Sn(NO3)2Sn(NO3)2 solution. How long, in hours, would this current have to be applied to plate out 6. 70 g6. 70 g of tin

Answers

The current would have to be applied for approximately 10.33 hours to plate out 6.70 g of tin.

The amount of tin plated out can be calculated using Faraday's law of electrolysis, which states:

Mass of substance plated = (Current x Time x Atomic weight) / (Valency x Faraday's constant)

The atomic weight of tin is 118.71 g/mol, and its valency is 2 (since it forms Sn2+ ions in the solution). The Faraday's constant is 96,485 C/mol.

Plugging in the given values, we get:

6.70 g = (4.82 A x t x 118.71 g/mol) / (2 x 96485 C/mol)

Solving for t, we get:

t = (6.70 g x 2 x 96485 C/mol) / (4.82 A x 118.71 g/mol)

t = 10.33 hours

Therefore, the current would have to be applied for approximately 10.33 hours to plate out 6.70 g of tin.

To know more about Faraday's law  refer to-

https://brainly.com/question/1640558

#SPJ11

What is the new boiling point of 35 grams of CaS dissolved in 1. 25 kg if H2O?

Answers

The new boiling point of the solution is 100°C + 0.199°C = 100.199°C.

The boiling point of a solution is dependent on the concentration of solute particles in the solvent. This can be calculated using the formula

ΔTb = Kbm

where ΔTb is the boiling point elevation, Kb is the boiling point elevation constant, and m is the molality of the solution (moles of solute per kilogram of solvent).

The molar mass of CaS is 72.14 g/mol, so we can calculate the number of moles of CaS in the solution:

35 g / 72.14 g/mol = 0.4858 mol

The molality of the solution is then:

m = 0.4858 mol ÷ 1.25 kg

m = 0.3886 mol/kg

Next, we need to find the boiling point elevation constant Kb for water. Kb for water is 0.512 °C/m.

Finally, we can calculate the boiling point elevation:

ΔTb = Kb x m

ΔTb = 0.512 °C/m x 0.3886 mol/kg

ΔTb = 0.199 °C

To learn more about boiling follow the link:

brainly.com/question/2153588

#SPJ4

A solution is prepared by dissolving 8.50 g of c6h12o6 in 4.15 g of cyclohexane. what is the % mass of c6h12o6 in the new solution? round your answer to 1 decimal places.

Answers

The % mass of C6H12O6 in the new solution is approximately 67.2%.

We can calculate the mass percentage of C6H12O6 in the new solution using the following formula:

% mass = (mass of C6H12O6 / total mass of solution) x 100%

First, we need to calculate the total mass of the solution by adding the mass of C6H12O6 and the mass of cyclohexane:

total mass of solution = 8.50 g + 4.15 g = 12.65 g

Next, we can calculate the mass percentage of C6H12O6 in the solution:

% mass = (8.50 g / 12.65 g) x 100% ≈ 67.2%

Therefore, the % mass of C6H12O6 in the new solution is approximately 67.2%.

To know more about mass percentage refer here:

https://brainly.com/question/19694949

#SPJ11

2. Calculate the molality of a water solution if the freezing point is: (a)-9. 3°C (b)-27. 9 °C

Answers

The freezing point depression (ΔTf) of a solvent is related to the molality of the solution by the equation:

ΔTf = Kf × molality

where Kf is the freezing point depression constant for the solvent.

For water, Kf is 1.86 °C/m.

(a) If the freezing point of the water solution is -9.3°C, then the freezing point depression is:

ΔTf = 0°C - (-9.3°C) = 9.3°C

Using the equation above and the value of Kf for water, we can solve for the molality of the solution:

9.3°C = 1.86 °C/m × molality

molality = 9.3°C / 1.86 °C/m = 5.00 m

Therefore, the molality of the water solution is 5.00 m.

(b) If the freezing point of the water solution is -27.9°C, then the freezing point depression is:

ΔTf = 0°C - (-27.9°C) = 27.9°C

Using the equation above and the value of Kf for water, we can solve for the molality of the solution:

27.9°C = 1.86 °C/m × molality

molality = 27.9°C / 1.86 °C/m = 15.0 m

Therefore, the molality of the water solution is 15.0 m.

To know more about depression refer here

https://brainly.com/question/28810167#

#SPJ11

Which statement is true about a polyatomic ion? it forms metallic bonds with other ions. It forms covalent bonds with other ions. It is made of atoms that are covalently bonded together. It has a charge that is distributed over only part of the ion.

Answers

A polyatomic ion is made of atoms that are covalently bonded together, which is true about polyatomic ions.

Covalent bonds form when electrons are shared between atoms. This contrasts with ionic bonds, where ions of opposite charges attract one another.

Polyatomic ions are covalently bonded molecules that contain an electrically charged atom or group of atoms. They can have either a positive or negative charge, and they are not usually found in their isolated form. Because they are charged, they have an impact on the chemistry of the surrounding substances.

An ion with more than one atom is called a polyatomic ion. There is one nitrogen atom and four hydrogen atoms in the ammonium ion. They all make up a single ion with the formula NH+4 and a charge of 1+. One carbon atom and three oxygen atoms make up the carbonate ion, which has a 2 overall charge.

Know more about polyatomic ion:

https://brainly.com/question/6689894

#SPJ11

A hiker inhales 598 ml of air. if the final volume of air in the lungs is 612 ml, at a body temperature of 37 degrees celsius, what was the initial temperature of the air in degrees celsius? explain.

Answers

The initial temperature of the air in degree Celsius was approximately 33.6°C.

When the hiker inhales air, the air undergoes a temperature change from the initial temperature to the body temperature, and a volume change due to the expansion of the lungs.

Using the ideal gas law, we can relate the initial and final volumes and temperatures of the air.

PV = nRT

Assuming the pressure is constant, we can rearrange the equation to:

(V₁/T₁) = (V₂/T₂)

where V1 is the initial volume of air, T₁ is the initial temperature, V₂ is the final volume of air, and T₂ is the final temperature (body temperature, 37°C).

We can substitute the given values and solve for T₁:

(V₁/T₁) = (V₂/T₂)

(T₁/V₁) = (T₂/V₂)

T₁= (T2 × V₁ / V₂

T₁ = (310.15 K × 0.598 L) / 0.612 L

T₁≈ 303.5 K

Converting to degrees Celsius, we get:

T₁ ≈ 30.5°C

To know more about ideal gas law, refer here:

https://brainly.com/question/30458409#

#SPJ11

A 1500. 0 gram piece of wood with a specific heat capacity of 1. 8 g/JxC absorbs 67,500 Joules of heat. If the final temperature of the wood is 57C, what is the initial temperature of the wood?

Answers

The formula for heat capacity, which is Q = m x c x ΔT. Q represents the amount of heat absorbed, m is the mass of the object, c is the specific heat capacity, and ΔT is the change in temperature.

In this case, we know the mass of the wood is 1500.0 grams and the specific heat capacity is 1.8 g/JxC. We also know that the wood absorbed 67,500 Joules of heat. Finally, we know the final temperature of the wood is 57C. We can use this information to solve for the initial temperature.

First, we need to rearrange the formula to solve for ΔT. ΔT = Q / (m x c)
ΔT = 67,500 J / (1500.0 g x 1.8 g/JxC)
ΔT = 25°C

Next, we can use the final temperature and ΔT to solve for the initial temperature. The initial temperature can be found by subtracting the change in temperature from the final temperature.

Initial temperature = final temperature - ΔT
Initial temperature = 57°C - 25°C
Initial temperature = 32°C

Therefore, the initial temperature of the wood was 32°C.

In summary, heat capacity is a measure of an object's ability to absorb heat. Temperature is a measure of the average kinetic energy of the particles in an object. In this problem, we used the formula for heat capacity to solve for the initial temperature of a piece of wood. We found that the initial temperature was 32°C, given that the wood absorbed 67,500 Joules of heat and its final temperature was 57°C.

To know more about  heat capacity refer here

https://brainly.com/question/28921175#

#SP

The reaction between propionyl chloride and acetate ion is outlined. Starting material 1 is a carbonyl bonded to chloride and an ethyl group. Starting material 2 is a carbonyl bonded to a methyl group and O minus, which has three lone pairs. A) Complete the mechanism of the forward reaction by placing curved arrows to show the electron movements in the reactants and intermediate product

Answers

An enol intermediate and a chloroalkoxide are byproducts of reaction between Starting Material 1, which is carbonyl bonded to a chloride and an ethyl group, and Starting Material 2, which is carbonyl bonded to a methyl group and O minus with three lone pairs.

This reaction takes place in the presence of a Lewis acid catalyst. Starting Material 1's carbonyl carbon is attacked by the methyl group, which is followed by a proton transfer and tautomerization to produce the enol intermediate. Following the enol's attack on the carbonyl carbon in Starting Material 2, chloroalkoxide product is created. Curved arrows depicting movements of electrons in reactants and intermediate products can be used to complete the mechanism of the forward reaction.

To know more about Lewis acid catalyst, here

brainly.com/question/31485158

#SPJ4

--The complete Question is, What product is formed when Starting Material 1 reacts with Starting Material 2 in the presence of a Lewis acid catalyst, and complete the mechanism of the forward reaction by placing curved arrows to show the electron movements in the reactants and intermediate product? --

Calculate the energy required to heat a beaker of water at 18 C to boiling. The mass of the water is 70. 0 g. 24 KJ

Answers

The energy required to heat 70.0 g of water from 18°C to boiling (100°C) is 24,518.56 J.

Using the heat exchange formula,

q = mcΔT, mass of water is m, specific heat is c and temperature change is ΔT. For water, the specific heat capacity is 4.184 J/g·°C. The temperature change is,

ΔT = (100°C - 18°C) = 82°C

Therefore, the amount of energy required to heat 70.0 g of water from 18°C to boiling is,

q = m × c × ΔT

q = (70.0 g) × (4.184 J/g·°C) × (82°C)

q = 24,518.56 J

Therefore, the energy required to heat the beaker of water is 24,518.56 J.

To know more about Heat change, visit,

https://brainly.com/question/28912732

#SPJ4

An HCl solution has a concentration of 0. 09714 M. Then 10. 00 mL of this solution was then diluted to 250. 00 mL in a volumetric flask. The diluted solution was then used to titrate 250. 0 mL of a saturated AgOH solution using methyl orange indicator to reach the endpoint. (1pts) 1. What is the concentration of the diluted HCl solution?

Answers

Concentration of the diluted HCl solution : 0.00389 M


To find the concentration of the diluted HCl solution, we can use the equation:

C1V1 = C2V2

Where C1 is the initial concentration of the HCl solution (0.09714 M), V1 is the initial volume of the solution (10.00 mL), C2 is the final concentration of the diluted HCl solution, and V2 is the final volume of the diluted HCl solution (250.00 mL).

Plugging in the values, we get:

(0.09714 M)(10.00 mL) = C2(250.00 mL)

Solving for C2, we get:

C2 = (0.09714 M)(10.00 mL) / (250.00 mL)

C2 = 0.00389 M

Therefore, the concentration of the diluted HCl solution is 0.00389 M.

To know more about Concentration calculations: https://brainly.com/question/29404471

#SPJ11

4. An alkaline earth hydroxide, M(OH)2, was taken to lab for analysis. The unknown powder was poured into a flask and swirled in room temperature DI water until a saturated solution formed. This solution was then slowly filtered to remove the undissolved solid hydroxide. 28. 5 mL of this saturated solution was titrated with 0. 173 M HCl (aq). Endpoint required 25. 10 mL of the HCl (aq) solution. Calculate the Ksp for this alkaline earth hydroxide

Answers

The Ksp of a substance is the equilibrium constant for the reaction between the dissolved ions and the undissolved solid. In this case, the equation is M₂+(aq) + 2OH-(aq) ↔ M(OH)₂(s).

Knowing the volume of HCl required for the titration (25.10 mL) and the molarity of the HCl (0.173 M), the concentration of M₂+ and OH- ions in the saturated solution can be calculated. The Ksp can then be calculated using the concentration of M₂+ and OH- ions in the solution.

The Ksp can be expressed as Ksp = [M₂+][OH]⁻². To calculate the Ksp, the molarity of the HCl solution is multiplied by the volume used in the titration (25.10 mL) to get the moles of HCl used (4.35 x 10⁻³mol). This number is then divided by the volume of the saturated solution (28.5 mL) to get the concentration of M₂+ (1.53 x 10-2 M) and OH- (3.06 x 10⁻² M).

Finally, the Ksp can be calculated using the concentrations of M₂+ and OH- ions: Ksp = [1.53 x 10⁻²][3.06 x 10⁻²]2 = 4.94 x 10⁻⁵. Thus, the Ksp for this alkaline earth hydroxide is 4.94 x 10-5.

Know more about Equilibrium constant  here

https://brainly.com/question/10038290#

#SPJ11

Other Questions
native land act of 1914 why was it introduced 4. Nifedipine ER 90mg tabs #90 AWP/100 $337.88 Fine the Retail price HELP ASAP ALL MY POINTS: Choose the sentence that correctly follows the capitalization rules.The first book of the bible, genesis, tells how God created the Heavens and the Earth.Genesis also tells how He created Adam and Eve in His image.We read about the garden of Eden and how satan deceived Eve.We also learn how God instructed Noah to build the Ark to save His family. Pls help label each scatterplot correctly, no associationlinear negative association linear positive associationnonlinear association thu gn v sp xp lu tha ca bin f(x)= 2x^2 -x +3 -4x -x^4g(X)= 4X^2 + 2X + X^4 -2 + 3X why does disagreement among the gods pose a problem for euthyphro's claim that what is pious is what is dear to the gods? group of answer choices because it entails that some things are both pious and impious all of the above because it entails that some gods aren't perfect because it isn't a definition of piety Quotation Marks: Place the correct quotation marks in the following sentences. h. Using a bullet-pointed list, describe the geologic history of the map area. Hint: start with the oldest event and describe events as they occurred up to the present daythis Geology/earth science Find the slope of the line represented below true or false? if deborah uses $21 each week to buy juice and lottery tickets and the cost of bottles of juice is $3 and the cost of lottery tickets is $1.50, deborah's budget constraint can be written as $21 14select the correct answer.which development contributed to reforms during the prague spring movement?oa.the creation of the brezhnev doctrineob.the death of antonn novotno c.the creation of the action programod.the resignation of alexander dubekresetnext I dont know how to do this Can someone help me I'm stuck. Alexandria rolled a number cube 60 times and recorded her results in the table. What is the theoretical probability of rolling a one or two? Leave as a fraction in simplest from City A and City B had two different temperatures on a particular day. On that day, four times the temperature of City A was 7 C more than three times the temperature of City B. The temperature of City A minus three times the temperature of City B was 5 C. The following system of equations models this scenario:4x = 7 + 3yx 3y = 5What was the temperature of City A and City B on that day? What is the cash realizable value of the accounts receivable before the write-off and after the write-off?. A silver block, initially at 55.1C , is submerged into 100.0 g of water at 25.0C in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.9C . The specific heat capacities for water and silver are Cs,water=4.18J/(gC) and Cs,silver=0.235J/(gC). Explain why the results from the experiment suggest that there is an obstruction. Everyone has a nickel to spend on a Coke." Which Georgia entrepreneur made this statement and how does it describe their business success? Responses A Bernie Marcus: Mr. Marcus was the first to offer Coca-Cola in big box stores, increasing its overall sales. Bernie Marcus: Mr. Marcus was the first to offer Coca-Cola in big box stores, increasing its overall sales. B Ted Turner: Ted Turner's visionary leadership made Coca-Cola a household name by introducing the product to movie theaters. Ted Turner: Ted Turner's visionary leadership made Coca-Cola a household name by introducing the product to movie theaters. C Truett Cathy: Mr. Cathy's leadership and religious values made him a successful businessman, thus bringing Coca-Cola onto the world market. Truett Cathy: Mr. Cathy's leadership and religious values made him a successful businessman, thus bringing Coca-Cola onto the world market. D Robert Woodruff: Mr. Woodruff's visionary leadership and high standards for quality and customer service made Coca-Cola a household name during the 1930s. Various doses of an experimental drug, in milligrams, were injected into a patient. The patient'schange in blood pressure, in millimeters of mercury, was recorded in the table below.40 50Dose (mg)Change in Blood Pressure(mmHg)102209301214 16Use the model to find the expected change in blood pressure for a 100 mg dose.10 The authors belief that both interstate and international water-use agreements were necessary was shaped by the fact that the seven states ____________ the United States, while the United States and its neighboring country of Mexico __________