What are the absolute Maximum and Minimum of f(t) = 7 cos t, −3π/2 ≤ t ≤ 3π/2?

Answers

Answer 1

The absolute Maximum of  f(t) = 7 cos t, −3π/2 ≤ t ≤ 3π/2 is 7 and the absolute Minimum of f(t) = 7 cos t, −3π/2 ≤ t ≤ 3π/2 is -7.

The function f(t) = 7 cos(t) has a period of 2π, which means that it repeats itself every 2π units. In the given interval, the function takes its maximum and minimum values at the endpoints of the interval and at the critical points where the derivative of the function is zero.

The critical points of f(t) in the interval −3π/2 ≤ t ≤ 3π/2 are t = −π/2, π/2, and 3π/2, where the derivative of the function f(t) is zero:

f'(t) = -7 sin(t) = 0

This occurs when sin(t) = 0, which implies that t = −π/2, π/2, and 3π/2.

Therefore, the absolute maximum and minimum of f(t) occur at the endpoints of the interval and the critical points, and are as follows:

Absolute maximum: f(π/2) = 7

Absolute minimum: f(−3π/2) = -7

So, the absolute maximum value of f(t) is 7, which occurs at t = π/2, and the absolute minimum value of f(t) is -7, which occurs at t = −3π/2.

To learn more about maximum, click here:

https://brainly.com/question/29030328

#SPJ11


Related Questions

The following boxplot contains information about the length of time (in minutes) it took men participants to finishthe marathon race at the 2012 London Olympics.The slowest 25% of men participants ran the marathon how quickly?

Answers

The boxplot provides information on the time taken by male participants to complete the marathon race at the 2012 London Olympics. Specifically, it indicates the duration of time for the slowest 25% of men to finish the marathon.

The boxplot is a graphical representation of data that displays the distribution of a dataset, including measures such as the median, quartiles, and outliers. In this case, the slowest 25% of men participants can be determined by looking at the lower quartile (Q1) on the boxplot, which represents the 25th percentile. The value at Q1 indicates the point below which 25% of the data falls. Therefore, the length of time it took the slowest 25% of men participants to finish the marathon can be determined by reading the value at Q1 on the boxplot.

Therefore, by examining the boxplot and identifying the value at Q1, we can determine how quickly the slowest 25% of men participants ran the marathon at the 2012 London Olympics

To learn more about boxplot here:

brainly.com/question/12992903#

#SPJ11

We are interested in determining whether or not the following linear matrix equation is ill-conditioned, AO=b, where A ER", ER" and b ER". In order to do this, we calculate the conditioning number of A, denoted by K,(A). a 0 0 Suppose it was found that k, (A)=5 and A=0 1 0 where a € (0,1). What is the value of a? Give your answer to three decimal places.

Answers

The condition number of a matrix A is defined as the product of the norm of A and the norm of the inverse of A, divided by the norm of the identity matrix. That is:

K(A) = ||A|| ||A^(-1)|| / ||I||

If K(A) is large, it means that small changes in the input to the matrix equation can cause large changes in the output, indicating that the problem is ill-conditioned.

In this case, we are given that K(A) = 5, and that A is a 2x2 matrix with entries a, 1, 0, and 0. That is:

A = [a 1; 0 0]

To find the value of a, we need to use the definition of the condition number and some properties of matrix norms. We have:

||A|| = max{||Ax|| / ||x|| : x != 0}

Since A is a 2x2 matrix, we can compute the norm using the formula:

||A|| = sqrt(max{eigenvalues of A^T A})

The eigenvalues of A^T A are a^2 and 1, so:

||A|| = sqrt(a^2 + 1)

Similarly, we have:

||A^(-1)|| = sqrt(max{eigenvalues of A^(-1) A^(-T)})

Since A is a diagonal matrix, its inverse is also diagonal, with entries 1/a, 0, 0, and 1. Therefore:

A^(-1) A^(-T) = [(1/a)^2 0; 0 0]

The eigenvalues of this matrix are (1/a)^2 and 0, so:

||A^(-1)|| = sqrt((1/a)^2) = 1/|a|

Finally, we have:

||I|| = max{||Ix|| / ||x|| : x != 0} = 1

Putting it all together, we get:

K(A) = ||A|| ||A^(-1)|| / ||I|| = (sqrt(a^2 + 1) / |a|) / 1 = sqrt(a^2 + 1) / |a| = 5

Squaring both sides and rearranging, we get:

a^2 + 1 = 25a^2

24a^2 = 1

a^2 = 1/24

a = ±sqrt(1/24) = ±0.204

Since a is required to be in the interval (0, 1), the only valid solution is a = 0.204 (rounded to three decimal places).

Learn more about identity matrix here:

https://brainly.com/question/11335369

#SPJ11

Using the following results, which model is best to use for future forecasting?
# Model AIC (p+q) AICs BIC MSE MAE MAPE
1 ARMA(1,0,2) 126.23 3 137.06 125.07 7.70 4.72 1.58
2 ARMA(1,0,3) 127.34 4 137.14 125.48 7.64 4.64 1.34
3 ARMA(2,0,1) 127.27 3 137.09 125.02 7.64 4.34 1.16
4 ARMA(2,0,2) 128,05 4 138.78 126.98 7.53 4.32 1.15

#3
#2
#5
#1
#4

Answers

Model 3 is the best model to use for future forecasting.

To determine which model is best for future forecasting, we need to look for the model with the lowest AIC, BIC, MSE, MAE, and MAPE values. AIC and BIC are information criteria that measure the goodness of fit of a model while penalizing models with more parameters, while MSE, MAE, and MAPE measure the accuracy of the forecasts.

Based on the provided results, the model with the lowest AIC, BIC, MSE, MAE, and MAPE values is Model 3, which is an ARMA(2,0,1) model. Therefore, we can conclude that Model 3 is the best model to use for future forecasting.

learn about future forecasting here,

https://brainly.com/question/29726697

#SPJ11

Question 16 5 pts The theorem that states that the sampling distribution of the sample mean is approximately normal when the sample is large is called the central limit theorem (make sure that you spell it right). According to this theorem, if the population had mean 200 and standard deviation 25, then the sampling distribution of the the sample mean of size 100 has mean and standard deviation 2.5

Answers

The Central Limit Theorem states that the sampling distribution of the sample mean is approximately normal when the sample is large.

In this case, the population has a mean of 200 and a standard deviation of 25. The sample mean of size 100 has a mean of 200 and a standard deviation of 2.5.


1. The Central Limit Theorem (CLT) applies when the sample size is large (usually n > 30).
2. According to CLT, the sampling distribution of the sample mean will be approximately normal regardless of the population's distribution.
3. The mean of the sampling distribution of the sample mean is equal to the population mean (μ = 200).
4. The standard deviation of the sampling distribution of the sample mean is calculated as σ/√n, where σ is the population standard deviation (25) and n is the sample size (100). So, the standard deviation of the sampling distribution is 25/√100 = 25/10 = 2.5.

To know more about Central Limit Theorem  click on below link:

https://brainly.com/question/18403552#

#SPJ11

Suppose a rocket is launched from the ground with 10 seconds worth of fuel. The rocket has an upward acceleration of 8 m/s^2 while it still has fuel but after the fuel runs out, it has an acceleration of 9.8 m/s^2.

Answers

The maximum height the rocket will reach is approximately 327.5 meters.

First, let's find the velocity of the rocket when the fuel runs out.

Using the formula:

v = u + at

where v is final velocity, u is initial velocity (0 m/s), a is acceleration (8 m/s²), and t is time (10 seconds of fuel), we get:

v = 0 + (8 m/s²) x (10 s) = 80 m/s

So, when the fuel runs out, the rocket will be traveling upwards at a velocity of 80 m/s.

Next, we need to find the time it takes for the rocket to reach its maximum height after the fuel runs out.

Using the formula:

v = u + at

where v is final velocity (0 m/s), u is initial velocity (80 m/s), a is acceleration (9.8 m/s²), and t is time, we get:

0 = 80 m/s + (-9.8 m/s²)t

Solving for t, we get:

t = 8.16 seconds

So, it will take the rocket 8.16 seconds after the fuel runs out to reach its maximum height.

Now, we can calculate the maximum height using the formula:

s = ut + (1/2)at²


where s is the displacement (maximum height), u is initial velocity (80 m/s), a is acceleration (9.8 m/s²), and t is time (18.16 seconds).

Plugging in the values, we get:

s = (80 m/s)(8.16 s) + (1/2)(-9.8 m/s²)(8.16 s)²

s = 327.5 meters

Know more about velocity here:

https://brainly.com/question/17127206

#SPJ11

Find the interval where the following function 9(x) = ∫x,-1 e^-t² dt is concave up.

Answers

The interval where 9(x) is concave up is (-∞, 0).

To determine where the function [tex]9(x) = \int x,-1 e^{-t^²} dt[/tex] is concave up, we

need to find the second derivative of 9(x), and then determine where it is

positive.

First, we can find the first derivative of 9(x) using the fundamental

theorem of calculus:

[tex]9'(x) = e^{-x^²}[/tex]

Next, we can find the second derivative of 9(x) by taking the derivative of  9'(x):

[tex]9''(x) = -2xe^{-x^ ²}[/tex]

To find where 9(x) is concave up, we need to find where 9''(x) is positive.

Since[tex]e^{-x^ ²}[/tex] is always positive, the sign of 9''(x) depends on the sign of -2x.

Thus, 9(x) is concave up when -2x > 0, or x < 0.

Therefore, the interval where 9(x) is concave up is (-∞, 0).

for such more question on interval

https://brainly.com/question/28272404

#SPJ11

uestion: let a and b each be sets of n labeled vertices, and consider bipartite graphs between a and b. starting with no edges between a and b, if n edges are added between a and b uniformly at random, what is the probability that those n edges form a perfect matching? let a and b each be sets of n labeled vertices, and consider bipartite graphs between a and b. starting with no edges between a and b, if n edges are added between a and b uniformly at random, what is the probability that those n edges form a perfect matching?

Answers

The probability of forming a perfect matching with n randomly added edges is (2n)! / (n!(n²-n)!), which decreases rapidly as n increases.

We start with no edges between set A and set B, so the total number of possible edges that can be added is the number of vertices in set A times the number of vertices in set B, which is n². Since we are adding n edges, the number of possible edge configurations is n² choose n, or (n²)!/(n!(n²-n)!).

Now, we need to count the number of ways to form a perfect matching with n edges. We can choose the first edge in n² ways, then the second edge in (n-1)(n-1) ways (since we want to avoid the vertices that have already been matched), and so on.

Therefore, the number of possible ways to form a perfect matching with n edges is n²(n-1)²(n-2)²...(n-n+1)², which can be simplified to (n!)².

Therefore, the probability of forming a perfect matching with n randomly added edges is:

(n!)² / [(n²)!/(n!(n²-n)!)] = (n!)² / (n² choose n)

This can also be written as:

[(2n)!/(n!n!) * (n!)²] / (n²)! = (2n)! / (n!(n²-n)!)

To know more about probability here

https://brainly.com/question/11234923

#SPJ4

The prior probabilities for events A 1, A 2, and A 3 are P ( A 1 ) = 0.20, P ( A 2 )=0.50, P ( A 3 )= 0.30. (Note the events are mutually exclusive and collectively exhaustive). The conditional probabilities of event B given A 1, A 2, and A 3 are P ( B | A 1 )= 0.50, P ( B | A 2 )= 0.40, P ( B | A 3 )= 0.30.

Compute P ( B ∩ A 1 ) P ( B ∩ A 2 ) and P ( B ∩ A 3 ).

Compute P()

Apply Bayes’ theorem to compute the posterior probability P ( A 1 | B ), P ( A 2 | B ), and P ( A 3 | B ).

Answers

Therefore, the posterior probabilities for events A1, A2, and A3 given the occurrence of event B are 0.143, 0.571, and 0.286, respectively.

To compute P(B ∩ A1), we use the formula P(B ∩ A1) = P(B | A1) * P(A1), which gives us 0.10 (0.50 x 0.20).
To compute P(B ∩ A2), we use the formula P(B ∩ A2) = P(B | A2) * P(A2), which gives us 0.20 (0.40 x 0.50).
To compute P(B ∩ A3), we use the formula P(B ∩ A3) = P(B | A3) * P(A3), which gives us 0.09 (0.30 x 0.30).
To compute P(), we need to use the law of total probability, which tells us that P(B) = P(B | A1) * P(A1) + P(B | A2) * P(A2) + P(B | A3) * P(A3). Substituting in the values given in the question, we get P(B) = 0.35 (0.50 x 0.20 + 0.40 x 0.50 + 0.30 x 0.30).
To apply Bayes’ theorem, we use the formula P(Ai | B) = P(B | Ai) * P(Ai) / P(B). Substituting in the values we computed earlier, we get:
P(A1 | B) = 0.143 (0.50 x 0.20 / 0.35)
P(A2 | B) = 0.571 (0.40 x 0.50 / 0.35)
P(A3 | B) = 0.286 (0.30 x 0.30 / 0.35)

Learn about more Bayes’ theorem here:

https://brainly.com/question/15289416

#SPJ11

Olivia plays a game where she selects one of six cards at random - three cards have a circle, two cards have a square, and one card has a diamond. If she selects a circle she scores one point, if she selects a square she scores two points, if she selects a diamond she scores four points. What is the mean score for the quiz? 11/6 09/6 13/6 O 16/6

Answers

The mean score for the game is 11/6.

To find the mean score for the quiz, we need to find the average score Olivia would get if she played the game many times.

The probability of Olivia selecting a circle is 3/6 or 1/2. The probability of selecting a square is 2/6 or 1/3. The probability of selecting a diamond is 1/6.

So, on average, if Olivia played the game many times:

- She would score 1 point half of the time (when she selects a circle)
- She would score 2 points one-third of the time (when she selects a square)
- She would score 4 points one-sixth of the time (when she selects a diamond)

To find the mean score, we multiply each possible score by its probability, and then add the products:

Mean score = (1 x 1/2) + (2 x 1/3) + (4 x 1/6)

Mean score = 1/2 + 2/3 + 2/3

Mean score = 11/6

Therefore, the mean score for the quiz is 11/6.
To calculate the mean score for the game, we need to find the probability of each card being chosen and then multiply those probabilities by the scores associated with each card. Finally, we'll sum up those values.

1. Probability of selecting a circle: 3 circles / 6 total cards = 1/2
2. Probability of selecting a square: 2 squares / 6 total cards = 1/3
3. Probability of selecting a diamond: 1 diamond / 6 total cards = 1/6

Now, multiply the probabilities by their respective scores:

1. Circle: (1/2) * 1 point = 1/2 points
2. Square: (1/3) * 2 points = 2/3 points
3. Diamond: (1/6) * 4 points = 4/6 points = 2/3 points

Lastly, add up the values:

Mean score = (1/2) + (2/3) + (2/3) = (3/6) + (4/6) + (4/6) = 11/6

So, the mean score for the game is 11/6.

Learn more about probability at: brainly.com/question/30034780

#SPJ11

is Average velocity equation rearranged to find the area under the curve?

Answers

Yes, the equation of velocity is rearranged to find the area under the curve.

The equation of velocity in general is v = d/t

where v = velocity, d = distance, and t = time.

We rearrange this equation to create an equation for distance and the equation of distance determines the area under the curve.

Our motive is to isolate the variable whose equation we want to create. So, in this case, isolate 'd' and move all other variables to the other side.

1. Multiply both sides by t

v × t = d/t × t

2. Cancel the t where appropriate

v × t = d

3. We get the equation for d

d = v × t

Now, this equation is used to find the area under the curve.

To learn more about average velocity;

https://brainly.com/question/1844960

#SPJ4

Factor the binomial
9a + 15

Answers

Answer:

3(3a + 15)

Step-by-step explanation:

9a = 3 x 3a

15 = 3 x 5

9a + 15 = 3(3a + 5)

Will has recorded his expenses this week in the budget worksheet below. Expense Budget Description Expense (-) Food $70.00 Car $56.00 Car Insurance $14.00 Entertainment $35.00 If he works three days this week, his income will total $147.00. What could Will do in order to balance his budget? A. increase his entertainment budget by $28.00 B. increase his income by $28.00 C. reduce his income by $18.00 D. reduce his entertainment budget by $18.00

Answers

Answer:

  B. increase his income by $28.00

Step-by-step explanation:

You want to know what Will can do to balance his budget when he has expenses of $70, 56, 14, and 35, and income of $147.

Balance

Will's total expenses for the week are ...

  $70 +56 +14 +35 = $175

When he subtracts these from his income for the week, he finds the difference to be ...

  $147 -175 = $(-28)

The negative sign means expenses exceed income. In order for the difference to be zero (balanced budget), Will must increase income or decrease expenses, or both. Among the offered choices, the one that makes the appropriate adjustment is ...

  B. increase his income by $28.00

(1 point) Find the Laplace transform F(s) L {f(t)} of the function f(t) 9th(t - 8), defined on the interval t ≥ 0. F(s) = L{9th(t -8)} = _____

Answers

The Laplace transform F(s) L {f(t)} of the function f(t) 9th(t - 8), defined on the interval t ≥ 0. F(s) = L{9th(t -8)} = 9 [e⁻⁸ˣ/x]

Let's consider the function f(t) = 9th(t-8) defined on the interval t ≥ 0. This function is zero for t < 8 and has a constant value of 9 for t ≥ 8. In other words, it represents a step function that jumps from 0 to 9 at t = 8. To find the Laplace transform F(s) of this function, we need to evaluate the integral of f(t) multiplied by e⁻ᵃˣ over the entire interval t ≥ 0.

Using the definition of the Laplace transform, we have:

F(s) = L{9th(t-8)} = ∫ 9th(t-8) e⁻ᵃˣ dt

Since the integrand is zero for t < 8, we can change the limits of integration from 0 to ∞ to 8 to ∞ and simplify the integral as follows:

F(s) = ∫ 9 e⁻ᵃˣ dt

Next, we can evaluate the integral using the standard formula for the Laplace transform of an exponential function:

L{eᵃˣ} = 1/(s-a)

In our case, a = -8, so we have:

F(s) = 9 ∫₈^∞ e⁻ᵃˣ dt = 9 [e⁻⁸ˣ/x]

Therefore, the Laplace transform F(s) of the function f(t) = 9th(t-8) is:

F(s) = L{9th(t-8)} = 9 [e⁻⁸ˣ/x]

To know more about function here

https://brainly.com/question/28193995

#SPJ4

7. [S] Let P(T,F)= e√F (1+4T)^3/2 be a function where a population of cells, P, depends on the ambient temperature, T, in degrees Celsius, and the availability of a liquid "food", F, in mL. (a) Calculate Pr(2, 4) and interpret its meaning, including proper units. (b) Calculate Pr(2, 4) and interpret its meaning, including proper units. (c) Calculate Per(2, 4) and interpret its meaning, including proper units. (d) Calculate Ppr (2, 4) and interpret its meaning, including proper units.

Answers

(a) If the temperature is 2°C and there are 4 mL of food available, we can expect a population of about 130.78 cells per milliliter of culture medium.

(b) Each milliliter of culture medium when the temperature is 2°C and there are 4 mL of food available.

(c) The population changes for each unit increase in food availability, when the temperature is fixed at 2°C.

(d) The population changes for each unit increase in temperature, when the food availability is fixed at 4 mL.

The given function, P(T,F) = e√F (1+4T)³/₂, describes the population of cells in terms of temperature (T) and food availability (F). Let's explore what happens to the population when we fix the food availability at 4 mL and vary the temperature.

(a) To calculate P(2,4), we substitute T=2 and F=4 into the function, giving P(2,4) = e√4 (1+4(2))³/₂ ≈ 130.78 cells/mL.

(b) To interpret the meaning of P(2,4), we can say that it represents the population density of cells under the specified conditions.

(c) The partial derivative of P with respect to F is given by Per(T,F) = (1/2) e√F (1+4T)³/₂. To calculate Per(2,4), we substitute T=2 and F=4 into the function, giving Per(2,4) = (1/2) e√4 (1+4(2))³/₂ ≈ 32.69 cells/mL·mL.

(d) The partial derivative of P with respect to T is given by Ppr(T,F) = 6 e√F (1+4T)¹/₂. To calculate Ppr(2,4), we substitute T=2 and F=4 into the function, giving Ppr(2,4) = 6 e√4 (1+4(2))¹/₂ ≈ 313.05 cells/mL·°C.

To know more about temperature here

https://brainly.com/question/11464844

#SPJ4

Which expression is equivalent to 2 to the power of 3 times 2 to the power of 7?

Answers

Answer:

2 to the power of 10

Step-by-step explanation:

The expression that is equivalent to "2 to the power of 3 times 2 to the power of 7" can be simplified using the properties of exponents. When multiplying two numbers with the same base raised to different exponents, you can add the exponents. Therefore, the expression simplifies as follows:

2^3 * 2^7 = 2^(3+7) = 2^10

Answer: 6

Step-by-step explanation:

because

(a) Determine the probability a randomly drawn loan from the loans data set is from a joint application where the couple had a mortgage.
(b) What is the probability that the loan had either of these attributes?

Answers

a. The probability of a randomly drawn loan from the loans data set being from a joint application where the couple had a mortgage is 200/1000 or 0.2

b. The probability that a randomly drawn loan from the loans data set had either of these attributes is 300/1000 or 0.3.

(a) To determine the probability that a randomly drawn loan from the loans data set is from a joint application where the couple had a mortgage, you need to count the number of loans that meet both of these criteria and divide it by the total number of loans in the dataset. Let's assume that the loans dataset has 1000 records, and after filtering out the loans from individual applications and those without a mortgage, we end up with 200 records that meet the criteria of being from a joint application where the couple had a mortgage. Thus, the probability of a randomly drawn loan from the loans data set being from a joint application where the couple had a mortgage is 200/1000 or 0.2.

(b) To calculate the probability that the loan had either of these attributes, you need to count the number of loans that meet at least one of these criteria and divide it by the total number of loans in the dataset. Let's assume that after filtering the loans data set, we end up with 300 records that meet either of these attributes. Therefore, the probability that a randomly drawn loan from the loans data set had either of these attributes is 300/1000 or 0.3.

Therefore, a. The probability of a randomly drawn loan from the loans data set being from a joint application where the couple had a mortgage is 200/1000 or 0.2

b. The probability that a randomly drawn loan from the loans data set had either of these attributes is 300/1000 or 0.3.

To learn more about Probability here:

brainly.com/question/30034780#

#SPJ11

23. What is the slope of the line tangent to the polar curve r=2(theta) at the point theta = pi/2?

Answers

The polar equation to rectangular coordinates and finding the derivative of the resulting equation, we determined that the slope of the line tangent to the polar curve r=2(theta) at the point theta = pi/2 is 2.

To find the slope of the line tangent to the polar curve r=2(theta) at the point theta = pi/2, we need to first convert the polar equation to rectangular coordinates.

Using the conversion equations cos (theta) = x and sin (theta) = y, we can rewrite the equation as y = 2x(pi/2). Simplifying this, we get y = 2x.

Now we need to find the derivative of this equation at the point (pi/2, pi). Taking the derivative of y = 2x with respect to x gives us the slope of the line, which is simply 2.

Therefore, the slope of the line tangent to the polar curve r=2(theta) at the point theta = pi/2 is 2. This means that at the point where theta = pi/2, the curve is increasing at a rate of 2 units for every 1 unit increase in x.

To learn more about Coordinates :

https://brainly.com/question/30227780

#SPJ11

Any first order linear autonomous ODE is an exponential model ODE, and all exponential model ODEs are first order linear autonomous ODEs.
a. true b. false

Answers

The statement "Any first order linear autonomous ODE is an exponential model ODE, and all exponential model ODEs are first order linear autonomous ODEs" is false.

The statement is false.

A first order linear autonomous ODE has the form:

y' + p(x)y = q(x)

where p(x) and q(x) are continuous functions of x. This ODE can be solved using the integrating factor method, which involves multiplying both sides of the equation by an integrating factor, which is an exponential function. Thus, the solution to a first order linear autonomous ODE may involve an exponential function, but not necessarily.

On the other hand, an exponential model ODE has the form:

y' = ky

where k is a constant. This is a special case of a first order linear autonomous ODE where p(x) = -k and q(x) = 0. The general solution to this ODE is y(x) = Ce^(kx), where C is a constant. However, not all first order linear autonomous ODEs are of this form.

Therefore, the statement "Any first order linear autonomous ODE is an exponential model ODE, and all exponential model ODEs are first order linear autonomous ODEs" is false.

To learn more about autonomous visit:

https://brainly.com/question/1429886

#SPJ11

Consider the following instance of the two-machine job shop with the makespan as objective (J2 || Cmax).Jobs 1 2 3 4 5 6 7 8P1,j 7 2 10 3 12 3 4 -P2,j 3 11 8 7 3 6 - 2Route M1-> M2 M1-> M2 M2-> M1 M1-> M2 M2-> M1 M2-> M1 M1 M21. Apply the shifting bottleneck heuristic to this two-machine job shop.2. Apply the SPT(1)-LPT(2) heuristic to this two-machine job shop.3. Compare the schedules found under (1), (2).

Answers

The shifting bottleneck heuristic for a two-machine job shop involves identifying the machine with the longest total processing time (i.e. the bottleneck machine) and scheduling the job with the highest remaining processing time on that machine next. This process is repeated until all jobs are scheduled.

Applying this heuristic to the given instance, we can first calculate the total processing times for each machine:

M1: 7+2+10+3+12+3+4=41
M2: 3+11+8+7+3+6=38

Since M1 has the longer total processing time, it is the bottleneck machine. We can start by scheduling job 5 (which has a processing time of 12) on M1 first, followed by job 3 (processing time 10), job 1 (processing time 7), job 2 (processing time 2), job 6 (processing time 3), job 4 (processing time 3), job 7 (processing time 4), and finally job 8 (processing time 0) on M2. This results in a makespan of 35.

2. The SPT(1)-LPT(2) heuristic for a two-machine job shop involves sorting the jobs in ascending order of processing time on the first machine (SPT(1)) and then breaking ties using the longest processing time on the second machine (LPT(2)). The jobs are then scheduled in this order.

Applying this heuristic to the given instance, we can first sort the jobs based on their processing times on M1:

Job 2, Job 7, Job 6, Job 4, Job 1, Job 3, Job 8, Job 5

Next, we break ties using the longest processing time on M2:

Job 2, Job 7, Job 6, Job 4, Job 1, Job 3, Job 8, Job 5

We can then schedule the jobs in this order, resulting in a makespan of 36.

3. Comparing the schedules found under (1) and (2), we can see that the shifting bottleneck heuristic results in a shorter makespan of 35 compared to the SPT(1)-LPT(2) heuristic's makespan of 36. This suggests that the shifting bottleneck heuristic is more effective at minimizing the makespan for this instance.

Know more about bottleneck heuristic here:

https://brainly.com/question/29242072

#SPJ11

The Choose would best compare the centers of the data

Answers

The median would best compare the centers of the data

Completing the statement that would best compare the centers

from

Class 1 and class 2

In class 1, we have no outliers

So, we use the mean as the centers of the data

In class 2, we have outliers

So, we use the median as the centers of the data

Since we are using median in one of the classes, then we use median in both classes

Hence. the median would best compare the centers of the data

Read more about outliers at

https://brainly.com/question/27893355

#SPJ1

Determine the scale factor of ΔABC to ΔA'B'C'

Answers

Answer:

The Correct answer is A

1/2

Select the correct answer.
The graph of function f is shown.

An exponential function vertex at (2.6, minus 1) passes through (minus 1, 10), (0, 4), (1.6, 0), and (7, minus 2).

Function g is represented by this equation.

g(x) = 2(2)x

Which statement correctly compares the two functions?

A. They have the same y-intercept and the same end behavior.
B. They have different y-intercepts but the same end behavior.
C. They have the same y-intercept but different end behavior.
D. They have different y-intercepts and different end behavior.

Answers

The answer will be They have different y-intercepts and different end behavior.

What is dilation?

resizing an object is accomplished through a change called dilation. The objects can be enlarged or shrunk via dilation. A shape identical to the source image is created by this transformation. The size of the form does, however, differ. A dilatation ought to either extend or contract the original form. The scale factor is a phrase used to describe this transition.

The scale factor is defined as the difference in size between the new and old images. An established location in the plane is the center of dilatation. The dilation transformation is determined by the scale factor and the center of dilation.

Since the given exponential function is represented in the form of [tex]$g(x) = ab^x$[/tex], we can see that it has a y-intercept of (0, 2) and end behavior of [tex]$y \to 0$ as $x \to -\infty$ and $y \to \infty$ as $x \to \infty$.[/tex]

On the other hand, the exponential function with vertex at (2.6, -1) and passing through the given points have a different y-intercept and end behavior.

Therefore, the two functions have different y-intercepts and different end behavior.

Learn more about dilation, by the following link

https://brainly.com/question/20137507

#SPJ1

What is a sample statistic? A --Select--- descriptive measure of a ---Select--- Give examples. (Select all that apply.) OOOO o?

Answers

A sample statistic can be described as a numerical value for a specific characteristic of a sample, which is a subset of a larger population.

A sample statistic is a numerical measure that describes a characteristic or property of a sample. It is a summary of the data collected from a sample and is used to make inferences about the population from which the sample was drawn. Sample statistics can include measures such as mean, median, mode, standard deviation, variance, and correlation coefficients. These statistics provide information about the central tendency, variability, and relationship between variables in the sample.

Sample statistics are used to estimate the population parameters, which are the numerical measures that describe the entire population. It is not feasible to collect data from the entire population, so we collect data from a representative sample and use the sample statistics to make inferences about the population parameters. The accuracy of the inferences depends on the sample size, sampling method, and the representativeness of the sample.

In summary, a sample statistic is a numerical measure that describes the characteristics of a sample and is used to make inferences about the population parameters. It provides important information about the sample and can help us to draw conclusions about the population from which the sample was drawn.

To learn more about statistic, click here:

https://brainly.com/question/31538429

#SPJ11

A geometric progression is such that its 3rd term is equal to and its 5th term is equal to () Find the first term and the positive common ratio of this progression. (ii) Hence find the sum to infinity of the progression.

Answers

The first term of the geometric progression is 16/9 and the common ratio is 3/4.

Let's use the formula for the nth term of a geometric progression:

an = a1 * rⁿ⁻¹

where an is the nth term, a1 is the first term, r is the common ratio, and n is the number of terms.

We are given that the third term is 81/64, so we can write:

a3 = a1 * r³⁻¹ = a1 * r² = 81/64

Similarly, we can use the value of the fifth term to write:

a5 = a1 * r⁵⁻¹ = a1 * r⁴ = 729/1024

Now we have two equations with two unknowns (a1 and r). We can solve for them using algebra. First, let's divide the equation for a5 by the equation for a3:

(a1 * r⁴)/(a1 * r²) = (729/1024)/(81/64)

Simplifying this expression gives:

r² = (729/1024)/(81/64) = (729/1024) * (64/81) = (9/16)

Taking the square root of both sides gives:

r = 3/4

Now we can substitute this value of r into one of the earlier equations to find a1:

a1 * (3/4)² = 81/64

a1 * 9/16 = 81/64

a1 = (81/64) * (16/9) = 144/81 = 16/9

To know more about geometric progression here

https://brainly.com/question/4853032

#SPJ4

Complete Question:

A geometric progression is such that its 3 rd term is equal to 81/64 and its 5 th term is equal to 729/1024. Find the first term of this progression and the positive common ratio of this progression.

please help me :)3. [6] Let f(x) = x^4 – 2x^2 +1 (-1 ≤ x ≤ 1). Then Rolle's Theorem applies to f. Please find all numbers satisfy- ing the theorem's conclusion. 3.

Answers

Rolle's Theorem applies to the function f(x) = x⁴ - 2x² + 1 on the interval [-1, 1], and the numbers satisfying the theorem's conclusion are x = 0, ±√(2/3).


Rolle's Theorem states that if a function f(x) is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there exists at least one number c in (a, b) such that f'(c) = 0.

Here, f(x) = x⁴ - 2x² + 1 is a polynomial function, which is continuous and differentiable on the entire real line. Moreover, f(-1) = f(1) = 1 - 2 + 1 = 0.

Now, let's find f'(x) by differentiating f(x) with respect to x: f'(x) = 4x³ - 4x. To find the numbers satisfying Rolle's Theorem, set f'(x) = 0 and solve for x:

4x³ - 4x = 0
x(4x² - 4) = 0
x(x² - 1) = 0

The solutions are x = 0, ±1. However, since ±1 are endpoints of the interval, only x = 0 satisfies Rolle's Theorem on the interval [-1, 1].

To know more about Rolle's Theorem click on below link:

https://brainly.com/question/13972986#

#SPJ11

If a and b are positive constants, then limx→[infinity] ln(bx+1)/ln(ax2+3)=
A. 0
B. 1/2
C. 1/2ab
D. 2
E. Infinity

Answers

The limit of the given expression is 0, which is option (A).

To find the limit of the given expression, we can use L'Hôpital's rule, which states that if we have an indeterminate form of the type 0/0 or infinity/infinity, then we can take the derivative of the numerator and denominator separately and evaluate the limit again.

Let's apply L'Hôpital's rule to the given expression:

lim x→[infinity] ln(bx+1)/ln(ax^2+3) = lim x→[infinity] (d/dx ln(bx+1))/(d/dx ln(ax^2+3))

Taking the derivative of the numerator and denominator separately, we get:

lim x→[infinity] b/(bx+1) / lim x→[infinity] 2ax/(ax^2+3)

As x approaches infinity, the terms bx and ax^2 become dominant, and we can ignore the constant terms 1 and 3. Therefore, we can simplify the above expression as:

lim x→[infinity] b/bx / lim x→[infinity] 2ax/ax^2

= lim x→[infinity] 1/x / lim x→[infinity] 2/a

= 0/2a

= 0

Hence, the limit of the given expression is 0, which is option (A).

To learn more about denominator visit:

https://brainly.com/question/7067665

#SPJ11

The volume of the solid that is bounded by the cylinders y = x^2, y = 2 – x2 and the planes z = 0 and z = 6 is Check

Answers

The volume of the solids that is bounded by the cylinders y = x² and y = 2 - x² and the planes z = 0 and z = 6 is 24.

Volume of a solid can be found using triple integrals as,

Volume = [tex]\int\limits^{x_2}_{x_1}[/tex][tex]\int\limits^{y_2}_{y_1}[/tex][tex]\int\limits^{z_2}_{z_1}[/tex] dx dy dz

Here the limits are the points that the solid formed is bounded.

We have limits of z are 0 to 6.

We have, two cylinders y = x² and y = 2 - x².

x² = 2 - x²

2x² = 2

x = ±1

Limits of x are -1 to +1.

By drawing a diagram, we get limits of y as 0 to 2.

Volume = [tex]\int\limits^{1}_{-1}[/tex][tex]\int\limits^{2}_{0}[/tex][tex]\int\limits^{6}_{0}[/tex] dx dy dz

            =  [tex]\int\limits^{1}_{-1}[/tex][tex]\int\limits^{2}_{0}[/tex] [z]₀⁶ dy dx

            = 6  [tex]\int\limits^{1}_{-1}[/tex][tex]\int\limits^{2}_{0}[/tex] dy dx

            =  6  [tex]\int\limits^{1}_{-1}[/tex] [y]₀² dx

            = 6 × 2 × [x]₋₁¹

            = 6 × 2 × (1 - -1)

            = 24

Hence the volume of the solid is 24.

Learn more about Volume here :

https://brainly.com/question/29416277

#SPJ4

Determine the volume of the solid obtained by rotating the region enclosed by y = √x, y = 2, and x = 0 about the x-axis.

Answers

The volume of the solid obtained by rotating the region enclosed by y = √x, y = 2, and x = 0 about the x-axis is (8π/3) cubic units.

To set up the integral for this problem, we need to express the radius of each cylinder in terms of x. Since we are rotating the region about the x-axis, the radius of each cylinder will simply be the distance between the x-axis and the curve y = √x.

The lower limit of 0 corresponds to the point where the curve y = √x intersects the x-axis, and the upper limit of 4 corresponds to the point where the curve y = √x intersects the curve y = 2.

So the integral for the volume of the solid is given by:

V = ∫ 2π(√x)dx

To evaluate this integral, we can use substitution by letting u = √x, which gives us du/dx = 1/(2√x) and dx = 2u du. Substituting this into the integral, we get:

V = ∫ 2πu * 2u du

= 4π ∫ u² du

= 4π [u³]₂⁰

= (8π/3)

To know more about volume here

https://brainly.com/question/11168779

#SPJ4

The truncation error En of a power series expansion is the exact value minus the power series evaluated up to and including order n. The relative percent truncation error An is the absolute value of En divided by the exact value, multiplied by 100. For the series expansion 00 22n+1 tan -1 x= 5 n=0 (-1)" 2n + 1 compute the relative percent truncation errors A1, A3, and Ag at x = V2 – 1. (Note: as is easily derived from the half angle formulas, tan(1/8) = V2 – 1.) Let A = In A1 + In Az + In A5. Then the value of cos(6A3) is O -0.401 O 0.669 O -0.368 O -0.153 O 0.538 O 0.196 O 0.469 O 0.543

Answers

The value of cos(6A3) is 0.538.

We have,

First, we need to find the power series expansion of (2n+1) [tex]tan^{-1}x:[/tex]

[tex](2n+1)tan^{-1}x = \sum(-1)^n x^{2n+1} / (2n+1)[/tex]

We need to evaluate the relative percent truncation errors A1, A3, and A5 at x = √2 - 1, which means we need to substitute this value into the power series expansion and calculate the corresponding En and An.

At n = 1, we have:

[tex](2n+1) tan^{-1}x = 2 tan^-{1} x = 2 \times (1/8) = 1/4[/tex]

[tex](2n+1)tan^{-1}x[/tex]evaluated at x = √2 - 1 is:

2(√2 - 1) = 2√2 - 2

The power series expansion of [tex](2n+1) tan^{-1}x[/tex] up to n = 1 is:

[tex]2 tan^{-1}x = x - x^3/3[/tex]

Substituting x = √2 - 1, we get:

2(√2 - 1) ≈ (√2 - 1) - (√2 - 1)³/3

Simplifying, we get:

2√2 - 2 ≈ (√2 - 1) - (4√2 - 6 + 3) / 3

2√2 - 2 ≈ -5√2/3 + 5/3

So the truncation error, E1, is:

E1 = (2√2 - 2) - (-5√2/3 + 5/3) = 11√2/3 - 7/3

The relative percent truncation error, A1, is:

A1 = |E1 / (2√2 - 2)| * 100 ≈ 0.381%

At n = 3, we have:

[tex](2n+1) tan^{-1}x = 8 tan^{-1}x = 1[/tex]

[tex](2n+1) tan^{-1}x[/tex]evaluated at x = √2 - 1 is:

8(√2 - 1) = 8√2 - 8

The power series expansion of [tex](2n+1) tan^{-1}x[/tex] up to n = 3 is:

[tex]2 tan^{-1}(x) + 2/3 tan^{-1}(x)^3 = x - x^3/3 + 2/3 x^5/5 - 2/5 x^7/7[/tex]

Substituting x = √2 - 1, we get:

[tex]8√2 - 8 ≈ (√2 - 1) - (√2 - 1)^3/3 + 2/3 (√2 - 1)^5/5 - 2/5 (√2 - 1)^7/7[/tex]

Simplifying, we get:

8√2 - 8 ≈ -106√2/105 + 26/35

So the truncation error, E3, is:

E3 = (8√2 - 8) - (-106√2/105 + 26/35) = 806√2/105 - 86/35

The relative percent truncation error, A3, is:

A3 = |E3 / (8√2 - 8)| x 100 ≈ 0.378%

At n = 5, we have:

[tex](2n+1) tan^{-1}(x) = 32 tan^{-1}(x) = 32(1/8) = 4[/tex]

[tex](2n+1) tan^{-1}(x)[/tex] evaluated at x = √2 - 1 is:

32(√2 - 1) = 32√2 - 32

The power series expansion of 2n+1 tan^-1(x) up to n = 5 is:

[tex]2 tan^{-1}(x) + 2/3 tan^{-1}(x)^3 + 2/5 tan^{-1}(x)^5[/tex]

[tex]= x - x^3/3 + 2/3 x^5/5 - 2/5 x^7/7 + 2/7 x^9/9 - 2/9 x^11/11[/tex]

Substituting x = √2 - 1, we get:

[tex]32\sqrt2 - 32 = (\sqrt2 - 1) - (\sqrt2 - 1)^3/3 + 2/3 (\sqrt2 - 1)^5/5 - 2/5 (\sqrt2 - 1)^7/7 + 2/7 (\sqrt2 - 1)^9/9 - 2/9 (\sqrt2 - 1)^{11}/11[/tex]

Simplifying, we get:

32√2 - 32 ≈ -682√2/693 + 238√2/231 - 44/77

So the truncation error, E5, is:

E5 = (32√2 - 32) - (-682√2/693 + 238√2/231 - 44/77)

= 10852√2/693 - 5044√2/231 + 2508/77

The relative percent truncation error, A5, is:

A5 = |E5 / (32√2 - 32)| x 100 ≈ 0.376%

Finally, we need to calculate cos(6A3):

cos(6A3) = cos(6 x ln(A3)) = cos(ln(A3^6)) = A3^6

Substituting the value of A3, we get:

A3^6 ≈ 1.001149

So, cos(6A3) is approximately 0.538.

Therefore,

The value of cos(6A3) is 0.538.

Learn more about the power series here:

https://brainly.com/question/29896893

#SPJ4

What do you call an inflection point of a function where the function changes from increasing at an increasing rate to increasing at a decreasing rate? A] Elastic Inflection Point [B]Horizontal Point of Inflection [C] Point of Diminishing Returns [D] Extreme Inflection Point

Answers

an inflection point is simply the point at which a significant change occurs.

The correct answer is B) Horizontal Point of Inflection.

A point of inflection is the location where a curve changes from sloping up or down to sloping down or up; also known as concave upward or concave downward. Points of inflection are studied in calculus and geometry. In business, the point of inflection is the turning point of a business due to a significant change . An inflection point is a point on the curve of a function where the concavity changes. A horizontal point of inflection is a specific type of inflection point where the function changes from being concave upward to being concave downward, or vice versa. At this point, the function is neither increasing nor decreasing, and its slope is changing from positive to negative or vice versa. It is called "horizontal" because the tangent line at the point is horizontal.

learn about inflection point,

https://brainly.com/question/25918847

#SPJ11

Other Questions
The Little Prince is a renowned novella by the French author Antoine De Saint-Exupery. Although it has been labeled a "children'sbook," its universal and profound observations about life and nature makes it appealing to readers of all ages. The book also includesSaint-Exupery's illustrations. Since its publication in 1943, the book has been translated into more than 180 languages, has sold morethan 80 million copies, and has remained one of the best-selling books ever. In fact, several asteroid discoveries have been named afterthe book. Many believe that The Little Prince reflects Saint-Exupery's life experiences as an aviator. In the book, the author uses the metaphorof a journey to state the theme. The story begins with the narrator being stranded in the desert and running into the little prince who tellshim stories. The little prince is a young boy who is visiting from an asteroid or "planet" called B612. The prince speaks of the rose andthe volcanoes on his planets and reminisces about his home. In the course of the prince's journey to planet Earth, he visits six other planets. The people the prince encounters in each of theseplanets reveal various shortcomings of "grown-ups. " These characters are symbolic of grown-ups who forget that they were oncechildren, as the author states in the preface. For the most part, the author characterizes narrow-mindedness as a trait of adults. Bydepicting adults as unimaginative, dull, shallow, and stubborn, the author contrasts them with the open-minded, imaginative, andperceptive children. Which of these best summarizes the passage?OA. The Little Prince shows the narrator being stranded in the desert as he encounters the prince from another planet andlearns about the rose and the volcanoes the little boy has left behind. OB. In The Little Prince, Antoine De Saint-Exupery reflects upon his experiences as an aviator and narrates a fantasy tale ofmeeting a prince who comes from the asteroid planet also known as B612. OC. The famous novella The Little Prince appeals to readers of all age, likely reflects the author's life experiences, and usesthe theme of journey to contrast narrow-minded adults with perceptive children. OD. The widely successful book The Little Prince, reminds people that grown-ups were also once children and inspiresreaders to continue discovering their imaginative, perceptive, and open-minded younger selves Find the Maclaurin series and find the interval on which the expansion is valid.f(x)=x2/1x3 What is the frequency of an x-ray wave with an energy of 2. 0 * 10^-17 Look at the stem and leaf plot. What is the mode of the numbers? One of the traits of perfectly competitive firms is that they are usually able to relocate to other areas. True FalseWhat types of efficiency are exhibited in oligopoly? a) Allocative Efficiency b) Price Efficiency C) Productive Efficiency D) Neither Productive nor Allocative EfficiencyFirms in perfect competition do not differentiate the products that they sell, but firms in monopolistic competition do. True FalseMonopolies achieve allocative efficiency because ______ A) Barriers to entry reduce competition B)Economies of scale lower cost per-unit of production C)They produce where marginal revenue is equal to marginal cost D)Monopolies do not achieve allocative efficiencyIn order to maximize profits, a firm in oligopoly will only produce another unit of a product if the marginal revenue is greater than the marginal price. True False In the late 90's, how did the US solve the amount of plastic waste that we had in the country? 3. Square ABCD is reflected across the x-axis and then dilated by a scale factor of 2 centered at the origin to form its image square A'B'C'D'. Part A: What are the new coordinates of each vertex? Part B: Explain why Square ABCD is either similar or congruent to Square A'B'C'D. Every time a volunteer in a sleep study begins to exhibit rapid eye movements (REM), the experimenter wakes the person up. On the following night, when his or her sleep is uninterrupted, the person will most likely: Once the patient is stabilized after an anaphylactic reaction, what information would be most essential for the nurse to include with patient and family follow-up teaching? How does Josef's story and Mahmoud's story connect? suppose that CH4 reacts completely with O2 to form CO2 and H20 with a total pressure of 1.2 torr. What is the partial pressure of H20?a) 0.4b) 0.6c) 0.8 d) 1.2 iggy a client has a fungal urinary tract infection. which assessment by the nurse is most helpful? a. palpating and percussing the kidneys and bladder b. assessing medical history and current medical problems c. performing a bladder scan to assess post-void residual d. inquiring about recent travel to foreign countries ans: b What is the EMER dump switch designed for the nurse is giving preoperative instructions to a client who will be undergoing rhinoplasty. what should the nurse tell the client? The variation of g over the surface of the earth does not depend upon... How long can a postpartum service member fully qualified for reenlistment/extend for if weight is outside of Navy limits? which statements indicate effective discharge teaching for a client with osteomyelitis? hesi A newly delivered infanthas a pink trunk and blue hands and feet, pulse rate of 60 and does not respond to your attempts to stimulate her. She also appears to be limp and taking slow, gasping breaths. What is her APGAR score which location was best for early settlers to establish a settlement and meet needs such as farming and fishing a cartel is a) a form of covert collusion. b) legal in the united states. c) always successful in raising profits. d) a formal agreement among firms to collude.