Answer:
Camera 2nd has to cover the maximum angle, i.e. [tex]78.70^\circ[/tex].
Step-by-step explanation:
Please have a look at the triangular park represented as a triangle [tex]\triangle ABC[/tex] with sides
a = 110 ft
b = 158 ft
c = 137 ft
1st camera is located at point C, 2nd camera at point B and 3rd camera at point A respectively.
We can use law of cosines here, to find out the angles [tex]\angle A, \angle B, \angle C[/tex]
As per Law of cosine:
[tex]cos C = \dfrac{a^{2}+b^2-c^2 }{2ab}\\cos B = \dfrac{a^{2}+c^2-b^2 }{2ac}\\cos A = \dfrac{b^{2}+c^2-a^2 }{2bc}[/tex]
Putting the values of a,b and c to find out angles [tex]\angle A, \angle B, \angle C[/tex].
[tex]cos C = \dfrac{110^{2}+158^2-137^2 }{2\times 110 \times 158}\\\Rightarrow cos C = \dfrac{12100+24964-18769 }{24760}\\\Rightarrow cos C =0.526\\\Rightarrow C = 58.24^\circ[/tex]
[tex]cos B = \dfrac{110^{2}+137^2-158^2 }{2\times 110 \times 137}\\\Rightarrow cos B = \dfrac{12100+18769 -24964}{30140}\\\Rightarrow cos B = \dfrac{5905}{30140}\\\Rightarrow cos B =0.196\\\Rightarrow B = 78.70^\circ[/tex]
[tex]cos A = \dfrac{158^{2}+137^2-110^2 }{2\times 158 \times 137}\\\Rightarrow cos A = \dfrac{24964+18769-12100}{43292}\\\Rightarrow cos A = \dfrac{31633}{43292}\\\Rightarrow cos A = 0.731\\\Rightarrow A = 43.05^\circ[/tex]
Camera 2nd has to cover the maximum angle, i.e. [tex]78.70^\circ[/tex].
Use the quadratic formula to find both solutions to the quadratic equation given below. 2x^2+3x-5=0
Answer:
[tex] x =\frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
Where a = 2 , b= 3, c= -5, replacing we have this:
[tex]x =\frac{-3 \pm \sqrt{(-3)^2 -4(2)(-5)}}{2*2}[/tex]
And simplifying we got:
[tex] x = \frac{-3 \pm \sqrt{49}}{4}[/tex]
And the two solutions are:
[tex] x_1 = \frac{-3+7}{4}= 1[/tex]
[tex] x_2 = \frac{-3-7}{4}= -\frac{5}{2}[/tex]
And the correct options are:
B and C
Step-by-step explanation:
We have the following equation given:
[tex] 2x^2 +3x -5=0[/tex]
And if we use the quadratic formula given by:
[tex] x =\frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
Where a = 2 , b= 3, c= -5, replacing we have this:
[tex]x =\frac{-3 \pm \sqrt{(-3)^2 -4(2)(-5)}}{2*2}[/tex]
And simplifying we got:
[tex] x = \frac{-3 \pm \sqrt{49}}{4}[/tex]
And the two solutions are:
[tex] x_1 = \frac{-3+7}{4}= 1[/tex]
[tex] x_2 = \frac{-3-7}{4}= -\frac{5}{2}[/tex]
And the correct options are:
B and C
Answer:
B and C
Step-by-step explanation:
Find f. f ''(θ) = sin(θ) + cos(θ), f(0) = 2, f '(0) = 1 f(θ) =
Answer:
[tex]f(theta)=sin(theta) - cos(theta)[/tex] + C
This is my first time doing a double integral, so im only 90% sure in my answer
Step-by-step explanation:
You pretty much want to take the double integral of sinx + cosx
The anti-derivative of sinx = -cosx
The anti-derivative of cosx = sinx
So f' = -cosx + sinx
Now lets take the integral of f':
The anti-derivative of -cosx = sinx
The anti-derivative of sinx = -cosx
So, f(x) = sinx - cosx
============================================================
Work Shown:
I'll use x in place of theta since its easier to type on a keyboard.
f '' (x) = sin(x) + cos(x)
f ' (x) = -cos(x) + sin(x) + C ..... integrate both sides; dont forget the plus C
f ' (0) = 1
f ' (0) = -cos(0) + sin(0) + C
-cos(0) + sin(0) + C = 1
-1 + 0 + C = 1
C = 1+1
C = 2
So,
f ' (x) = -cos(x) + sin(x) + C
turns into
f ' (x) = -cos(x) + sin(x) + 2
----------------------------
Now integrate both sides of the first derivative to get the original f(x) function
f ' (x) = -cos(x) + sin(x) + 2
f(x) = -sin(x) - cos(x) + 2x + D .... apply integral; D is some constant
f(0) = -sin(0) - cos(0) + 2(0) + D
f(0) = 0 - 1 + 0 + D
f(0) = D - 1
f(0) = 2
D-1 = 2
D = 2+1
D = 3
We have f(x) = -sin(x) - cos(x) + 2x + D update to f(x) = -sin(x) - cos(x) + 2x + 3
----------------------------
So f '' (x) = sin(x) + cos(x) becomes f(x) = -sin(x) - cos(x) + 2x + 3 when f(0) = 2 and f ' (0) = 1
The last step is to replace every x with theta so that we get back to the original variable.
f(x) = -sin(x) - cos(x) + 2x + 3 turns into f(θ) = -sin(θ) - cos(θ) + 2θ + 3
x⁴+1/x⁴=47,find the value of x³+1/x³
Answer:
The value of x^3 + 1/x^3 is 47/x + 1/x^3 - 1/x^5
Step-by-step explanation:
x^4 + 1/x^4 = 47
x^4 = 47 - 1/x^4
x^3 + 1/x^3 = 1/x(x^4 + 1/x^2)
x^4 = 47 - 1/x^4
x^3 + 1/x^3 = 1/x(47 - 1/x^4 + 1/x^2) = 47/x - 1/x^5 + 1/x^3 = 47/x + 1/x^3 - 1/x^5
Find the solution to the system of equations.
You can use the interactive graph below to find the solution.
y= -7x+3
y = -x-3
Answer: The answer has one solution:
_______________________________
→ x = 1 ; y = -4 ; or, write as: [1, -4].
_______________________________
Step-by-step explanation:
_______________________________
Given:
y = - 1x – 3
y = -7x + 3 ;
_______________________________
-1x – 3 = -7x + 3 ; Solve for "x" ;
Add: " +1x" ; and add " +3 " ; to Each Side of the equation:
Subtract " 1x " ; and Subtract " 1 " ; from Each Side of the equation:
-1x + 1x – 3 + 3 = -7x + 1x + 3 + 3 ;
to get:
0 = -6x + 6
↔ -6x + 6 = 0 ;
Now, subtract " 6 " from Each Side of the equation:
-6x + 6 – 6 = 0 – 6 ;
to get:
-6x = -6 ;
Now, divide Each Side of the equation by " -6 ";
to isolate "x" on one side of the equation;
& to solve for "x" ;
-6x /-6 = -6/-6 ;
to get:
x = 1 .
_______________________________
Now, let us solve for "y" ;
We are given:
y = -x – 3 ;
Substitute our solved value for "x" ; which is: " 1 " ; for " x " ; into this given equation; to obtain the value for " y " :
y = -x – 3 ;
= -1 – 3
y = - 4 .
_______________________________
Let us check our answers by plugging the values for "x" and "y" ;
" 1 " ; and " -4 "; respectively); into the second given equation; to see if these values for " x " and " y" ; hold true:
Given: y = - 7x + 3 ;
→ -4 =? -7(1) + 3 ?? ;
→ -4 =? -7 + 3 ?? ;
→ - 4 =? -4 ?? ;
→ Yes!
_______________________________
The answer has one solution:
→ x = 1 ; y = - 4 ; or, write as: [1, -4 ].
_______________________________
Hope this is helpful! Best wishes!
_______________________________
A stack of 4 identical books is 6.28 inches high. What is the heigh of 30 of these books?
4books=6.28inches
30books=?
(30x6.28)/4
47.1 inches
answer47.1 inches
divide 41000 into two parts such that their amounts at 50% compound interest compounded annually in 2 and 3 years are equal
Answer:24600 , 16400
Step-by-step explanation:
Let the first part be x
So, second part will be 41000 - x
For amount x
SI = prt / 100
SI = x * 0.50 * 2
SI = 1x
For amount 41000 - x
SI = (41000-x) * 0.50 * 3
SI = 61500 - 1.5x
1x = 61500 - 1.5x
1.5x + x = 61500
2.5x = 61500
x = 61500 / 2.50 = 24600 for 2 years
2nd part = 41000 - 24600 = 16400 for three years
What is the value of expression below? 7/2-4.5x3+8
Answer:-2
Step-by-step explanation:
Ok so I’m assuming the x stands for the multiplication sign
7/2-4.5*3+8
Use pemdas
Multiplication first
7/2-4.5*3+8
-4.5*3
7/2-13.5+8
Then addition
-13.5+8
Lastly subtraction
7/2-5
-2
There are 10 balls in a bag, 4 red balls and 6 black balls. If you pick one red ball, you will take it without replacement. If you pick one black ball, you will return it into the bag. Now you pick two times and each time you can only take one ball. What is the probability that you will pick two red balls
Answer:
The probability of selecting two red balls is 0.132.
Step-by-step explanation:
In a bag there are 10 balls in a bag, 4 red balls and 6 black balls.
The conditions of selecting a ball are:
If you pick one red ball, you will take it without replacement. If you pick one black ball, you will return it into the bag.It is also provided that only one ball can be picked at a time.
Now, it is given that two balls are picked.
The number of ways to select a red ball in the first draw is: [tex]{4\choose 1}=4\ \text{ways}[/tex]
Compute the probability of selecting a red ball in the first draw as follows:
[tex]P(\text{First ball is Red})=\frac{{4\choose 1}}{{10\choose 1}}=\frac{4}{10}=0.40[/tex]
Now as a red ball is selected it will not be replaced.
So, there are 9 balls in the bag now.
The number of ways to select a red ball in the second draw is: [tex]{3\choose 1}=3\ \text{ways}[/tex]
Compute the probability of selecting a red ball in the second draw as follows:
[tex]P(\text{Second ball is Red})=\frac{{3\choose 1}}{{9\choose 1}}=\frac{3}{9}=0.33[/tex]
Compute the probability of selecting two red balls as follows:
[tex]P(\text{Two Red balls})=P(\text{First ball is Red})\times P(\text{Second ball is Red})[/tex]
[tex]=0.40\times 0.33\\\\=0.132[/tex]
Thus, the probability of selecting two red balls is 0.132.
During the calendar year of 1971 a total of 171 deaths were caused by influenza in a city of 450,000 persons. The temporal distribution of these deaths was as follows: First Quarter, 54; Second Quarter, 43; Third Quarter, 35; and Fourth Quarter, 39. Calculate the annual and quarterly mortality rates per 100,000 population.
Answer and Step-by-step explanation:
The computation of annual and quarterly mortality rates per 100,000 population is shown below:-
Quarterly mortality rates are
[tex]= \frac{Deaths}{Population\ in\ the\ city}\times Population[/tex]
For the first quarter
[tex]= \frac{54}{450,000}\times 100,000[/tex]
= 12 death per 100,000 population
For the second quarter
[tex]= \frac{43}{450,000}\times 100,000[/tex]
= 9.5 death per 100,000 population
For the third quarter
[tex]= \frac{35}{450,000}\times 100,000[/tex]
= 7.7 death per 100,000 population
For the fourth quarter
[tex]= \frac{39}{450,000}\times 100,000[/tex]
= 8.6 death per 100,000 population
Now the annual mortality is
[tex]= \frac{Deaths}{Population\ in\ the\ city}\times Population[/tex]
[tex]= \frac{171}{450,000}\times 100,000[/tex]
= 38 death per 100,000 population
5. A company sells small, colored binder clips in packages of 20 and offers a money-back guarantee if two or more of the clips are defective. Suppose a clip is defective with probability 0.01, independently of other clips. Let X denote the number of defective clips in a package of 20. (a) The distribution of the random variable X is (choose one) (i) binomial (ii) hypergeometric (iii) negative binomial (iv) Poisson. (b) Specify the value of the parameter(s) of the chosen distribution and find the probability that a package sold will be refunded.
Answer:
a) Binomial.
b) n=20, p=0.01, k≥2
The probability hat a package sold will be refunded is P=0.0169.
Step-by-step explanation:
a) We know that
the defective probability is constant and independent.the sample size is bigger than one subject.The most appropiate distribution to represent this random variable is the binomial.
b) The parameters are:
Sample size (amount of clips in the package): n=20Probability of defective clips: p=0.01.number of defective clips that trigger the money-back guarantee: k≥2The probability of the package being refunded can be calculated as:
[tex]P(x\geq2)=1-(P(x=0)+P(x=1))\\\\\\P(x=k) = \dbinom{n}{k} p^{k}q^{n-k}\\\\\\P(x=0) = \dbinom{20}{0} p^{0}q^{20}=1*1*0.8179=0.8179\\\\\\P(x=1) = \dbinom{20}{1} p^{1}q^{19}=20*0.01*0.8262=0.1652\\\\\\P(x\geq2)=1-(0.8179+0.1652)=1-0.9831=0.0169[/tex]
What’s the correct answer for this question?
Answer:
C.
Step-by-step explanation:
Central angle = 360-52=308°
In radians
308° = 308π/180
Now
S = r∅
S = 3×308π/180
S = 924π /180
S = 77π/15 in.
Answer:
answer is 13π/15
Step-by-step explanation:
correct answer is 13π/15.
Which answer choice contains only equations? 2 + h = 14 and k minus 25 = 2 c minus 14 and d + 134 10 = 3 + s and 22 minus y 15 + x and 55 = r minus 1
Answer:
2 + h = 14 and k - 25 = 2
Step-by-step explanation:
An equation has an equal sign.
Apparently, your answer choices are of the form ...
(math expression) and (math expression)
In order for this to be "only equations", each "math expression" must contain an equal sign. That is, you must have ...
( ... = ... ) and ( ... = ... )
Something like ...
c -14 and d +134
contains no equal signs, so has no equations.
It looks like your appropriate choice is ...
2 + h = 14 and k - 25 = 2
Answer:
the answer is a
Step-by-step explanation:
i took the test
:)
note: have a wonderful day!
uppose the correlation between two variables, math attitude (x) and math achievement (y) was found to be .78. Based on this statistic, we know that the proportion of the variability seen in math achievement that can be predicted by math attitude is:
Answer:
The proportion of the variability seen in math achievement that can be predicted by math attitude is 0.78, the same value as the correlation coefficient.
Step-by-step explanation:
The correlation coefficient r between this two variables is found to be 0.78.
This coefficient can be calculated as:
[tex]r=\dfrac{SSY'}{SSY}[/tex]
where SSY' is the sum of the squares deviation from the mean for the predicted value and SSY is the sum of the squares deviation from the mean for the criterion variable.
Then, the value of the coefficient r is giving the proportion of the variability seen in the criterion value Y that can be explained by the predictor variable X.
Answer:
r=SSY'/SSY
Step-by-step explanation:
Graph the image of the figure given the translation. 1. (x, y) → (x +4, y - 1)
Answer:
Y=(-1,0)
G=(0,1)
F=(-1,3)
Step-by-step explanation:
What is the value of k?
k=
8
m
o
4
k
N
M
Answer: It’s 2
Step-by-step explanation:
look at picture
WILL GIVE BRAINLIEST HURRY
Answer: C
Step-by-step explanation:
To get all the constant terms on one side and variable terms on another, all we have to do is to add or subtract them on both sides.
3x+2x=10+5
Now that the like terms are on one side, we can combine them.
5x=15
To get x alone, we divide both sides by 5.
x=3
Now, we notice that x=3 is not an answer choice, but the next option that is equivalent to x=3 is C.
For C, if you divide both sides by -5, you still get x=3.
-15=-5x
x=3
In right triangle $ABC,$ $\angle C = 90^\circ.$ Median $\overline{AM}$ has a length of $19,$ and median $\overline{BN}$ has a length of $13.$ What is the length of the hypotenuse of the triangle?
Answer:
AB = 2√106 ≈ 20.591
Step-by-step explanation:
The Pythagorean theorem says the square of the hypotenuse is equal to the sum of the squares of the legs.
For median AM, we have ...
AM² = CM² +AC² = (BC/2)² +AC²
For median BN, we have ...
BN² = CN² +BC² = (AC/2)² +BC²
The sum of these two equations is ...
AM² +BN² = BC²/4 +AC² +AC²/4 +BC² = (5/4)(AC² +BC²)
AM² +BN² = (5/4)(AB²)
The hypotenuse of triangle ABC is then ...
AB = √(4/5(AM² +BN²))
AB = 2√((19² +13²)/5)
AB = 2√106 ≈ 20.591
which is a correct first step in solving the inequality-4(2x-1)>5-3x
Step-by-step explanation:
-8x + 4 > 5 - 3x
-8x + 3x > 5 - 4
-5x > 1
x > 1 / - 5
3. What would you expect the relationship between the length of a baby at birth and
the month in which the baby was born to be?
A positive correlation
B negative correlation
C no correlation
Given the function f(x) = 2|x + 6|- 4, for what values of x is f(x) = 6?
x=-1, x = 11
x=-1, x=-11
x = 14, x=-26
x = 26. x=-14
Answer:
solution is [tex]\boxed{x=-1,x=-11}[/tex]
Step-by-step explanation:
f(x)=2|x+6|-4
either x+6 is positive and then |x+6|=x+6
or it is negative and |x+6| = -(x+6)=-x-6
case 1: x>=-6
f(x)= 2x+12-4=2x+8
f(x)=6 <=> 2x+8=6 <=> 2x = 6-8=-2 <=> x = -1
case 2: x<=-6
f(x)=-2x-12-4=-2x-16
f(x)=6 <=> -2x-16=6 <=> 2x=-16-6 = -22 <=> x = -11
so to recap, the solutions are x=-1 and x=-11
The value of x from the modulus value function is x = -1 and x = -11
What is Modulus Function?Regardless of the sign, a modulus function returns the magnitude of a number. The absolute value function is another name for it.
It always gives a non-negative value of any number or variable. Modulus function is denoted as y = |x| or f(x) = |x|, where f: R → (0,∞) and x ∈ R.
The value of the modulus function is always non-negative. If f(x) is a modulus function , then we have:
If x is positive, then f(x) = x
If x = 0, then f(x) = 0
If x < 0, then f(x) = -x
Given data ,
Let the function be represented as A
Now , the value of A is
f ( x ) = 2 | x + 6 | - 4 be equation (1)
On simplifying , we get
when the value of f ( x ) = 6
Substituting the value of f ( x ) = 6 , we get
6 = 2 | x + 6 | - 4
Adding 4 on both sides , we get
2 | x + 6 | = 10
Divide by 2 on both sides , we get
| x + 6 | = 5
And , If x is positive, then f(x) = x
If x = 0, then f(x) = 0
If x < 0, then f(x) = -x
So , the two values of x are given by
when x + 6 = -5 and x + 6 = 5
x = -1 and x = -11
Hence , the values of x of modulus function is x = -1 and x = -11
To learn more about modulus function click :
https://brainly.com/question/13682596
#SPJ7
SOLVE THE EQUATION SHOW YOUR WORK 3x = 45
Answer:
x = 15
Step-by-step explanation:
3x = 45
x = 45/3
x = 15
Answer:
15
Step-by-step explanation:
3x = 45
Dividing 3 from both sides gives you
[tex]x = 45/3\\\\[/tex]
Now that isolated x.
[tex]45/3 = 15[/tex]
So x = 15
:D
5. Lana pays a semiannual premium of $300 for automobile insurance, a monthly premium of $100 for health insurance, and an annual premium of $700 for life insurance.
Find her monthly expense.
Hey there! I'm happy to help!
We want to find out how much Lana pays per month. Let's dissect each payment we are given so we can find our monthly expense.
---------------------------------------------------------------------------
AUTOMOBILE INSURANCE
$300 for automobile insurance semiannually
The prefix semi- means half. Annual means year. So, she is paying $300 every half year, or six months. So, we can divide 300 by 6 to find how much she pays in one month!
300/6=50
Therefore, she pays $50 a month for automobile insurance.
---------------------------------------------------------------------------
HEALTH INSURANCE
We are told here that she pays $100 every month for health insurance. We don't need do anything else here!
---------------------------------------------------------------------------
LIFE INSURANCE
We see that Lana pays $700 per year on life insurance. We can divide this by 12 to find out how much there is in 1 month!
700/12≈58.33
Therefore, she pays $58.33 every month on life insurance.
---------------------------------------------------------------------------
SOLUTION
Now, we just add all of these monthly totals up to find Lana's monthly expense.
50+100+58.33=208.33
Therefore, Lana's monthly expense is $208.33.
I hope that this helps! Have a wonderful day!
Find the area of the circle
Answer:
615.44
Step-by-step explanation:
The area in terms of π is 196π
196 * 3.14 = 615.44
Answer:
615.75
Step-by-step explanation:
Area equals pi times r times 2
A equals 3.14 times 14 times 2
Several surveys in the United States and Europe have asked people to rate their happiness on a scale of 3 = "very happy," 2 = "fairly happy," and 1 = "not too happy," and then tried to correlate the answer with the person's income. For those in one income group (making $25,000 to $55,000) it was found that their "happiness" was approximately given by y = 0.065x − 0.613, where x is in thousands of dollars.† Find the reported "happiness" of a person with the following incomes (rounding your answers to one decimal place).
Answer:
Step-by-step explanation:
We have to find the reported happiness of person of family income of $25,000, $35,000 and $45,000
Given that the formula for finding relation between a people happiness and his income is
y = 0.065x - 0.613
a) find the happiness of person of family income os $25,000
we put x = 25 as in the equation above
[tex]y=0.065(25)-0.613\\\\=1.625-0.613\\\\=1.02 \approx 1[/tex]
Hence, person happiness with with family income of $25,000 on a scale of 3 is y = 1
That means they come under catergory "not to happy"
b) Find the happiness of person of family income os $35,000
we put x = 35 as in the equation above
[tex]y=0.065(35)-0.613\\\\=1.667-0.613\\\\=1.667 \approx 1.7[/tex]
Hence, person happiness with with family income of $35,000 on a scale of 3 is y = 1.7
That means they come under catergory "not to happy" and "fairly happy"
c) Find the happiness of person of family income os $45,000
we put x = 45 as in the equation above
[tex]y=0.065(45)-0.613\\\\=2.925-0.613\\\\=2.312 \approx 2.3[/tex]
Hence, person happiness with with family income of $45,000 on a scale of 3 is y = 2.3
That means they come under catergory "fairly happy"
The scale would show the data as follows:
Happiness Scale at Income 25, 35, 45 & 55 thousand :
1.012 (Not too happy), 1.662 (Fairly Happy), 2.315 (Fairly Happy) , 2.965 (Very Happy)
Determine the scaleImportant Information :
Relationship between happiness scale 'y' and income in 1000s 'x' :y = 0.065x − 0.613, for people in income group between [tex]25000 & 55000[/tex]
Happiness scale : At level of income, between 25 and 55 thousands.
Putting value of income 'x' to find scale of happiness i.e. 'y'
For income 'x' = 25 thousand : [tex]y = 0.065 (25) - 0.613 = 1.625 - 0.613 = 1.012[/tex] For income 'x' = 35 thousand : [tex]y = 0.065 (35) - 0.613 = 2.275 - 0.613 = 1.662[/tex]For income 'x' = 45 thousand : [tex]y = 0.065 (45) - 0.613 = 2.925 - 0.61 = 2.315[/tex] For income 'x' = 55 thousand :[tex]y = 0.065 (55) - 0.613 = 3.575 - 0.61 = 2.965[/tex]
Learn more about "Happiness Scale" here:
brainly.com/question/25609130
I NEED AN ANSWER IN MINUTES!!! WILL GIVE BRAINLIEST!!!!
Examine the diagram.
2 lines intersect a horizontal line to form 3 angles. The angles are 1, 90 degrees, 2.
Which statement is true about angles 1 and 2?
Angles 1 and 2 are complementary.
Angles 1 and 2 are vertical.
Angles 1 and 2 are supplementary.
Angles 1 and 2 are adjacent.
Answer:
I think that angles 1 and 2 are complementary
Step-by-step explanation:
option 1
plz mark brainliest!
Answer:a
Step-by-step explanation:
Which is an irrational number?
Answer: THE SECOND ONE
Step-by-step explanation:
Answer: the second one
Step-by-step explanation:
what statement about the function are true?
Answer:
Step-by-step explanation:
What function ?
Me.perez drove a total of 40 miles in 5 days she drove the same number of miles each day.how many miles did me.perez drive each day?
Answer:
She drove 8 miles each day.
Step-by-step explanation:
Given that she drove equal number of miles in 5 days. So in order to find the number of miles in each days, you have to divide it by 5,
[tex]5days = 40miles[/tex]
[tex]1day = 40 \div 5[/tex]
[tex]1day = 8miles[/tex]
which ordered pair is a solution for 2x+5y=-11
10x+3y=11
Answer:
X = 2 and Y = -3
Step-by-step explanation:
2x+5y=-11 - equation 1
10x+3y=11 - equation 2
from equation 1, 2X = -11 - 5y
X = -11/2 - 5Y/2
X = -5.5 - 2.5Y
insert X = -5.5 - 2.5Y into equation 2
therefore, 10x+3y=11
10(-5.5 - 2.5Y) + 3y = 11
-55 -25Y +3Y = 11
-22Y = 11+55
Y = -66/22
Y = -3
insert Y = -3 into equation 1
thus 2x + 5(-3) = -11
2x - 15 = -11
2x = -11 + 15
2x = 4
x = 4/2
x = 2
ordered pair: X = 2 and Y = -3
If theta=3pi/4
Sin theta=?
Cos theta=?
Answer:
For ease of writing, θ [tex]=x[/tex]
[tex]sin(x)=\frac{1}{\sqrt{2} }[/tex]
[tex]cos(x)=-\frac{1}{\sqrt{2} }[/tex]
Step-by-step explanation:
Our angle is [tex]x=\frac{3\pi }{4}[/tex]
To find our answers for [tex]sin(\frac{3\pi}{4} )[/tex] and [tex]cos(\frac{3\pi}{4} )[/tex], we will need to use a unit circle. (I have attached the image of one).
Recall that the [tex]sin[/tex] of an angle is equal to the y-value of the corresponding ordered pair.
And the [tex]cos[/tex] of an angle is equal to the x-value of the corresponding ordered pair.
For the angle [tex]x=\frac{3\pi }{4}[/tex], the ordered pair is [tex](-\frac{1}{\sqrt{2}} }, \frac{1}{\sqrt{2} } )[/tex]
This means that
[tex]sin(x)=\frac{1}{\sqrt{2} }[/tex]
[tex]cos(x)=-\frac{1}{\sqrt{2} }[/tex]