The smallest separation between earth and jupiter is 588 million km while the largest separation is 968 million km. given that jupiter has a physical diameter of 140,000 km, what are the largest and smallest angular sizes of jupiter as seen from earth?

Answers

Answer 1

The largest angular size of Jupiter as seen from Earth is 0.022 degrees and the smallest angular size is 0.013 degrees.

To calculate the angular size of Jupiter as seen from Earth, we can use the formula:
Angular size = [tex](\frac{diameter of object}{distance to object})[/tex]×(180° / π)

For the smallest separation between Earth and Jupiter (588 million km), the angular size of Jupiter would be:
Angular size =[tex](\frac{140,000 km}{588 million km})[/tex]×(180° / π) = 0.022 degrees or approximately 1.3 arcminutes

For the largest separation between Earth and Jupiter (968 million km), the angular size of Jupiter would be:
Angular size = [tex](\frac{140,000 km}{968 million km})[/tex]×(180° / π)= 0.013 degrees or approximately 0.8 arcminutes.

To know more about the conversion of angular size into arcminutes visit:

https://brainly.com/question/17311200

#SPJ11


Related Questions

Not far from the mirror showcase (the figure shows a top view) there is a person (indicated by point H in the figure), and closer to the showcase there is a lamppost (point C). By building, find the positions at which the observer (points H, which are indicated for example and are not the answer) will see in the window: a person to the left of the pillar; the person to the right of the pillar; a pole blocking a person

Answers

The observer (point H) must be positioned to the right of the person and to the left of the lamppost, to the left of the person and to the right of the lamppost, or behind the lamppost to see the person obstructed by it.

To determine the possible positions of the observer (point H) relative to the mirror showcase, we need to consider the given information about the position of the person and the lamppost.

If the person is to the left of the lamppost (point C) as seen in the window, then the observer (point H) must be positioned to the right of the person and to the left of the lamppost. This is because the mirror will reflect the image of the person to the right, and the observer must be positioned to the right of the reflected image to see it.

If the person is to the right of the lamppost (point C) as seen in the window, then the observer (point H) must be positioned to the left of the person and to the right of the lamppost. This is because the mirror will reflect the image of the person to the left, and the observer must be positioned to the left of the reflected image to see it.

If the lamppost (point C) obstructs the view of the person as seen in the window, then the observer (point H) must be positioned behind the lamppost, either to the left or to the right of it. This is because the mirror will not be able to reflect the image of the person due to the obstruction caused by the lamppost.

In summary, the possible positions of the observer (point H) relative to the mirror showcase are:

To the right of the person and to the left of the lamppost, to see the person to the left of the lamppost. To the left of the person and to the right of the lamppost, to see the person to the right of the lamppost. To the left or right of the lamppost, behind it, to see the obstruction of the person caused by the lamppost.

To learn more about observers

https://brainly.com/question/31715625

#SPJ4

Complete question:

Using the given information, determine the possible positions of the observer (point H) relative to the mirror showcase such that the following are observed:

1 - The person is to the left of the lamppost (point C) as seen in the window.

2 - The person is to the right of the lamppost (point C) as seen in the window.

3 - The lamppost (point C) obstructs the view of the person as seen in the window.

Wave interference that results in lesser wave amplitude is called.

Answers

Wave interference that results in lesser wave amplitude is called destructive interference. In destructive interference, two waves with opposite phases combine, causing the wave amplitudes to cancel each other out, resulting in a lower overall amplitude.


1. When two waves meet, they can either combine constructively or destructively, depending on their phase relationship.

2. Constructive interference occurs when two waves with the same phase meet, resulting in a greater overall amplitude.

3. Destructive interference occurs when two waves with opposite phases meet, causing the wave amplitudes to cancel each other out, resulting in a lower overall amplitude.

4. This can be observed in various real-life scenarios, such as sound waves, light waves, and water waves.

5. To better understand destructive interference, imagine two waves with the same amplitude and frequency traveling in opposite directions on a string.

6. When the waves meet, the crest of one wave aligns with the trough of the other wave, causing them to cancel each other out.

7. As a result, the string appears to be momentarily flat at the point of destructive interference.

8. Destructive interference plays a crucial role in various applications, such as noise-canceling headphones, which use the concept to cancel out unwanted background noise.

In summary, wave interference that results in lesser wave amplitude is called destructive interference. This phenomenon occurs when two waves with opposite phases meet and cancel each other out, resulting in a lower overall amplitude.

To know more about destructive interference refer here

https://brainly.com/question/16098226#

#SPJ11

The observation that individuals from separate species cannot mate to produce offspring is a guideline for identifying _____.

Answers

The observation that individuals from separate species cannot mate to produce offspring is a guideline for identifying distinct species. This criterion is known as the biological species concept.

The biological species concept defines a species as a group of interbreeding organisms that are reproductively isolated from other groups. In other words, individuals within a species can mate and produce viable, fertile offspring, while individuals from different species cannot.

The biological species concept has some limitations. For example, it cannot be applied to asexual organisms or fossils. Additionally, some species can interbreed and produce hybrid offspring, such as the mule, which is a hybrid of a horse and a donkey.

However, these hybrids are often sterile and cannot produce viable offspring of their own, which reinforces the concept that individuals from separate species cannot mate to produce offspring.

Overall, the biological species concept is a useful guideline for identifying distinct species and understanding their evolutionary relationships. It emphasizes the importance of reproductive isolation and genetic divergence in defining separate groups of organisms.

To know more about species refer here:

https://brainly.com/question/29912614#

#SPJ11

The orbit of the moon about the earth is approximately circular, with mean radius of 3,84. 108m. It takes 27,3 days for the moon to complete one revolution about the earth. Find: a) the mean orbital speed of the moon; b) its centripetal acceleration

Answers

The centripetal acceleration of the moon is approximately 0.0027 m/s².

To find the mean orbital speed of the moon and its centripetal acceleration, we'll use the given information of the moon's orbit radius and revolution time.

a) To find the mean orbital speed (v) of the moon, we'll use the formula v = 2 * π * r / T, where r is the orbit radius (3.84 x 10^8 m) and T is the revolution time (27.3 days, converted to seconds).

v = 2 * π * (3.84 x 10^8 m) / (27.3 days * 24 hours/day * 3600 s/hour) ≈ 1022 m/s

The mean orbital speed of the moon is approximately 1022 m/s.

b) To find the centripetal acceleration (a_c) of the moon, we'll use the formula a_c = v² / r.

a_c = (1022 m/s)² / (3.84 x 10⁸ m) ≈ 0.0027 m/s²

The centripetal acceleration of the moon is approximately 0.0027 m/s².

To know more about centripetal acceleration, refer here:

https://brainly.com/question/79801#

#SPJ11

What type of radioactive decay is this process? An example of? 14 6c 1417n +0 negative one negative plus the v

Answers

The type of radioactive decay of carbon to nitrogen is beta-minus decay.

A kind of radioactive decay called beta-minus involves the emission of electrons and antineutrinos from the nucleus as well as the transformation of neutrons into protons, which raises the atomic number of the atom..

This increases the atomic number of the nucleus by one and leaves the mass number unchanged. The question mentions the decay of carbon-14 (C) to nitrogen-14 (N) as an example of beta-minus decay in the given reaction.

To know more about beta-minus decay, visit,

https://brainly.com/question/12534359

SPJ1

Complete question - What type of radioactive decay is this process? An example of?

¹⁴C → ¹⁴N + e⁻ + v

An airplane and a freight train have the same momentum. The airplane has a mass of 21,700 kg and is traveling at 1,200 km/h. The train has a mass of 9,600,000 kg. What is the speed of the train?
Select one:

A: 2. 7 km/h
B:19. 0 km/h
C:25. 0 km/h
D: 5. 3 km/h​

Answers

An airplane and a freight train have the same momentum, but the train's speed is much slower due to its much larger mass. The train's speed is approximately 9.8 km/h. The correct option is B.

The momentum of an object is the product of its mass and velocity. If two objects have the same momentum, their product of mass and velocity will be equal. We can use this principle to determine the speed of the freight train, given the momentum of the airplane.

The momentum of the airplane is:

[tex]p = m \times v[/tex]

[tex]p = 21,700\;kg \times (1,200\;km/h \times 1000\;m/km)[/tex]

p = 26,040,000 kg m/s

Since the momentum of the airplane and the train are equal, we can set their momentum equations equal to each other:

[tex]p = m \times v[/tex]

[tex]26,040,000\;kg\;m/s = 9,600,000\;kg \times v[/tex]

Solving for v, we get:

v = 26,040,000 kg m/s / 9,600,000 kg

v = 2.71 m/s

To convert the velocity from meters per second to kilometers per hour, we multiply by 3.6:

[tex]v = 2.71 m/s \times 3.6\;km/h/m[/tex]

v = 9.8 km/h

Therefore, the speed of the freight train is approximately 9.8 km/h, which is option B.

In summary, the momentum of the airplane is used to determine the velocity of the freight train, which can be calculated using the momentum equation. The velocity of the freight train is found to be approximately 9.8 km/h.

To know more about speed refer here:

https://brainly.com/question/28060745#

#SPJ11

A small 350 gram ball on the end of a thin, light rod is rotated horizontal circle of radius 1. 2 m. Calculate a. The moment of inertia of the ball about the center of the circle and b. The torque needed to keep the ball rotating at constant angular velocity if air resistance exerts a force of 0. 020 N on the ball. Ignore air resistance on the rod and it's moment of inertia. ​

Answers

The moment of inertia of a small ball on the end of a thin rod rotating in a horizontal circle of radius 1.2 m is 0.504 kg m². To keep the ball rotating at a constant angular velocity in the presence of air resistance, a torque of 0.024 Nm is needed.

a. The moment of inertia of the ball about the center of the circle is given by I = mr², where m is the mass of the ball and r is the radius of the circle. Substituting the given values, we get I = 0.35 kg x (1.2 m)² = 0.504 kg m².

b. The torque needed to keep the ball rotating at constant angular velocity is given by τ = Iα, where τ is the torque, I is the moment of inertia, and α is the angular acceleration. Since the ball is rotating at a constant angular velocity, α = 0, and the torque needed is zero.

However, air resistance exerts a force on the ball, which tends to slow it down. To counteract this force, an external torque must be applied in the opposite direction.

The magnitude of this torque is given by τ = Fr, where F is the force of air resistance and r is the radius of the circle. Substituting the given values, we get τ = 0.020 N x 1.2 m = 0.024 Nm.

In summary, the moment of inertia of a small ball on the end of a thin rod rotating in a horizontal circle of radius 1.2 m is 0.504 kg m². To keep the ball rotating at a constant angular velocity in the presence of air resistance, a torque of 0.024 Nm is needed.

To know more about inertia refer here:

https://brainly.com/question/30051108#

#SPJ11

With all his gear, Neil Armstrong weighed 360 pounds on Earth. When he landed on the Moon, he weighed 60 pounds. Why?

Answers

Neil Armstrong may have weighed 360 pounds on Earth when he was equipped with all of his gear, but on the moon he only weighed 60 pounds since the moon has less gravitational force (less gravity), thus resulting in less weight. Your weight on the moon is about 1/6th of your weight on Earth. Hope that helps!

Answer: C.

The gravity on the Moon is less than the gravity on Earth.

Explanation: plato :3

You have just lifted up a 10 lb weight by abducting your arm out to the side at your shoulder. You continue to hold the weight in that position for a few seconds. During this time the length of your muscle remains the same, while the muscle continues to vary the amount of tension or force needed to keep the weight from falling down. What type of contraction is going on while you are holding this weight in this position

Answers

The type of muscle contraction that occurs when holding a weight in a static position is called an isometric contraction. In an isometric contraction, the muscle generates force without changing length.

This is different from concentric and eccentric contractions, which involve muscle shortening and lengthening, respectively. During an isometric contraction, the muscle fibers generate tension, but the force generated is equal and opposite to the external force, resulting in no net movement.

In the case of holding a weight, the force generated by the muscle is equal to the force of gravity pulling the weight downwards. By varying the tension generated by the muscle, the individual can hold the weight in a static position against the force of gravity.

Isometric contractions can be useful for building strength and endurance, and are often used in exercises such as planks and wall sits. However, they can also lead to increased blood pressure and should be avoided in individuals with hypertension.

In summary, holding a weight in a static position involves an isometric contraction, in which the muscle generates tension without changing length. This type of contraction can be useful for building strength and endurance, but may also have health considerations.

To know more about isometric contraction refer here:

https://brainly.com/question/31416732#

#SPJ11

If all of the gravitation potential energy of the apple on the tree is transferred to the spring when it is compressed. What is the spring constant of this spring?

Answers

Answer:

360 N/m

Explanation:

It is best to say that efficient plumbing _______.

Answers

Efficient plumbing encompasses various features, technologies, and practices that contribute to water conservation, cost savings, environmental sustainability, and overall system performance.

Certainly! Here are some additional ways to describe efficient plumbing:

1. Saves water and energy: Efficient plumbing systems are designed to minimize water wastage and reduce energy consumption, leading to cost savings and environmental benefits.

2. Enhances water conservation: Efficient plumbing promotes water conservation by utilizing technologies such as low-flow fixtures, dual-flush toilets, and water-efficient appliances.

3. Reduces water bills: By reducing water consumption, efficient plumbing can lead to lower water bills for homeowners and businesses.

4. Prevents leaks and water damage: Properly installed and maintained efficient plumbing systems help prevent leaks and water damage, preserving the integrity of the building and reducing the risk of costly repairs.

5. Improves overall system performance: Efficient plumbing systems are designed to optimize water distribution and drainage, ensuring reliable and consistent performance throughout the building.

6. Supports sustainable practices: Efficient plumbing aligns with sustainable practices by reducing water usage and minimizing the environmental impact associated with water supply and wastewater treatment.

7. Enhances occupant comfort and convenience: Efficient plumbing provides reliable and consistent water supply, temperature control, and proper drainage, enhancing the comfort and convenience of occupants.

8. Meets regulatory requirements: Many building codes and regulations require the installation of efficient plumbing systems to meet water efficiency standards and promote sustainable practices.

To know more about energy refer here

https://brainly.com/question/1932868#

#SPJ11

There are good bacteria that live in our gut. they benefit from us because they feed on what we eat, and we benefit from them because they keep harmful bacteria away. in one or two sentences, define this relationship and describe what could happen if we took too many bacteria- killing antibotics without the advice of a physician.

help please

Answers

The relationship between good bacteria and humans is symbiotic, where both the bacteria and humans benefit from each other.

The relationship between our gut and the good bacteria living in it is called a mutualistic relationship. This means that both parties benefit from the relationship. The good bacteria feed on what we eat and keep harmful bacteria away, while we benefit from their presence in our gut by having a healthy digestive system.

If we took too many bacteria-killing antibiotics without the advice of a physician, it could disrupt the balance of good bacteria in our gut, leading to an overgrowth of harmful bacteria, causing various digestive problems such as diarrhea, abdominal pain, and inflammation. It is essential to take antibiotics only when prescribed by a physician and follow the recommended dose to avoid such adverse effects on our gut microbiota.

To know more about the Bacteria, here

https://brainly.com/question/7989160

#SPJ4

What is the physical state of water at 250 degree centigrade

Answers

At 250 degrees Celsius, water is in the gaseous state, specifically as steam or water vapor.

Under normal atmospheric pressure, water boils and undergoes a phase transition from liquid to gas at 100 degrees Celsius. As the temperature increases beyond the boiling point, the water molecules gain enough energy to overcome intermolecular forces and transition into the gaseous state.

Therefore, at 250 degrees Celsius, water exists as a gas or steam rather than as a liquid.

The boiling point of water, where it transitions from liquid to gas, occurs at 100 degrees Celsius at standard atmospheric pressure (1 atmosphere or 101.3 kilopascals). At temperatures below the boiling point, water exists as a liquid.

Therefore, at 250 degrees Celsius, water is well above its boiling point. It would be in the form of a hot liquid rather than a gas. The high temperature causes the water molecules to have greater kinetic energy, resulting in increased movement and a higher average temperature of the liquid.

It's important to note that the state of water can change depending on the pressure. At higher pressures, the boiling point of water increases, and at lower pressures, it decreases.

However, under standard atmospheric pressure, water at 250 degrees Celsius would still remain in the liquid state.

To know more about atmospheric pressure refer here

https://brainly.com/question/31634228#

#SPJ11

Electrons got ejected out as if they were ping pong balls by the light particle (photon). Electrons were not moving initially. Then, it was moving later because of the light.



a. What is the momentum of the electron initially (p=mv) Hint: Is it moving initially?



b. Does the electron have momentum after being hit by the light particle? Hint: is it moving after being hit?



c. What can you infer about light particles in momentum? Hint: where is the electron getting its velocity from?

Answers

Electron initially had zero momentum. After colliding with a photon, it gained momentum due to the transfer of momentum. This demonstrates the wave-particle duality of light.

a.  Yes, the electron has momentum after being hit by the light particle. This is because momentum is defined as the product of mass and velocity, and even though electrons are very small in mass, they still have mass and can therefore have momentum. In this case, the photon (light particle) transferred some of its momentum to the electron, causing it to move.

b.  Yes, the electron has momentum and is moving after being hit by the light particle. As mentioned in the previous paragraph, the photon transferred some of its momentum to the electron, causing it to move.

c.  Based on the fact that the electron received its velocity from the photon, we can infer that light particles also have momentum. In fact, it was later discovered that photons have both momentum and energy, even though they have no mass. This is because photons are made up of electromagnetic waves, which have both electric and magnetic fields that can transfer energy and momentum.

So, when a photon hits an electron, it can transfer some of its momentum to the electron and cause it to move. This concept is known as the wave-particle duality of light, where light can behave as both a wave and a particle.

Know more about momentum click here:

https://brainly.com/question/24030570

#SPJ11




Artificial satellites are put into space for scientific research.


The satellites are carried into space by rockets.


(a) A rocket accelerates steadily from rest and reaches 8000 m/s after travelling 1680 000 m.


Calculate the time, in minutes, it takes the rocket to reach this speed.

Answers

It takes the rocket approximately 28,011.2 minutes, or about 19.4 days, to reach the speed of 8000 m/s.

The time it takes for the rocket to reach 8000 m/s can be found using the equation:

v = at

where v is the final velocity, a is the acceleration, and t is the time taken. We can rearrange the equation to solve for t:

t = v / a

The acceleration of the rocket can be found by dividing the change in velocity by the distance traveled:

a = (8000 m/s - 0 m/s) / 1680000 m

a = 0.00476 m/s²

Substituting this into the equation for time, we get:

t = 8000 m/s / 0.00476 m/s²

t = 1,680,672 seconds

Converting this to minutes, we get:

t = 28,011.2 minutes

As a result, it takes the rocket roughly 28,011.2 minutes, or nearly 19.4 days, to achieve 8000 m/s.

To know more about the Rocket, here

https://brainly.com/question/13992346

#SPJ4

How much current, in amperes, is in a lightning stroke that lasts 0. 05 second and transfers 100 coulombs

Answers

A lightning strike with a duration of 0.05 seconds and a 100-coulomb energy transfer has a current of 2000 amperes.

The amount of current, in amperes, in a lightning stroke that lasts 0.05 seconds and transfers 100 coulombs can be calculated using the formula I = Q/t, where I represents the current in amperes, Q represents the charge in coulombs, and t represents the time in seconds.

So, substituting the given values in the formula, we get:

I = 100 coulombs / 0.05 seconds

I = 2000 amperes

Therefore, the lightning stroke that lasts 0.05 seconds and transfers 100 coulombs has a current of 2000 amperes. It is important to note that lightning strikes can have varying currents, ranging from tens of thousands to hundreds of thousands of amperes, depending on the size and intensity of the storm. In fact, lightning is one of the most powerful natural phenomena on Earth, capable of generating enormous amounts of energy in just a few microseconds. As such, it is important to take appropriate safety precautions during a lightning storm to minimize the risk of injury or damage.

Know more about lightning here:

https://brainly.com/question/16854009

#SPJ11

a car goes from 16 m/s to 2m/s in 3.5s. what is the cars acceleration

Answers

Ans. 4 m/s2

we know that,

acceleration = change in velocity/ total time

putting values we get,

16-2/3.5

= 14/3.5

=4

thus, the car's acceleration = 4 m/s2

Which force acts on falling objects to oppose gravity?

Answers

The force that acts on falling objects to oppose gravity is air resistance, also known as drag.

Air resistance is a type of frictional force that occurs when an object moves through a fluid, such as air or water. As a falling object accelerates due to gravity, it also encounters resistance from the air molecules it pushes against. This resistance increases with the object's speed, making it harder for the object to continue accelerating at the same rate.

Air resistance plays a crucial role in determining the terminal velocity of a falling object. Terminal velocity is the constant speed that an object reaches when the downward force of gravity is exactly balanced by the upward force of air resistance. At this point, the object no longer accelerates and maintains a steady speed until it comes into contact with the ground or another surface.

Various factors affect the air resistance acting on a falling object, including the object's size, shape, and surface area. Objects with larger surface areas and irregular shapes experience more air resistance, slowing their descent compared to smaller, more streamlined objects. In some cases, air resistance can be minimized by designing objects with specific shapes, such as the aerodynamic design of airplanes, cars, and sports equipment.

In summary, air resistance is the force that opposes gravity on falling objects, influencing their terminal velocity and overall motion through the air. This force is affected by factors such as the object's size, shape, and surface area, and plays a critical role in various applications, including engineering and sports.

To know more about drag, refer here:

https://brainly.com/question/12774964#

#SPJ11

Two moles of helium gas initially at 367 K
and 0.6 atm are compressed isothermally to
0.92 atm.
Find the final volume of the gas. Assume
that helium behaves as an ideal gas. The
universal gas constant is 8.31451 J/K · mol.
Answer in units of m3
Find the work done by the gas.
Answer in units of kJ.

Answers

The final volume of the gas, is 0.065 m³.

The work done by the gas is 2.629 kJ.

What is the final volume of the gas?

The final volume of the gas, is calculated as follows;

PV = nRT

where;

P is the pressureV is the volumen is the number of molesR is the universal gas constantT is the temperature

P₁V₁ = P₂V₂

V₁ = (nRT)/P₁

V₁ = (2 mol x 8.31451 J/K·mol x 367 K) / (0.6 atm x 101325 Pa/atm)

V₁ = 0.1 m³

The final volume of the gas is calculated as;

V₂ = (P₁V₁)/P₂

V₂ = (0.6 atm x 0.1) / 0.92 atm

V₂ = 0.065 m³

The work done by the gas is calculated as;

W = -∫PdV

W = -nRT ln(V₂/V₁)

W = -(2 mol  x 8.31451 J/K·mol x 367 K) x ln(0.065/0.1)

W = 2,629 J

W = 2.629 kJ

Learn more about final volume of gas here: https://brainly.com/question/25736513

#SPJ1

what latitude would you have to travel to see the noontime sun at your zenith on october 3rd (practice with other dates)? could you explain your answer? earth's axis of rotation is titled by 23.5 degrees.

Answers

You would have to travel to a latitude of approximately 80.5 degrees north of the equator (or south, depending on your hemisphere) to see the noontime sun at your zenith on October 3rd.

To see the noontime sun at your zenith on October 3rd (or any other date), you would have to be located at a latitude equal to the complement of the Sun's declination on that date. The declination is the angle between the plane of the Earth's equator and the line connecting the Earth to the Sun, and it varies throughout the year due to the tilt of the Earth's axis of rotation.

On October 3rd, the Sun's declination is approximately 9.5 degrees south of the equator. To find the latitude at which the noontime Sun would be directly overhead, we take the complement of this declination, which is:

90 degrees - 9.5 degrees = 80.5 degrees

To know more about latitude, here

brainly.com/question/28543947

#SPJ4

The pressure in the cylinder of amotor cycle engine is 600000Pa. This acts on apiston with an area of o. Oo3m2. What is the force on the piston in newton?

Answers

The pressure in the cylinder of amotor cycle engine is 600000Pa. This acts on apiston with an area of o. Oo3m2. The force on the piston in newtons is 1800N

To find the force on the piston in newtons, we need to use the formula F = PA, where F is the force, P is the pressure, and A is the area.

Given that the pressure in the cylinder of the motor cycle engine is 600000Pa and the piston has an area of 0.003m2, we can plug these values into the formula:

F = 600000Pa x 0.003m2
F = 1800N

. This means that the pressure in the cylinder is able to exert a force of 1800N on the piston, which in turn helps to move the engine and generate power for the motor cycle.

It is important to note that the pressure and force involved in the functioning of a motor cycle engine are critical to its performance and efficiency. Proper maintenance and tuning of the engine are essential to ensure that the pressure and force are optimized for maximum power and durability.

To learn more about : force

https://brainly.com/question/12785175

#SPJ11

A 3. 2-kg point-mass travels around a 0. 45-m radius circle with an angular velocity of 11. 0 rad/s. What is the magnitude of its angular momentum about the center of the circle?

Answers

The magnitude of the angular momentum of the point mass about the center of the circle is [tex]$7.1676\ \text{kg}\ \text{m}^2/\text{s}$[/tex].

The angular momentum of a rotating object is defined as the product of its moment of inertia and its angular velocity with respect to an axis of rotation. In this case, we have a point mass of 3.2 kg traveling around a circle of radius 0.45 m with an angular velocity of 11.0 rad/s.

To calculate the angular momentum of the point mass about the center of the circle, we first need to find its moment of inertia. For a point-mass rotating around an axis passing through its center of mass, the moment of inertia is simply the mass times the square of the radius, i.e., [tex]I = mr^2[/tex]. Thus, the moment of inertia of our point mass is:

[tex]I = (3.2 kg) \times (0.45 m)^2 = 0.6516 kg m^2[/tex]

Now, we can calculate the angular momentum L of the point-mass about the center of the circle using the formula:

L = I x w

where w is the angular velocity of the point mass. Plugging in the values we have:

[tex]$L = (0.6516 \text{ kg m}^2) \times (11.0 \text{ rad/s}) = 7.1676 \text{ kg m}^2/\text{s}$[/tex]

This value indicates the amount of rotational motion the point mass possesses, and it is conserved as long as there are no external torques acting on the system.

To learn more about magnitude

https://brainly.com/question/14452091

#SPJ4

a guitar string of length 30 cm and stretched under a tension of 78 n has a certain fundamental frequency. how long would a pipe, open at both ends, need to be to play the same fundamental frequency? a 15-cm long piece of the guitar string has a mass of 0.4 g. the speed of sound in air is 340 m/s.

Answers

The length of the pipe needed to play the same fundamental frequency as the guitar string is 86.7 cm.

To find the length of the pipe needed to play the same fundamental frequency as the guitar string, we need to use the formula:

f = (n/2L) * v

Where f is the fundamental frequency, L is the length of the pipe, n is the harmonic number (for the fundamental frequency, n=1), and v is the speed of sound in air.

First, we need to find the fundamental frequency of the guitar string. We can use the formula:

f = (1/2L) * √(T/m)

Where T is the tension in the string, m is the mass per unit length of the string, and L is the length of the string.

Using the given values, we can calculate the fundamental frequency of the guitar string as:

f = (1/2*0.3) * √(78/0.004) = 196.14 Hz

Now we can use this frequency and the speed of sound in air to find the length of the pipe needed to play the same frequency:

196.14 = (1/2L) * 340

Solving for L, we get:

L = (1/2) * 340 / 196.14 = 0.867 meters or 86.7 cm

To learn more about string click on,

https://brainly.com/question/29360985

#SPJ4

a 6.00-kg block is in contact with a 4.00-kg block on a horizontal frictionless surface as shown in the figure. the 6.00-kg block is being pushed by a horizontal 20.0-n force as shown. what is the magnitude of the force that the 6.00-kg block exerts on the 4.00-kg block?

Answers

Answer:

Since the surface is frictionless, the only force acting on each block is the force of gravity, which we can ignore for now, and the force exerted by the other block.

We can use Newton's third law, which states that for every action, there is an equal and opposite reaction. Therefore, the force exerted by the 4.00-kg block on the 6.00-kg block is equal in magnitude and opposite in direction to the force exerted by the 6.00-kg block on the 4.00-kg block.

Now, let's focus on the 6.00-kg block. The force acting on it is the 20.0 N force to the right. Since the surface is frictionless, there is no opposing force, and the block accelerates to the right.

We can use Newton's second law, which states that the net force on an object is equal to its mass times its acceleration. Therefore, we have:

Net force = mass x acceleration

20.0 N = 6.00 kg x acceleration

acceleration = 20.0 N / 6.00 kg = 3.33 m/s^2

Now, let's find the force exerted by the 6.00-kg block on the 4.00-kg block. We can use Newton's second law again, this time for the 4.00-kg block:

Net force = mass x acceleration

Force exerted by the 6.00-kg block on the 4.00-kg block = 4.00 kg x acceleration

Force exerted by the 6.00-kg block on the 4.00-kg block = 4.00 kg x 3.33 m/s^2

Force exerted by the 6.00-kg block on the 4.00-kg block = 13.3 N

Therefore, the magnitude of the force that the 6.00-kg block exerts on the 4.00-kg block is 13.3 N.

Your quadcopter has a terrible altitude sensor. To see how bad it really is you take many measurements with the quadcopter at 1 meter altitude. Your altitude sensor gives a mean of 1. 00 meters with a standard deviation of 13cm. The measurements are normally (Gaussian) distributed. What is the probability that your altimeter gives an error of less than 10cm for a single measurement?

Answers

The altimeter is not very accurate and is likely to have an error of at least 10cm due to high variability in measurements. This is confirmed by the z-score calculation, which shows that a 10cm error is far outside the normal range of variation.

We can use the standard normal distribution to calculate the probability of an error of less than 10cm for a single measurement. First, we need to convert the measurement error of 10cm to a z-score by using the formula:

[tex]z = (x - \mu) / \sigma[/tex]

where x is the measurement error, μ is the mean altitude reading, and σ is the standard deviation.

Substituting the given values, we get:

z = (0.10 - 1.00) / 0.13 = -7.69

Using a standard normal distribution table or calculator, we can find the probability that z is less than -7.69. This probability is essentially zero, which means that it is highly unlikely that the altimeter gives an error of less than 10cm for a single measurement.

In summary, the probability that the altimeter gives an error of less than 10cm for a single measurement is essentially zero.

This is because the mean altitude reading of 1.00 meter and the standard deviation of 13cm indicate a high degree of measurement variability, and the z-score calculation shows that the error of 10cm is far outside the normal range of measurement variation.

To know more about z-score refer here:

https://brainly.com/question/30557336#

#SPJ11

The shortest plane mirror in which you can see your entire image is:.

Answers

The shortest plane mirror in which you can see your entire image is typically half your body's height, assuming that the mirror is positioned vertically and you are standing in front of it.

When you stand in front of a plane mirror, the mirror reflects the light rays that hit it, creating a virtual image. The virtual image appears to be behind the mirror and is the same size as the object being reflected.

To see your entire image in the mirror, you need to position yourself in such a way that the top of your head and the bottom of your feet are both within the field of view of the mirror. Therefore, the height of the mirror should be at least equal to your body height.

However, if you position the mirror at an angle or tilt it, you may be able to see your entire image in a mirror that is shorter than half your body height. The angle and orientation of the mirror will affect the field of view and the visibility of your image.

It's important to note that this measurement assumes an average human body height and a mirror that is positioned vertically. Individual variations in height and the specific arrangement of the mirror can affect the minimum height of the mirror needed to see your entire image.

To know more about virtual image refer here

https://brainly.com/question/13197137#

#SPJ11




Two charged spheres placed 43 cm apart exert a force of 1. 40 10-14 N on


each other. If one of the spheres has a charge of 1. 68 x 10-17 C, what is the


charge of the other sphere?

Answers

The charge of the other sphere is approximately 5.70 x 10^-17 C.)

To find the charge of the other sphere, we can use Coulomb's law, which states that the force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. In this case, we have:

F = k * (q1 * q2) / r^2

where F is the force between the spheres, k is Coulomb's constant, q1 is the charge of one sphere, q2 is the charge of the other sphere, and r is the distance between the spheres.

We are given F, q1, and r, and we can look up the value of k (which is approximately 9 x 10^9 N m^2/C^2). Rearranging the equation, we get:

q2 = (F * r^2) / (k * q1)

Plugging in the values, we get:

q2 = (1.40 x 10^-14 N * (0.43 m)^2) / (9 x 10^9 N m^2/C^2 * 1.68 x 10^-17 C)

q2 = 5.70 x 10^-17 C

To know more about Coulomb's law refer here

https://brainly.com/question/28040775#

#SPJ11

What evidence supports the idea that the universe is expanding in all directions?
A. Cosmic background radiation
B. Nucleosynthesis
C. Nuclear fusion in stars
D. Redshift​

Answers

The evidence  that supports the idea that the universe is expanding in all directions is option D which is redshift.

Redshift explained.

Redshift is a phenomena where light waves from an observer  from an object moving from an observer are stretched, causing a shift toward longer wavelength( toward the red of the electromagnetic spectrum). This is commonly refereed to as doppler effect.

Redshift was first observed by Edwin Hubble in the 1920s, who noticed the spectra galaxies showed a systematic shift toward longer wavelengths. This redshift in the light from galaxies indicated that they were moving from us, and the degree of redshift was directly related to their distance.

Learn more about redshift below.

https://brainly.com/question/25197584

#SPJ1

If this metal is replaced with a metal having a higher work function, which light would have the best chance of releasing electrons from the metal?.

Answers

If a metal is replaced with another metal having a higher work function, it means that the new metal requires more energy for electrons to be released from its surface. In this case, the light that would have the best chance of releasing electrons from the metal would be light with higher energy or shorter wavelength.

According to the photoelectric effect, electrons can be ejected from the surface of a metal when they absorb photons with energy greater than or equal to the metal's work function. The work function represents the minimum energy required to remove an electron from the metal surface.

Based on the relationship between energy and wavelength (E = hc/λ), where E is the energy of a photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the light, shorter wavelengths correspond to higher energies.

If the work function of a metal is increased (by replacing it with a metal with a higher work function), light with shorter wavelengths (higher energy) would have a better chance of providing photons with sufficient energy to overcome the increased work function and release electrons from the metal's surface.

To know more about work function refer here

https://brainly.com/question/32911255#

#SPJ11

PLEASE HELP DUE IN 5 MINUTES


The acceleration due to gravity g at a distance r from the center of a planet of mass Mis 9 m/s2. In terms of the orbital distance r, what
would the speed of this satellite have to be to remain in a circular orbit around this planet at this distance?
Ov=3/5
v=3r
v=6r
v=9râ

Answers

To stay in a circular orbit at a specific distance, the satellite must have a speed that is three times the square root of that distance. Therefore, the correct answer is option B.

The speed of a satellite in a circular orbit around a planet can be determined by equating the centripetal force required to keep the satellite in orbit with the gravitational force of the planet on the satellite.

The centripetal force is given by [tex]F = mv^2/r[/tex], where m is the mass of the satellite, v is its speed, and r is the distance from the center of the planet.

The gravitational force is given by [tex]F = G(Mm)/r^2[/tex], where G is the gravitational constant, M is the mass of the planet, and m is the mass of the satellite. Equating these two forces and solving for v gives [tex]v = \sqrt{(GM/r)}[/tex]

Substituting the given values for g = 9 m/s² and r, we get [tex]v = \sqrt{(gr)}[/tex], which simplifies to [tex]v = \sqrt{(9r)} = 3\sqrt{r}[/tex].

Therefore, the correct answer is v = 3r. This means that the speed of the satellite must be three times the square root of the distance from the center of the planet to remain in a circular orbit at that distance.

To know more about satellite refer here:

https://brainly.com/question/31661653#

#SPJ11

Other Questions
Bill is walking up the steps in the Washington Monument at a rate of 30 feet per minute and Joe is walking down at the rate of 45 feet per minute. Bill is 75 feet from the bottom at the same moment that Joe is 325 feet from the bottom. Which of the following systems of equations can be used to determine the number of minutes t, from now and height, (in feet), at which they will pass each other? A cube is sliced perpendicular to its base what is the shape of the resulting two dimensional cross-section 1. trapezoid 2. square 3.circle An art class cost $45 for material and $10 per class. A. What is the rate if change?B. What is the initial value?C. What is the independent variable?D. What is the dependent variable? In KLM, m = 17 inches, l = 44 inches and L=153. Find all possible values of M, to the nearest 10th of a degree When you pedal really fast on a bike, you can feel the wind slowing you down.Which force causes this?OA. Strong nuclear forceB. Magnetic forceOOD. GravityC. Air resistance Which of the following are necessary when proving that the opposite anglesof a parallelogram are congruent? Check all that apply.A. Corresponding parts of similar triangles are similar.B. Corresponding parts of congruent triangles are congruent.C. Opposite sides are perpendicular.D. Opposite sides are congruent.SUBMIT What are the solutions to the problems facing pastoralists and farmers in South Sudan Which statement from the US Constitution is referred to as the elastic clause?All legislative powers herein granted shall be vested in Congress of the United StatesCongress shall make no law respecting an establishment of religionAll bills for raising revenue shall originate in the House of RepresentativesCongress shall have powerto make all laws which shall be necessary and proper for carrying into execution the foregoing powers Why did the ayatollah khomeini hate the united states. A refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30 degrees by rejecting its waste heat to cooling water that enters the condenser at 18 degrees at a rate of. 25 kg/s and leaves at 26 degrees. The refrigerant enters the condenser at 1. 2 MPa and 65 degrees and leaves at 42 degrees. The inlet state of compressor is 60 kPa and -34 degrees and the compressor is estimated to gain a net heat of 450 W from the surroundings Starbucks has an agreement with pepsico through which pepsi distributes starbucks' coffee drink, frappuccino, to grocery stores and other retail outlets. This is an example of 5. 05 Political Cartoon Analysis Then and Now 1. What is the significance of what each person is saying? 2. What time period do you think this is from? It is from 2018 but what period does that represent? 3. Does it have a title? 4. What is this cartoon trying to say? Do you think it's effective? Identify 12P1 using factorialsa. 12!/13!b. 12! times 11!c. 12!/11!d. 12!/1!pls look at the pic What power(s) does some deity possess? In what ways are these powers "beyond the human"? ( give examples) Manipulate seven additional data sets and place these values in your Ocean InteractionsWorksheet. BiodiversityArctic IceTechnology ImpactLife Sustainability1,0003. 71001,850 I need help Please !!!!!!!!!!!!!!!!!!!!!!!!!! the first sign or symptom of a vitamin c deficiency is group of answer choices diarrhea. bone pain. bleeding gums. tooth loss. PLEASE HELP!!!! Identify the leaf tissues. Record your answer under "Slide 3" on your lab report. In UVW, w = 5. 3 inches, v = 3. 6 inches and V=32. Find all possible values of W, to the nearest 10th of a degree Consider a binomial experiment with n = 10 and p = 0.40.