Answer:
t = 6.7 min.
Explanation:
Assuming there's no traffic, and neglecting the time needed to start from rest, and the one needed to stop, all the path is covered at the same constant speed of 20 m/s.Applying the definition of average velocity, taking as the origin your house , you get the time used for the travel from the following expression:[tex]t = \frac{d}{v_{avg} } = \frac{8000 m}{20 m/s} = 400 s[/tex]
In order to convert the answer to minutes, we need to do the following, multiplying by something equal to one, as follows:[tex]400 s * \frac{1 min}{60 s} = 6.7 min.[/tex]
A yo-yo is made of two solid cylindrical disks, each of mass 0.055 kg and diameter 0.070 m , joined by a (concentric) thin solid cylindrical hub of mass 0.0055 kg and diameter 0.011 m . Part A Use conservation of energy to calculate the linear speed of the yo-yo when it reaches the end of its 1.1 m long string, if it is released from rest. Express your answer using three significant figures and include the appropriate units.
Answer: IM 95%sure that the answer is B jus took the test got the answer right
Explanation:
Answer:
sorry I forgot I wish I could help
A box falls out of an airplane that is traveling horizontally at 100m/s. The plane is at an altitude of 300m.
Where does the box land relative to where it was dropped from?
Answer:
782.461 m
Explanation:
[tex]a_{x}=0[/tex] [tex]v_{xo}=100[/tex] [tex]a_{y}=-g[/tex] [tex]v_{yo}=0[/tex]
X-direction | Y-direction
[tex]x=x_{o}+v_{xo}t[/tex] | [tex]y=y_{o}+v_{yo}t+\frac{1}{2} a_{y} t^2[/tex]
[tex]x=100(7.82461)[/tex] | [tex]0=300-\frac{1}{2}(9.8)t^2[/tex]
x= 782.461 m | [tex]-300=-4.9t^2[/tex]
| [tex]\sqrt{\frac{-300}{-4.9} } =\sqrt{t^2}[/tex]
| [tex]7.82461=t[/tex]
The box is falling due the attraction of gravitational force (its weight) and it lands at approximately 782.1 meters further from where it was dropped
The reason why the above value of the location is correct is given as follows:
The known parameter of the box are;
Horizontal velocity of the box, vₓ = 100 m/s
The altitude of the plane, h = 300 m
Required:
The location where the box lands
Solution:
The time it takes the box to land is [tex]t =\sqrt{\dfrac{2 \cdot h}{g} }[/tex]
Where;
g = The acceleration due to gravity ≈ 9.81 m/s²
Therefore;
[tex]t =\sqrt{\dfrac{2 \times 300}{9.81} } \approx 7.821[/tex]
The time it takes the box to reach the ground, t ≈ 7.82 seconds
Horizontal distance covered by the by the box during free fall, d, = The distance the box lands relative to where it was dropped from and is given as follows;
d = vₓ × t
∴ d ≈ 100 m/s × 7.821 s = 782.1 m
Therefore;
The distance the box lands relative to where it was dropped from d ≈ 782.1 m
Learn more about free fall motion here:
https://brainly.com/question/20332799
What are the four basics for knowledge called "innate knowledge"?
Answer: The four basics of innate knowledge are as follows:
Explanation:
1. This knowledge is learned from birth and it is inborn knowledge. It is allows the organism to act naturally. For example, a dog is not taught to pant, but it pants to reduce heat from the body.
2. It is inherent.
3. It is essential for survival.
4. It arises from intellectual knowledge rather than being learned via experiences.
According to the nebular theory of solar system formation, what key difference in their early formation explains why the jovian planets ended up so different from the terrestrial planets
Answer:
The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular
Explanation:
The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.
The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.
PLS ANSWER WILL MARK BRANLIEST!!!!!!!!!!!!
Describe the life cycle of a star before it collapses into a black hole.
Describe the life cycle of a star before it becomes a black dwarf.
What is the likely outcome of our sun? *
The sun will supernova and become a black hole.
The sun will swell, encompassing the inner planets and collapses into a dwarf star.
The sun will become a pulsar.
How Do You Know?
P.S. the how do you know is only for the last question
1) describe the life cycle of a star before it collapses into a black hole.
1) describe the life cycle of a star before it collapses into a black hole.ans: A star's life cycle is determined by its mass. The larger its mass, the shorter its life cycle. A star's mass is determined by the amount of matter that is available in its nebula, the giant cloud of gas and dust from which it was born. Over time, the hydrogen gas in the nebula is pulled together by gravity and it begins to spin. As the gas spins faster, it heats up and becomes as a protostar. Eventually the temperature reaches 15,000,000 degrees and nuclear fusion occurs in the cloud's core. The cloud begins to glow brightly, contracts a little, and becomes stable. It is now a main sequence star and will remain in this stage, shining for millions to billions of years to come. This is the stage our Sun is at right now.
2) describe the life cycle of a star before it becomes a dwarf.
ans: The life cycle of a low mass star (left oval) and a high mass star (right oval). ... As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf.
3) what is the likely outcome of our sun?
ans: All stars die, and eventually — in about 5 billion years — our sun will, too. Once its supply of hydrogen is exhausted, the final, dramatic stages of its life will unfold, as our host star expands to become a red giant and then tears its body to pieces to condense into a white dwarf.
a car is moving eastward and speeding up. the momentum of the car is
When making a budget, you should prioritize ___________ before "__________." A. Needs/wants B. Wants/needs C. Electricity/Water D. Healthcare/Housing
Answer A
Explanation: because u need to make sure you know the difference between a need and a want
Answer:
a
Explanation:
A trebuchet launches a pumpkin at an angle of 63 degrees at an initial velocity of 51 m/ s from the ground. What is the range of the pumpkin?
Answer:
214.72m
Explanation:
The range (R) of a projectile can be calculated using the formula:
R = u²sin2θ/g
Where R = Horizontal range
u = initial velocity
θ = angle of initial velocity
g = acceleration due to gravity (9.8m/s²)
According to the provided information in this question, R= ?, u= 51m/s, θ = 63°, g = 9.8m/s².
Hence, R = u²sin2θ/g
R = 51² × sin 2×63/ 9.8
R = 2601 × sin 126/9.8
R = 2601 × 0.809/9.8
R = 2104.25/9.8
R = 214.72m
Jumping on a trampoline cause you to fly up in the air. What type of newton’s law is it ?
Answer:
The Third law
Explanation:
For every action there is an equal and opposite reaction.
Answer:
First Law
Explanation:
An object at rest (not moving) will stay at rest unless an unbalanced force acts on it.
An object in motion will stay in motion (in a straight line and at a constant speed) unless an unbalanced force acts on it.
You jump down on a trampoline and fly up in the air as a result.
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted:
Complete Question
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted,
A :
a force repels the glass out of the capacitor.
B :
a force attracts the glass into the capacitor.
C :
no force acts on the glass.
D :
a net charge appears on the glass.
E :
the glass makes the plates repel each other.
Answer:
The correct option is B
Explanation:
Generally when the glass dielectric is slowly inserted between the plated,
The positive plate of the capacitor will induce a negative charge on the glass while the negative plate of the capacitor will induce a positive charge on glass which a electric field that posses an electric force that will attract the glass
B: a force attracts the glass into the capacitor.
A parallel-plate capacitor, with the air dielectric, is charged from a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates.
How is a dielectric slab inserted in a capacitor?
The dielectric slab is slowly inserted between the plates to a parallel plate capacitor while the capacitor is connected with a battery. As it is being inserted: 57. A parallel-plate capacitor, with air dielectric, is charged by the battery, after which the battery is the disconnected. A slab of glass dielectric is then slowly inserted between the plates. A parallel-plate capacitor, with the air dielectric, is charged from a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates.
Learn more about parallel-plate capacitors here https://brainly.com/question/14744776
#SPJ2
An electric bulb rated 100 W, 100 V has to be
operated aross 141.4 V, 50 Hz A.C. supply. The
capacitance of the capacitor which has to be
connected in series with bulb so that bulb will
glow with full intensity is [NCERT Pg. 251]
Answer:
The capacitance of the capacitor is 31.84 μF.
Explanation:
Given;
power rating of the bulb, P = 100 W
voltage rating of the bulb, Vr = 100 V
operating voltage of the bulb, V= 141.4 V
frequency of the AC = 50 Hz
P = IV = 100 W
V = 100 V
I =
Ic = 1 A
The voltage across the capacitor is given by;
[tex]V_c = \sqrt{V^2 - V_R^2} \\\\V_c = \sqrt{141.4^2 - 100^2} \\\\V_c =99.97 \ V[/tex]
[tex]V_c = I_cX_c\\\\V_c = I_C* \frac{1}{2\pi fC}\\\\ 99.97 = 1 * \frac{1}{2\pi *50 *C}\\\\ C=\frac{1}{2\pi *50*99.97}\\\\ C = 31.84*10^{-6} \ F\\\\C = 31.84 \ \mu F[/tex]
Therefore, the capacitance of the capacitor is 31.84 μF.
What is the term for the cumulative body of observations on which scientific explanations are based?
peer review
pseudoscience
logical reasoning
empirical evidence
6) The magnitude of the force the Sun exerts on Uranus is 1.41 x 1021 newtons. Explain how it is possible for the Sun to exert agreater force on Uranus than Neptune exerts on Uranus.
Answer and Explanation:
TL: DR The Sun is much more massive than Neptune — more than enough to make up for the somewhat smaller distance between the two planets at the closest approach.
[The surprise in this answer (to me, a non-astronomer), is that the gap between the orbits of Neptune and Uranus is large — half the distance from Uranus to the Sun.]
The ratio of gravitational attraction of the Sun on Uranus versus Neptune on Uranus is directly proportional to the ratio of the Sun’s mass to Neptune’s and inversely proportional to the ratio of the square of the distances (let’s use the closest approach of the two planets to one another to calculate a maximum attraction).
Numbers:
Sun’s mass: 2 x 10^30 kg
Neptune’s mass: 1 x 10^26 kg
Distance of Sun to Uranus: 3 x 10^9 km
Closest approach of Uranus and Neptune: 1.5 x 10^9 km
Without doing any arithmetic, we see that even at their closest approach, Uranus and Neptune are separated by about one-half of the Uranus to Sun distance. Squaring that ratio, we see that if the Sun and Neptune had the same mass, the attraction between the Sun and Uranus would only be about 1/4 of that between the Sun and Neptune; however, the Sun has 20000 times the mass of Neptune, so the attraction between Uranus and the Sun is about 5000 times stronger than the maximum attraction between Uranus and Neptune.
The explanation of the possibility of why sun exerts a greater force on Uranus than Neptune exerts on Uranus is; because the force was calculated to be greater.
The formula for calculating the Force of Gravity between two masses is:
F = G*m₁*m₂/r²
Where;
F = force of gravity
G = gravitational constant = 6.674 × 10⁻¹¹ N•m²/kg²
m₁ = mass of the larger object
m₂ = mass of the smaller object
r = the distance between the centers of the two masses
Now, from online values, we have the following;
mass of Neptune; m₁ = 102.413 × 10²⁴ kg
mass of Uranus; m₂ = 86.813 × 10²⁴ kg
average distance between the centers of Neptune and Uranus; r = 1.62745 × 10¹² m
Thus, force exerted by Neptune on Uranus is;
F = (6.674 × 10⁻¹¹ × 102.413 × 10²⁴ × 86.813 × 10²⁴)/(1.62745 × 10¹²)²
F = 2.240 × 10¹⁷ N
We are told that the force the Sun exerts on Uranus is 1.41 the force the Sun exerts on Uranus is 1.41 × 10²¹ N.
That is greater than the force Neptune exerts on Uranus.
Read more about Force of Gravity at; https://brainly.com/question/7281908
A small compass is held horizontally, the center of its needle has a distance of 0.270 m directly north
of a long wire that is perpendicular to the Earth's surface. When there is no current in the wire, the
compass needle points due north, which is the direction of the horizontal component of the Earth's
magnetic field at that location. This component is parallel to the Earth's surface. When the current in
the wire is 26.3 A, the needle points 22.9∘ east of north.
(a) Does the current in the wire flow toward or away from the Earth's surface? ( 2 marks)
(b) What is the magnitude of the horizontal component of the Earth's magnetic field at the location of
the compass? (3 marks)
Answer:
Explanation:
The needle is showing north south direction . when current starts flowing in the wire which is held vertical to the ground , it deflects towards east .
a )
Therefore a magnetic field towards east has been created . It is possible only if current flows towards the surface in the vertical wire .
b )
magnetic field created at the magnetic needle B = 10⁻⁷ x 2I / d where I is current and d is distance .
B = 10⁻⁷ x 2 x 26.3 / .27
= 194.81 x 10⁻⁷ T
angle of deflection of solenoid = 22.9°
Tan 22.9 = B /H
.422 = 194.81 x 10⁻⁷ / H
H = 461.63 x 10⁻⁷ T
= .46 x 10⁻⁴ T .
A) The current in the wire flows towards the Earth's surface
B) The magnitude of the horizontal component of the Earth's magnetic field is : 0.46 x 10⁻⁴ T
A) The compass needle held horizontally points in a North-south direction of the earth and also deflects eastwards when current is allowed to flow through it. The deflection of the needle indicates the presence/generation of a magnetic field on the earth surface. which is facilitated by the flow of the current in the wire towards the Earth's surface
B) Determine The magnitude of the horizontal component of the Earth's magnetic field
B ( magnetic field ) = 10⁻⁷ * 2I / d ---- ( 1 )
where : l = 26.3 A, d = 0.27 m
Back to equation ( 1 )
B = 10⁻⁷ * 2 * 26.3 / 0.27
= 194.81 * 10⁻⁷ T
Final step : Calculate the magnitude of horizontal component ( H )
Tan ∅ = B / H ---- ( 2 )
where : ∅ ( angle of deflection ) = 22.9°
∴ H = B / Tan ( 22.9° )
= ( 194.81 * 10⁻⁷ ) / 0.422
= 0.46 x 10⁻⁴ T
Hence we can conclude that The current in the wire flows towards the Earth's surface and The magnitude of the horizontal component of the Earth's magnetic field is : 0.46 x 10⁻⁴ T
Learn more about Earth magnetic field : https://brainly.com/question/115445
Anything that takes up space and has mass is
a. Volume
b. Density
C. Matter
d. Viscous
Answer:
materia
Explanation:
Answer:
the answer to your question is matter
Are any of the forces acting on the freezer
unbalanced?
Answer: put them in the microwave
Explanation:
What are the standard international (si) units of distance
Answer:
meter
Explanation:
Answer: The International System of Units is a system of measurement based on 7 base units
Explanation: the metre, kilogram, second, ampere, Kelvin, mole, and candela. These base units can be used in combination with each other.
PLEASE PROVIDE EXPLANATIONS.
THANK YOU!!!
Answer:
3.27 m
3.23 rad/s
Explanation:
There are external forces on the sphere, so momentum is not conserved, but energy is conserved.
Initial KE + Initial RE = Final PE
½ Mv² + ½ Iω² = Mgh
½ Mv² + ½ (⅖ MR²) ω² = Mgh
½ Mv² + ⅕ MR²ω² = Mgh
5v² + 2R²ω² = 10gh
For rolling without slipping, ωR = v.
5v² + 2v² = 10gh
7v² = 10gh
h = 0.7 v² / g
h = 0.7 (3.90 m/s)² / (10 m/s²)
h = 1.0647 m
Use trig to find the distance along the ramp:
sin 19.0° = h / d
d = h / sin 19.0°
d = 3.27 m
The clay sticks to the turntable, so this is an inelastic collision. Kinetic energy is not conserved, but angular momentum is conserved.
L₀ = L
I₀ ω₀ = I ω
(½ MR²) ω₀ = (½ MR² + mr²) ω
MR²ω₀ = (MR² + 2mr²) ω
ω = MR²ω₀ / (MR² + 2mr²)
ω = (0.190) (0.200)² (4.00) / (0.190 (0.200)² + 2 (0.040) (0.150)²)
ω = 3.23 rad/s
Increase in potential energy of spring
Vector A has a magnitude of 6.0 m and points 30° north of east. Vector B has a magnitude of 4.0 m and points 30° west of south. The resultant vector A+ B is given by
Answer:
The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].
Explanation:
Let [tex]\vec A = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})[/tex] and [tex]\vec B = 4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex], both measured in meters. The resultant vector [tex]\vec R[/tex] is calculated by sum of components. That is:
[tex]\vec R = \vec A+\vec B[/tex] (Eq. 1)
[tex]\vec R = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})+4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex]
[tex]\vec R = (6\cdot \cos 30^{\circ}-4\cdot \sin 30^{\circ})\,\hat{i}+(6\cdot \sin 30^{\circ}-4\cdot \cos 30^{\circ})\,\hat{j}[/tex]
[tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex]
The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].
Two bodies, A and B, have equal kinetic energies. The mass of A is nine times that of B. The ratio of the momentum of A to that of B is:_______
a. 1:9
b. 1:3
c. 1:1
d. 3:1
e. 9:1
2. A boy walks 3 miles north then turns around and walks on the same path
south for 2.1 miles. What is the boy's displacement?
Answer:
.9
Explanation:
3-2.1=.9
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
Answer:
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
When a stretched rubber band snaps back it has increase
thermal energy.
potential energy.
kinetic energy.
elastic energy.
Answer:
Kinetic
Explanation:
Because it has a force pushing on it
Using component notation, enter the vector B⃗ B→B_vec in the answer box. Enter your answer as a pair of vector components, separated by a comma. You should not enter any parentheses.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is [tex]\vec B = 2, -3[/tex]
Explanation:
Looking at the graph in the diagram we see each unit is equal to 1 both in the x axis and in the y- axis
Now the value of B along the x axis is
[tex]B_x = 2[/tex]
and along the y axis the value is
[tex]B_y = -3[/tex]
Hence the vector B is
[tex]\vec B =(B_x , B_y)= ( 2, -3)[/tex]
cameron drives his car 15 km north. He stops for lunch and then drives 12 km south. What is his displacement?
Answer:
Displacement is 3 km North
Explanation:
It takes 525 J of work to compress a spring 25 cm. What is the force constant of the spring (in kN/m)?
Answer:
1.680kN/m
Explanation:
Work done by the spring is expressed as shown:
[tex]W = \frac{1}{2}ke^2[/tex] where:
k is the spring constant
e is the extension
Given
W = 525Joules
extension = 25cm = 0.25m
Substitute into the formula:
[tex]525 = \frac{1}{2}k(0.25)^{2} \\525 = \frac{0.0625k}{2}\\ 525 = 0.03125k\\k = \frac{525}{0.3125}\\k = 1680N/m\\k = 1.680kN/m[/tex]
Hence the force constant of the spring is 1.680kN/m
Help please it’s urgent
Answer:
Q. No 1, true
Explanation:
Direct current is flow of current
Not sure about it
Sorry if it's wrong
A student must design an experiment to determine the relationship between the mass of an object and the resulting acceleration when the object is under the influence of a net force. Which of the following experiments should the student conduct in order to determine the relationship between all three quantities?
Answer choices:
A) Drop objects of different masses from a known height above the ground for multiple trials such that they reach their respective terminal speeds. Use a stopwatch to measure the time it takes each object to reach the ground, and record the mass of each object by using a mass scale.
B) Slide objects of different masses across the same rough surface so that each object travels at a constant speed while under the influence of the force of kinetic friction. Then measure the force required to keep each object at a constant speed by using a force sensor, and record the mass of each object by using a mass scale. Perform this experiment multiple times with objects of different masses.
C) Place an object on a rough surface so that the object is at rest. Use a force sensor to exert a force on the object until just after the object overcomes the force of static friction. Record this force. Repeat the experiment for objects of different masses.
D) Slide an object of known mass across a rough surface, using a constant applied force that can be measured by a force sensor. Place a motion detector behind the object so that its speed can be measured as it slides across the surface. Repeat the experiment for different applied forces.
Answer:
D) Slide an object of known mass across a rough surface, using a constant applied force that can be measured by a force sensor. Place a motion detector behind the object so that its speed can be measured as it slides across the surface. Repeat the experiment for different applied forces.
Explanation:
"The motion detector will provide information about the object’s speed as a function of time as it slides as a result of the applied force. The information about the object’s speed as a function of time can be used to determine the acceleration of the object. The force sensor measures the applied force exerted on the object, and the mass of the object is known. Therefore, this experiment can be used to determine how an object’s mass is related to the net force exerted on the object and the acceleration of the object."
It cannot be A because we need an acceleration will be determined by gravity.
It cannot be B because the term constant speed means that there is no net force, which is required by the initial question.
It cannot be C because the experiment is good for determining the coefficient of friction but not for determining how the mass relates to the acceleration.
It must be D because the object is moving and we have a motion detector, we can graph the acceleration vs time graph. So D allows you to have a lot of the different acceleration values which helps with determining the relationship between acceleration and the mass.
A helicopter accelerates at a rate of 7 m/s2 for 5 seconds. Calculate its velocity if it's final velocity is 60 m/s.
Answer:
7 m/s
Explanation:
Answer: 25 m/s
Explanation:
Use formula acceleration = velocity final - velocity initial divided by time
A = 7 m/s^2
Vf = 60 m/s
Vi =
t = 5 sec
7 = 60 - x/5
Multiply both sides by 5
35 = 60 - x
Subtract 60 from both sides
-25 = -x
x = 25
Vi = 25 m/s