Answer:
y=7000+14^t
Step-by-step explanation:
This equation shows that the original population of bats was 7000 and grows exponentially at a rate of 14% per year.
I put the graph below so you can see it.
In this exercise we have to identify how to write an exponential function from the data informed in the text, in this way we find that:
[tex]y=7000+14^t[/tex]
From the information given in the statement we find that:
The original population of bats was 7000Rate of 14% per year.Then writing this function as:
[tex]y=7000+14^t[/tex]
See more about function at brainly.com/question/5245372
Giving a test to a group of students, the grades and gender are summarized below
A B C Total
Male 7 20 14 41
Female 3 4 19 26
Total 10 24 33 67
If one student is chosen at random,
Find the probability that the student was male OR got an "A".
Answer:
46/ 67
Step-by-step explanation:
The numbers of students irrespective of grades is;
The sum of the last roll of numbers:
10+24+ 33+ 67 = 134
The number of males irrespective of grades is the sum of the numbers in the male row ;
7 +20+ 14 +41= 82
The numbers of students with grade A is the first column at the last row and is 10;
Hence;
the probability that the student was male OR got an 'A' is
the probability that the student was male plus the probability that he/she got an 'A'.
The probability that it's a male is ;
Number of males/ total number of students
=82/134
The probability that he got an A is;
The number of students that got A/ the total number of students;
10/134
Hence
the probability that the student was male OR got an 'A' is;
82/ 134 + 10/134 = 92/134 = 46/ 67
The mean weight of frozen yogurt cups in an ice cream parlor is 8 oz.Suppose the weight of each cup served is normally distributed withstandard deviation 0.5 oz, independently of others.(a) What is the probability of getting a cup weighing more than 8.64oz
Answer:
10.03% probability of getting a cup weighing more than 8.64oz
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 8, \sigma = 0.5[/tex]
What is the probability of getting a cup weighing more than 8.64oz
This is the 1 subtracted by the pvalue of Z when X = 8.64. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{8.64 - 8}{0.5}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a pvalue of 0.8997
1 - 0.8997 = 0.1003
10.03% probability of getting a cup weighing more than 8.64oz
find an angle x where sin x = cos x (I know this has been answered but I rlly don't get it..)
Answer:
45 degrees
Step-by-step explanation:
sin x=cos(90-x)
sin(45)=cos(90-45)=cos(45)
Answer:
The answer is 45.
sin45=cos45= 1/√2.
hope it helps u ...
A state end-of-grade exam in American History is a multiple-choice test that has 50 questions with 4 answer choices for each question. A student must get at least 25 correct to pass the test, and the questions are very difficult. Question 1. If a student guesses on every question, what is the probability the student will pass
Answer:
0.004% probability the student will pass
Step-by-step explanation:
I am going to use the normal approximation to the binomial to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
In this problem, we have that:
[tex]n = 50, p = \frac{1}{4} = 0.25[/tex]
So
[tex]\mu = E(X) = np = 50*0.25 = 12.5[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{50*0.25*0.75} = 3.06[/tex]
If a student guesses on every question, what is the probability the student will pass
Using continuity correction, this is [tex]P(X \geq 25 - 0.5) = P(X \geq 24.5)[/tex], which is 1 subtracted by the pvalue of Z when X = 24.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{24.5 - 12.5}{3.06}[/tex]
[tex]Z = 3.92[/tex]
[tex]Z = 3.92[/tex] has a pvalue of 0.99996
1 - 0.99996 = 0.00004
0.004% probability the student will pass
What is the MEDIAN of this data?
Answer:
I think the median is 7
if it is not im so sorry
The median of the data is 7.
please see the attached picture for full solution
Hope it helps
Good luck on your assignment
What is the length of AC
Answer:
5.8
Step-by-step explanation:
The angle bisector makes the triangle sides on either side of it proportional.
AC/CD = AB/BD
AC = CD·AB/BD
AC = 2(8.1/2.8) = 8.1/1.4 ≈ 5.7857 . . . . substitute shown values, evaluate
AC ≈ 5.8
find the area enclosed by the curve y^2=x^2-x^4
Answer: 4/3
Step-by-step explanation:
As you know this graph is a lemniscate
[tex]4\int\limits^1_0 {x\sqrt{1-x^{2} } \, dx =\frac{4}{3} =1.33$[/tex]
Solve for n.
11(n – 1) + 35 = 3n
n = –6
n = –3
n = 3
n = 6
Answer:
[tex]n = - 3[/tex]
Second answer is correct
Step-by-step explanation:
[tex]11(n - 1) + 35 = 3n \\ 11n - 11 + 35 = 3n \\ 11n - 3n = 11 - 35 \\ 8n = - 24 \\ \frac{8n}{8} = \frac{ - 24}{8} \\ n = - 3[/tex]
hope this helps
brainliest appreciated
good luck! have a nice day!
Please help. I keep getting this problem wrong . I need help please . I’ll mark you as brainliest if correct . Only answer if you know. Thank you
Answer:
The real number 'a' = 32
The real number 'b' = 0
Step-by-step explanation:
Product of a number of a number and its conjugate = a + bi
The number is = -4 + 4i
Conjugate of this number is = -4 - 4i
Product of the number and it's conjugate
= (-4 + 4i)(-4 - 4i)
= -4(-4 - 4i) + 4i(-4 - 4i) [By distributive property]
= 16 + 16i - 16i - 16i²
= 16 - 16(-1)
= 16 + 16
= 32
a + bi = 32 + (0)i
By comparing both the sides,
a = 32
b = 0
what is the radius of the circle that has an area of [tex]81*x*pi[/tex] degrees
Answer:
R=9
Step-by-step explanation:
the formula for area of a circle is pi r squared
where r denotes the radius of the circle
equating the formula for area with the area of the circle provided
p\i r squared = 81 p\i
r squared = 81
r = radical 81
r =9 inches
The most common form of color blindness is an inability to distinguish red from green. However, this particular form of color blindness is much more common in men than in women (this is because the genes corresponding to the red and green receptors are located on the X-chromosome). Approximately 79% of American men and 0.4% of American women are red-green color-blind.1 Let CBM and CBW denote the events that a man or a woman is color-blind, respectively.
(a) If an Americal male is selected at random, what is the probability that he is red-green color-blind? P(CBM) =
(b) If an American female is selected at random, what is the probability that she is NOT red-green color-blind? P (not CBW) =
(c) If one man and one woman are selected at random, what is the probability that neither are red-green color-blind? P=(neither is color-blind) =
(d) If one man and one woman are selected at random, what is the probability that at least one of them is red-green color-blind? P=(at least one is color-blind)
Answer:
(a) P(CBM) = 0.07
(b) P(not CBW) = 0.996
(c ) P(neither is color-blind) = 0.926
(d) P=(at least one is color-blind) = 0.074
Step-by-step explanation:
The correct data is that Approximately 7% of American men and 0.4% of American women are red-green color-blind.
(a) Probability that he is red-green color-blind:
[tex]P(CBM) = 0.07[/tex]
(b) Probability that she is NOT red-green color-blind:
[tex]P(not\ CBW) =1- P(CBW)\\P(not\ CBW) = 1 -0.004\\P(not\ CBW) =0.996[/tex]
(c) Probability that neither are red-green color-blind
[tex]P(neither) = P(not\ CBW)*P(not\ CBM) \\P(neither) = 0.996 *(1-0.07)\\P(neither)=0.926[/tex]
(d) Probability that at least one of them is red-green color-blind
[tex]P(at\ least\ one) = 1- P(neither) \\P(at\ least\ one) = 1-0.926\\P(at\ least\ one) = 0.074[/tex]
Find the third-degree polynomial function that has zeros −2 and −15i, and a value of 1,170 when x=3.
Answer:
The third degree polynomial function = x³ + 27x² + 200x + 300
Step-by-step explanation:
The third-degree polynomial function has zeros −2 and −15.
From the above, we have been given two factors of the polynomial function. Let's derive the factors from the two zeros of the polynomial given.
The two given zeros of the polynomial can be written as:
x= -2
x+2 = 0
(x+2) is a factor of the polynomial
x= -15
x+15 = 0
(x+15) is a factor of the polynomial
So we have two factors of the polynomial (x+2) and (x+15). But since it is a third degree polynomial, we have to find the third factor.
Let (x-b) be the third factor and f(x) represent the third degree polynomial
f(x) = (x-b) (x+2) (x+15)
Expanding (x+2) (x+15) = x² + 2x + 15x + 30
(x+2) (x+15) = x² + 17x + 30
f(x) = (x-b) (x² + 17x + 30)
From the given information, a value of 1,170 is obtained when x=3
f(3) = 1170
Insert 3 for x in f(x)
f(3) = (3-b) (3² + 17(3) + 30)
1170 = (3-b) (9 + 51 + 30)
1170 = (3-b) (90)
1170/90 = 3-b
3-b = 13
b = 3-13 = -10
Insert value of b in f(x)
f(x) = [x-(-10)] (x² + 17x + 30)
f(x) = (x+10) (x² + 17x + 30)
f(x) = x³ + 17x² + 30x + 10x² + 170x + 200x + 300
f(x) = x³ + 27x² + 200x + 300
The third degree polynomial function = x³ + 27x² + 200x + 300
Simplify -2(-5) - 7 + 1(-3)
Answer:
Step-by-step explanation:
BRUH YOU STUPID
Answer:
0
[tex] \\ solution \\ - 2( -5) - 7 + 1( - 3) \\ = 10 - 7 + ( - 3) \\ = 10 - 7 - 3 \\ = 3 - 3 \\ = 0 \\ hop \: it \: helps...[/tex]
In the circle below, CD is a diameter. If AE=10, CE=4, and AB=16, what is
the length of the radius of the circle?
Please Help ASAP
Answer:
(D)9.5 Units
Step-by-step explanation:
We have two chords CD and AB intersecting at E.
Using the theorem of intersecting chords
AE X EB =CE X ED
AE=10CE=4AB=16AB=AE+EB
16=10+EB
EB=16-10=6
Therefore:
AE X EB =CE X ED
10 X 6 = 4 X ED
ED =60/4 =15
Therefore:
CD=CE+ED
=4+15
CD=19
Recall that CD is a diameter of the circle and;
Radius =Diameter/2
Therefore, radius of the circle =19/2 =9.5 Units
one car takes half a minute to complete a circuit.
the other car takes 1 minute and 10 seconds to complete a circuit.
if they start side by side, how long will it be before they are next side by side on the start line? state the units in your answer!
please help me I just need the answer
Answer:
7 laps
Step-by-step explanation:
Alguien me puede ayudar con esto por favor!!!!
Answer:
8 + 15i
Step-by-step explanation:
(-2 + 3i) + 2(5 + 6i) =
= -2 + 3i + 10 + 12i
= 8 + 15i
This table gives a few (x,y) pairs of a line in the coordinate plane. What is the y-intercept of the line?
Answer:
(0,34)
Step-by-step explanation:
I graphed the coordinates of the table on the graph below to find the y-intercept.
Please answer this correctly
Answer:
A = 1/2 b*h
A = 24
b = 8
h = ?
24 = 1/2 * 8 * h
24 = 4h
h = 6
The height is 6 cm.
Hope this helps.
What is the approximate value for the modal daily sales?
Answer:
Step-by-step explanation:
Hello!
The table shows the daily sales (in $1000) of shopping mall for some randomly selected days
Sales 1.1-1.5 1.6-2.0 2.1-2.5 2.6-3.0 3.1-3.5 3.6-4.0 4.1-4.5
Days 18 27 31 40 56 55 23
Use it to answer questions 13 and 14.
13. What is the approximate value for the modal daily sales?
To determine the Mode of a data set arranged in a frequency table you have to identify the modal interval first, this is, the class interval in which the Mode is included. Remember, the Mode is the value with most observed frequency, so logically, the modal interval will be the one that has more absolute frequency. (in this example it will be the sales values that were observed for most days)
The modal interval is [3.1-3.5]
Now using the following formula you can calculate the Mode:
[tex]Md= Li + c[\frac{(f_{max}-f_{prev})}{(f_{max}-f_{prev})(f_{max}-f_{post})} ][/tex]
Li= Lower limit of the modal interval.
c= amplitude of modal interval.
fmax: absolute frequency of modal interval.
fprev: absolute frequency of the previous interval to the modal interval.
fpost: absolute frequency of the posterior interval to the modal interval.
[tex]Md= 3,100 + 400[\frac{(56-40)}{(56-40)+(56-55)} ]= 3,476.47[/tex]
A. $3,129.41 B. $2,629.41 C. $3,079.41 D. $3,123.53
Of all options the closest one to the estimated mode is A.
14. The approximate median daily sales is …
To calculate the median you have to identify its position first:
For even samples: PosMe= n/2= 250/2= 125
Now, by looking at the cumulative absolute frequencies of the intervals you identify which one contains the observation 125.
F(1)= 18
F(2)= 18+27= 45
F(3)= 45 + 31= 76
F(4)= 76 + 40= 116
F(5)= 116 + 56= 172 ⇒ The 125th observation is in the fifth interval [3.1-3.5]
[tex]Me= Li + c[\frac{PosMe-F_{i-1}}{f_i} ][/tex]
Li: Lower limit of the median interval.
c: Amplitude of the interval
PosMe: position of the median
F(i-1)= accumulated absolute frequency until the previous interval
fi= simple absolute frequency of the median interval.
[tex]Me= 3,100+400[\frac{125-116}{56} ]= 3164.29[/tex]
A. $3,130.36 B. $2,680.36 C. $3,180.36 D. $2,664
Of all options the closest one to the estimated mode is C.
find the quotient of 25.5÷0.5
Answer:
[tex]51[/tex]
Step-by-step explanation:
[tex]\frac{25.5}{0.5}[/tex]
[tex]\frac{255}{5}[/tex]
[tex]=51[/tex]
find the slope of the line through points 8,2 and -1,-4
Answer:
2/3
Step-by-step explanation:
We can find the slope by using the slope formula
m= (y2-y1)/(x2-x1)
= (-4-2)/(-1-8)
= -6/ -9
= 2/3
The point A (-7,5) is reflected over the line x = -5, and then is reflected over the line x= 2. What are the coordinates of
A?
o (7, 19)
O (10,5)
(7,5)
(10, 19)
Answer:
(7, 5) is the final reflection of the point.
Step-by-step explanation:
We are given point A(-7, 5) which is first reflected over the line [tex]x= -5[/tex].
The minimum distance of the point A(-7, 5) from the line [tex]x= -5[/tex] is 2 units across the horizontal path (No change in y coordinate).
Point A lies 2 units on the left side of the line [tex]x= -5[/tex].
So, its reflection will be 2 units on the right side of [tex]x= -5[/tex].
Let its reflection be A' which has coordinates as (-5+2,5) i.e. (-3, 5).
Now A'(-3, 5) is reflected on the line [tex]x=2[/tex].
The minimum distance of the point A'(-3, 5) from the line [tex]x=2[/tex] is 5 units across the horizontal path (No change in y coordinate).
Point A' lies 5 units on the left side of the line [tex]x=2[/tex].
So, its reflection will be 5 units on the right side of [tex]x=2[/tex].
Let its reflection be A'' which has coordinates as (2+5, 5) i.e (7, 5) is the final reflection of the point..
Please find attached image.
(7, 5) is the final reflection of the point.
Draw a model of square root of 12 using perfect squares
Answer:
The answer is "[tex]\sqrt{12}[/tex] is not a perfect square".
Step-by-step explanation:
12 is not a perfect square because it is the natural number, and no other natural number would square the number 12, that's why it is not a perfect square.
If we calculate the square root of [tex]\sqrt{12}[/tex]. so, it is will give [tex]2\sqrt{3}[/tex] that is not a perfect square root which can be described as follows:
[tex]\Rightarrow \sqrt{12}= \sqrt{2\times 2\times 3}[/tex]
[tex]= \sqrt{2^2\times 3}\\\\= 2\sqrt{3}\\\\[/tex]
[tex]\bold{\sqrt{12}}[/tex] is not a perfect square root.
Answer:
Here's a picture
Step-by-step explanation:
someone plz help asap plz
Answer:
a) 6
b) 10
Step-by-step explanation:
a) The area of a rhombus is half the product of the diagonals, meaning that the area of the shaded part is 4*3/2=6 square meters.
b) To find the area of the white background, you need to find the area of the full rectangle, and then to find the area of both rhombii. The area of the black rhombus is 2*4/2=4 square meters. The area of the full rectangle is 4*5=20 units. Subtracting the areas of the two rhombii, you get an area for the white background of 20-6-4=10 square meters. Hope this helps!
If 9: x= x-4, then x=
0 36
18
0 24
6
Answer:
2±√13
Step-by-step explanation:
9/x=x-4
x² -4x - 9=0
x² -4x +4- 13=0
(x -2)²=13
x-2= ±√13
x= 2±√13
-23d + 81 <-98d + 1
Solve for d
Step-by-step explanation:
-23d + 81 < - 98d + 1
81 - 1 < - 98d + 23d
80 < - 75d
80/ - 75 < d
10/ - 3 < d
Im stuck who can help me
Answer:
Option D
Step-by-step explanation:
This question is based on the " Partition Postulate. " You might be familiar with it, it states that a whole is composed of several parts. In this case you could say that this " whole " is ∠ ABC, and the " parts " are ∠1 and ∠2. By this Theorem you could also state the following;
[tex]m< ABC = m< 1 + m< 2,\\\\Substitute,\\110 = 4x + ( 5x + 10 ),\\110 = 4x + 5x + 10,\\4x + 5x + 10 = 110 - Option D\\\\Solution - Option D[/tex]
Hope that helps!
Find the sample space for picking a number from 1 to 3 and choosing red or white
Answer:
The event of picking a number from 1 to 3 consists of:
Pick number 1
Pick number 2
Pick number 3
The event of choosing red or white card consists of:
Choose a red card
Choose a white card
=> The sample space for picking a number from 1 to 3 and choosing red or white card:
Pick number 1 and choose a red card
Pick number 1 and choose a white card
Pick number 2 and choose a red card
Pick number 2 and choose a white card
Pick number 3 and choose a red card
Pick number 3 and choose a white card
Hope this helps!
:)
To solve a polynomial inequality, we factor the polynomial
into irreducible factors and find all the real_______polynomial. Then we find the intervals determined by the real__________sign of the polynomial on that interval. Let
$$P(x)=x(x+2)(x-1)$$
Fill in the diagram to find the intervals on which
$P(x) \geq 0$
we see that $P(x) \geq 0$ on the
intervals_______and________.
Answer:
To solve a polynomial inequality, we factor the polynomial into irreducible factors and find all the real _zeros_ polynomial. Then we find the intervals determined by the real _zeros and use test points in each interval to find the_ sign of the polynomial on that interval.
If P(x) = x(x+2)(x-1)
And P(x) ≥ 0
We see that P(x) ≥ 0 on the intervals (-2, 0) and (1, ∞).
Step-by-step explanation:
The complete question is attached to this solution
To solve inequality of a polynomial, we first obtain the solutions of the polynomial. The solutions of the polynomial are called the zeros of the polynomial.
If P(x) = x(x+2)(x-1)
The solutions of this polynomial, that is the zeros of this polynomial are 0, -2 and 1.
To now solve the inequality that arises when
P(x) ≥ 0
We redraw the table and examine the intervals
The intervals to be examined as obtained from the zeros include (-∞, -2), (-2, 0), (0, 1) and (1, ∞)
Sign of | x<-2 | -2<x<0 | 0<x<1 | x>1
x | -ve | -ve | +ve | +ve
(x + 2) | -ve | +ve | +ve | +ve
(x - 1) | -ve | -ve | -ve | +ve
x(x+2)(x-1) | -ve | +ve | -ve | +ve
The intervals that satisfy the polynomial inequality P(x) = x(x+2)(x-1) ≥ 0 include
(-2, 0) and (1, ∞)
Hope this Helps!!!
In a survey, participants were asked how much confidence they had in the economy.
The results were as follows:
Response Number
A great 3,187
deal
Some
9,120
Hardly 5,149
any
What is the probability that a sampled person has either some confidence or a great
deal of confidence in the economy? Write only a number as your answer. Round to
two decimal places (for example: 0.43). Do not write as a percentage.
Answer:
0.71
Step-by-step explanation:
Great Deal or Some = 12,307
Total Participants = 17,456
Probability = 12,307/17,456 = 0.71