The manufacturer of an MP3 player wanted to know whether a 10% reduction in price is enough to increase the sales of its product. To investigate, the owner randomly selected eight outlets and sold the MP3 player at the reduced price. At seven randomly selected outlets, the MP3 player was sold at the regular price. Reported below is the number of units sold last month at the regular and reduced prices at the randomly selected outlets.Regular price 139 130 96 123 149 133 97Reduced price 139 130 96 123 149 133 97 133Click here for the Excel Data FileRegular Reduced139 139130 13096 96123 123149 149133 13397 97133At the .01 significance level, can the manufacturer conclude that the price reduction resulted in an increase in sales?

Answers

Answer 1

We cannot conclude that the price reduction resulted in an increase in sales.

To determine whether the price reduction resulted in an increase in sales, we can perform a hypothesis test. Let's use a two-tailed t-test with a 0.01 significance level.

Our null hypothesis is that there is no difference in sales between the regular price and the reduced price. Our alternative hypothesis is that the reduced price resulted in an increase in sales.

We can calculate the mean and standard deviation for each group:
Regular price: mean = 124.43, standard deviation = 20.72
Reduced price: mean = 126.13, standard deviation = 19.51

Using a t-test, we get a t-value of 0.22 and a p-value of 0.837. Since the p-value is greater than the significance level of 0.01, we fail to reject the null hypothesis. Therefore, we cannot conclude that the price reduction resulted in an increase in sales.

Learn more about standard deviation at: brainly.com/question/23907081

#SPJ11


Related Questions

What is the value of the "8" in the number 17,436,825? A. 800 B. 80 C. 8 D. 8,000

Answers

Answer:

A. 800

Step-by-step explanation:

Eight in the number is three places over from the decimal spot. this means the eight is in the hundreds spot. This makes it 800.

NEED HELP ASAP!!!!!! Jake is making a cake for the first time. His recipe calls for 280 grams of sugar, but he accidentally pours 295 grams on his first try. He uses a small spoon to remove the extra sugar. If he needs to remove 12 spoonfuls, how many milligrams of sugar does his spoon hold?
PLEASE HELP!!!

Answers

Answer:

Step-by-step explanation:

so since he pours 295 grams and need to remove 12 spoonfuls the answer will me 1.7 milligrams

What is the measure of circumscribed O 45°
O 50°
O 90°
O 95°

Answers

The measure of the inscribed angle is equal to 90 degrees

What is an inscribed angle

The inscribed angle theorem mentions that the angle inscribed inside a circle is always half the measure of the central angle or the intercepted arc that shares the endpoints of the inscribed angle's sides. In a circle, the angle formed by two chords with the common endpoints of a circle is called an inscribed angle and the common endpoint is considered as the vertex of the angle.

In this problem, the side length of the square is 5 which forms 90 degrees to all the other sides.

The measure of the circumscribed angle is 90 degree

Learn more on inscribed angle here;

https://brainly.com/question/3538263

#SPJ1

weather suppose that it snows in greenland an average of once every 28 days, and when it does, glaciers have a 23% chance of growing. when it does not snow in greenland, glaciers have only a 8% chance of growing. what is the probability that it is snowing in greenland when glaciers are growing? (round your answer to four decimal places.)

Answers

Let's use Bayes' theorem:

P(snow|growing) = P(growing|snow) * P(snow) / P(growing)

We know that P(snow) = 1/28 and P(growing|snow) = 0.23. To find P(growing), we need to use the law of total probability:

P(growing) = P(growing|snow) * P(snow) + P(growing|not snow) * P(not snow)
= 0.23 * 1/28 + 0.08 * 27/28
≈ 0.085

Now we can plug in all the values to get:

P(snow|growing) = 0.23 * 1/28 / 0.085
≈ 0.0096

Therefore, the probability that it is snowing in Greenland when glaciers are growing is approximately 0.0096 (rounded to four decimal places).

In a study conducted in 2004, it was found that the share of online advertisement worldwide, as a percentage of the total ad market, was expected to grow at the rate of R(t) = −0.021t^2 + 0.3004t + 0.06 0 ≤ t ≤ 6 percent per year at time t (in years), with t = 0 corresponding to the beginning of 2000. The online ad market at the beginning of 2000 was 1.7% of the total ad market.

(a) What is the projected online ad market share at any time t? S(t) =

(b) What is the projected online ad market share (as a percentage) at the beginning of 2005? (Round your answer to two decimal places.) %

Answers

The projected online ad market share (as a percentage) at the beginning of 2005 is 26.7%.

(a) The projected online ad market share at any time t can be found by integrating the rate function R(t) with respect to t:
S(t) = ∫(−0.021t^2 + 0.3004t + 0.06) dt
S(t) = −0.007t^3 + 0.1502t^2 + 0.06t + C
where C is the constant of integration. We can find the value of C by using the fact that the online ad market share at the beginning of 2000 was 1.7%:
S(0) = −0.007(0)^3 + 0.1502(0)^2 + 0.06(0) + C = 0.017
C = 0.017
So the projected online ad market share at any time t is:
S(t) = −0.007t^3 + 0.1502t^2 + 0.06t + 0.017
(b) The beginning of 2005 corresponds to t = 5, so we can use the function S(t) to find the projected online ad market share at that time:
S(5) = −0.007(5)^3 + 0.1502(5)^2 + 0.06(5) + 0.017 = 0.267

Learn more about integration here:

https://brainly.com/question/18125359

#SPJ11

What is the distance between the coordinates (7.4, 6.8) and (7.4, 2,1)?

Answers

4.7 units of distance between them

Evaluate the integral I = S1 0 (2x - x^1/3)dx

Answers

The evaluate value of a definite integral [tex] I = \int_{0}^{1} ( 2x + x^{\frac{1}{3}}) dx[/tex] is equals to the [tex] \frac{ 7}{4} [/tex] .

An important factor in mathematics is the sum over a period of the area under the graph of a function or a new function whose result is the original function that is called integral. Two types of integral definite or indefinite. When limits of integral is known, it is called definite integral. We have a definite integral, [tex] I = \int_{0}^{1} ( 2x + x^{\frac{1}{3}}) dx[/tex]

We have to evaluate this integral value.

Using linear property of an integral,

[tex] = \int_{0}^{1} 2x dx + \int_{0}^{1} x^{\frac{1}{3}} dx[/tex]

Using the rule of integration, [tex]=[\frac{ 2x²}{2}]_{0}^{1} + \frac{x^{\frac{1}{3} + 1}}{ \frac{1}{3} + 1}]_{0}^{1}[/tex]

[tex] = [\frac{ 2× 1²}{2}] + \frac{1^{\frac{4}{3}}}{ \frac{4}{3}}][/tex]

[tex] = (\frac{ 3}{4}] + 1 )[/tex]

[tex] = \frac{ 7}{4} [/tex]

Hence, required value is [tex] \frac{ 7}{4} [/tex] .

For more information about integral, visit:

https://brainly.com/question/28157330

#SPJ4

Complete question:

Evaluate the integral [tex] I = \int_{0}^{1} ( 2x + x^{\frac{1}{3}}) dx[/tex].

Simplify: 200 - 3(6 - 2)³ + 10 A. 174 B. 18C. 246D. -2

Answers

290-3(6-2)=10x19=97 and so your answer is 97

A research group conducted a study of the effectiveness of educational software. In one phase of the study, a random sample of 1,515 first-grade students in classrooms that used educational software (2) was compared to a random sample of 1,108 first-grade students in classrooms that did not use the technology (1). In the study, the group wanted to determine if mean test scores were significantly lower in classrooms that did not use educational software (1) than in classrooms using software products (2). The hypothesis test is conducted at a=05. Question 1 0.5 pts Which test should be used? O paired t test for means O z test for means t test for means z test for proportions paired z test for means

Answers

The best test to use in this case is a two sample t-test of means

What is the appropriate test in this scenario?

The most suitable test to use in this case is a two sample t-test of means since this study compares the mean test scores of two independent groups.

The 2-sample t-test use the sample data provided from two groups and gives the t-value. The process is somewhat close to the usual t-test and we can use the concept of the signal to noise ratio. However, the two-sampled t-test requires independent variable.

In a two-sample t-test, the numerator is the signal which is the difference between the two means.

The default null hypothesis of a 2-sample t-test can be said to be of two groups that are equal

Learn more on t-test here;

https://brainly.com/question/6589776

#SPJ1

A consumer psychologist wants to determine which fast-food burger is the healthiest. They buy 4 burgers from each of these restaurants: In-n-Out, Jack in the Box, and Whataburger. 4 people measured the grease levels of a burger from each place. The amount of grease was extrapolated from each of these burgers, with lower grease indicating it was healthier. The grease levels of the burgers can be found in the Burgers Grease Levels" excel file on Blackboard. Is this a one-way between or a one-way within groups ANOVA test?
What is the critical fvalue, when alpha is .05?
QUESTION 3 What is the calculated f value?
QUESTION 4 What is the calculated p value? QUESTION 5 What is the partial eta squared?

Answers

1) With the given alpha of .05 and the appropriate degrees of freedom (based on the number of groups and the sample size).
2) This can be done in Excel, using the ANOVA function, or with other statistical software.
3) The calculated P value will be given as part of the ANOVA test output.

4 SS error is the sum of squares within groups. These values will also be available in the ANOVA test output.

5) Once you have the data from the Excel file, you can perform these calculations and interpret the results.

Once you have the data from the Excel file, you can perform these calculations and interpret the results.

he critical F value, use an F-distribution table or an online calculator, with the given alpha of .05 and the appropriate degrees of freedom (based on the number of groups and the sample size).

Based on the information provided, this study involves a one-way between-groups ANOVA test. This is because the consumer psychologist is comparing the grease levels of burgers from three different fast-food restaurants (In-n-Out, Jack in the Box, and Whataburger), and the measurements are taken by four different people.

As for the critical F value, calculated F value, calculated P value, and partial eta squared, I am unable to access the "Burgers Grease Levels" Excel file on Blackboard. However, I can provide guidance on how to calculate these values:

1. To find the critical F value, use an F-distribution table or an online calculator, with the given alpha of .05 and the appropriate degrees of freedom (based on the number of groups and the sample size).

2. To calculate the F value, you will need to perform the one-way between-groups ANOVA test on the grease levels data. This can be done in Excel, using the ANOVA function, or with other statistical software.

3. The calculated P value will be given as part of the ANOVA test output.

4. To calculate partial eta squared, use the formula: partial[tex]{\eta}^2=SS_{effect} / (SS_{effect} + SS_{error}),[/tex] where SS_effect is the sum of squares between groups, and SS error is the sum of squares within groups. These values will also be available in the ANOVA test output.

Once you have the data from the Excel file, you can perform these calculations and interpret the results.

learn more about F value,

https://brainly.com/question/13057442

#SPJ11

Find dy/dr for y = √11+12t² dt

Answers

First, find dy/dt using the chain rule. Then, use dt/dr = 1 and the chain rule to find dy/dr. dy/dr = (12r / √(11k² + 12r²)), using chain rule and assuming r = k*t, where k is a constant.

Let [tex]u = 11 + 12t^2[/tex]. Then, we have y = √u, and we can utilize the chain rule to track down dy/dt:

[tex]dy/dt = (1/2)(u)^(- 1/2)(du/dt)[/tex]

[tex]= (1/2)(11 + 12t^2)^(- 1/2)(24t)[/tex]

Presently, we need to track down dy/dr. We know that dr/dt = 1, since r isn't a component of t. In this manner, by the chain rule,

dy/dr = dy/dt * dt/dr

We can settle for dt/dr by taking the equal of dr/dt:

dt/dr = 1/dr/dt = 1/1 = 1

Subbing the two qualities, we get:

dy/dr = dy/dt * dt/dr = [tex](1/2)(11 + 12t^2)^(- 1/2)(24t) * 1[/tex]

= 12t/√(11 + [tex]12t^2[/tex])

In this manner, dy/dr = 12t/√(11 + [tex]12t^2[/tex]). Therefore, the final answer for dy/dr is: dy/dr = (12r / √(11k² + 12r²))

To learn more about differentiable functions and dy/dt, refer:

https://brainly.com/question/2264660

#SPJ4

The equation for line

A is shown.





=

2
3


4
y=−
3
2

x−4



B are perpendicular, and the point
(

2
,
1
)
(−2,1) lies on line

B.



Write an equation for line
B.

Answers

The equation for line B is y = (2/3)x + 7/3.

What is the slope?

The slope is a measure of how steep a line is, and it describes the rate at which the line is changing. It is defined as the ratio of the vertical change (rise) to the horizontal change (run) between any two points on a line.

We can start by using the fact that lines A and B are perpendicular.

The slopes of two perpendicular lines are negative reciprocals of each other, so we can find the slope of line B by taking the negative reciprocal of the slope of line A:

The slope of a line can be calculated by choosing any two points on the line and using the formula:

slope = (y2 - y1) / (x2 - x1)

the slope of line A = -3/2

slope of line B = 2/3 (negative reciprocal of -3/2)

Now we can use the point-slope form of the equation of a line to write an equation for line B. The point-slope form is:

y - y1 = m(x - x1)

where m is the slope of the line and (x1, y1) is a point on the line.

We know that the point (-2, 1) lies on line B, so we can use that as our (x1, y1) values.

We also know that the slope of line B is 2/3. Plugging these values into the point-slope form, we get:

y - 1 = (2/3)(x + 2)

We can simplify this equation by distributing the 2/3:

y - 1 = (2/3)x + 4/3

y = (2/3)x + 4/3 + 1

y = (2/3)x + 7/3

Therefore, the equation for line B is y = (2/3)x + 7/3.

To learn more about slope click:

brainly.com/question/16949303

#SPJ1

I WILL GIVE BRAINLIEST!!

For the following data, find
a. Mean
b. Median
c. Mode
d. Range
e. Interquartile range
f. Another value that will make the mean 16.875
g. Another value that will not change the median

Answers

Answer:

a. Mean:

(12 + 13 + 14(3) + 15(3) + 16(2) + 17(3)

+ 18(5) + 19 + 20 + 21 + 22(2))/23

= 389/23 = 16.91

b. Median: There are 23 observations, so the median is the 12th observation when the data are arranged in order. That observation is 17.

c. Mode: The mode is the age that appears the most times. That age is 18, which appears 5 times.

d. Range = largest value - smallest value

= 22 - 12 = 10

e. When the data are arranged in order, the first quartile is the 6th observation, 15, and the third quartile is the 18th observation, 18. So IQR = Q3 - Q1 =

18 - 15 = 3

f. 16.875 × 24 = 405

405 - 389 = 16

g. If the 24th member of this data is a 17-year-old, the median will remain 17.

Help please you can use a calculator !!

Answers

The answer is 24 .

What is simplification?

A mathematical expression or equation may be simplified by being reduced to its most basic form. To do this, complex statements or equations must be simplified using mathematical operations including addition, subtraction, multiplication, division, and exponentiation. As it reduces errors, makes problems simpler to answer, and helps people understand mathematical concepts, simplification is a crucial mathematical talent. It is widely used in calculus, algebra, and other areas of mathematics.

According to the question,

8x8x8 / 2 = 256

=256+81-1

=336

=6x6x6 -4x5 = 196 =14²

=336/14

=24

To learn more about simplification visit:

https://brainly.com/question/28008382

#SPJ1

y′′+αy′+βy=t+e^(4t).
Suppose the form of the particular solution to this differential equation as prescribed by the method of undetermined coefficients is
yp(t)=A1t^2+A0t+B0te^(4t).
Determine the constants α and β.

Answers

The constants value of  α = -4 and β = 0.

Differential Equation:

A differential equation is an equation which contains one or more terms and the derivatives of one variable (i.e., dependent variable) with respect to the other variable (i.e., independent variable) dy/dx = f(x) Here “x” is an independent variable and “y” is a dependent variable. For example, dy/dx = 5x.

The function is :

[tex]y"+\alpha y'+\beta y=t+e^(^4^t^)[/tex]

the form of the particular solution to this differential equation as prescribed by the method of undetermined coefficients is

[tex]yp(t)=A1t^2+A0t+B0te^(^4^t^).[/tex]

=> [tex]y ' = 2A1t + A0 + B0 [e^(^4^t^) +4 te^(^4^t^) ][/tex]

    [tex]y ' = 2A1t + A0 + B0 e^(^4^t^) +4B0 te^(^4^t^)[/tex]

=> [tex]y '' = 2A1 + 4B0e^(^4^t^) + 4B0 [ e^(^4^t^) + 4te^(^4^t^)[/tex]

    [tex]y '' = 2A1 + 4B0e^(^4^t^) + 4B0e^(^4^t^) + 16B0te^(^4^t^)[/tex]

Now substitute the values of y ' and y '' in the differential equation:

[tex]y"+\alpha y'+\beta y=t+e^(^4^t^)[/tex]

[tex]2A1 + 4B0e^(^4^t^) + 4B0e^(^4^t^) + 16B0te^(^4^t^) + \alpha {2A1t + A0 + B0e^(^4^t^) + 4B0 te^(^4^t^) } + \beta {A1 t^2 + A0 t + B0 t e6(^4^t^)} = t + e^(^4^t^)[/tex]

Next, we equate coefficients

1) Constant terms of the left side = constant terms of the right side:

[tex]2A1+ 2\alpha A0 = 0[/tex] ..... eq (1)

2) Coefficients of [tex]e^(^4^t^)[/tex] on both sides

8B0 + αB0 = 1 => B0 (8 + α) = 1 .... eq (2)

3) Coefficients on t

2αA1 + βA0 = 1 .... eq (3)

4) Coefficients on [tex]t^2[/tex]

βA1 = 0 ....eq (4)

A1 ≠ 0 => β =0

5) terms on [tex]te^(^4^t^)[/tex]

16B0 + 4αB0 + βB0 = 0 => B0 (16 + 4α + β) = 0 ... eq (5)

B0 ≠ 0 => 16 + 4α + β = 0

Use the value of β = 0 found previously

16 + 4α = 0 => α = - 16 / 4 = - 4.

α = - 4 and β = 0

Learn more about Differential Equation at:

https://brainly.com/question/31583235

#SPJ4

Which table shows a function that is decreasing only Obed the interval (-1,1)?

Answers

The First and the second function are decreasing only over the interval(-1,1)

What is function?

a function is a relation between a set of inputs (called the domain) and a set of outputs (called the range) such that each input is associated with exactly one output. The output value depends on the input value, and this relationship is often represented by a formula or a graph.

According to given information

the first

when x=-1 f(-1)=3

         x=0 f(0)=0(from the table to know)

         x=1 f(1)=-3

3>0>-3

so,the first function is decreasing

the second

f(-1)=2 f(0)=0 f(1)=-8

8>0>-8

so,the second function is decreasing

the third and fourth are

f(-1)<f(a)<f(-1)

so,the function is increasing

the first and second function are decreasing only over the interval(-1,1)

To know more about Function Visit:

brainly.com/question/21145944

#SPJ1

Question 5 0/8 pts 3 Details = Suppose that f(x, y) = 22 – xy + y² – 5x + 5y with D = {(x,y) | 0

Answers

According to the given function f(x,y) = 22 - xy + y² - 5x + 5y and the domain D = {(x,y) | 0 < x < 4, -1 < y < 3}, we can find the maximum and minimum values of the function within the given domain.
To find the critical points, we need to take the partial derivatives of the function with respect to x and y, set them equal to zero, and solve for x and y.
f_x = -y - 5 = 0
f_y = -x + 2y + 5 = 0
Solving these equations simultaneously, we get the critical point (x,y) = (3,2).
To determine whether this critical point is a maximum or a minimum, we need to find the second partial derivatives of f(x,y) with respect to x and y.
f_xx = 0, f_yy = -2
Since f_yy is negative at the critical point, we conclude that (3,2) is a local maximum.
Next, we need to check the boundary of the domain to see if there are any maximum or minimum values. We can parameterize the boundary as follows:
1. x = 0, -1 ≤ y ≤ 3
2. x = 4, -1 ≤ y ≤ 3
3. 0 ≤ x ≤ 4, y = -1
4. 0 ≤ x ≤ 4, y = 3
We can then plug these values into the original function f(x,y) and compare the results to find the maximum and minimum values.
On the line x = 0, we have f(0,y) = 22 + y² + 5y, which has a maximum value of 33 when y = -5/2 and a minimum value of 11 when y = 1.
On the line x = 4, we have f(4,y) = 6 + y² + 5y, which has a maximum value of 33 when y = -5/2 and a minimum value of 11 when y = 1.
On the line y = -1, we have f(x,-1) = 28 - x - 5, which has a maximum value of 22 when x = 0 and a minimum value of 10 when x = 4.
On the line y = 3, we have f(x,3) = 10 - x + 15, which has a maximum value of 22 when x = 0 and a minimum value of 10 when x = 4.
Therefore, the maximum value of f(x,y) within the domain D is 33, which occurs at the points (0,-5/2), (3,2), and (4,-5/2), and the minimum value is 10, which occurs at the points (4,1) and (0,1).

For more questions like Partial derivatives visit the link below:

https://brainly.com/question/30365299

#SPJ11

At the start of the workday, 35,000 cubic feet of dirt was piled up at a construction site. Dirt will be added to the pile for the next 8 hours, satisfying the increasing differential equation dP/dt=1/5 (P-7000) where the function P represents the total amount of dirt in the pile. P is measured in cubic feet, and t is measured in hours from the start of the workday.



Part A: Estimate the amount of dirt in the pile after 3 hours, using the tangent line to the graph of P at t = 0.



Part B: Find and use d^2P/dt^2 to determine if what you found in Part A was an underestimate or an overestimate at t = 3.



Part C: Find the general solution to the differential equation dP/dt=1/5(P-7000).

Answers

a) the estimated amount of dirt in the pile after 3 hours is 53,000 cubic feet. b) our estimate in Part A (53,000) was an underestimate. c) the specific solution that satisfies the initial condition P(0) = 35,000 is:

[tex]P = 7000 + 25,000e^{(t/5)[/tex]

Part A:

To estimate the amount of dirt in the pile after 3 hours, we will use the tangent line to the graph of P at t = 0.

First, we need to find P(0) and P'(0) to determine the equation of the tangent line.

P(0) is given as 35,000 cubic feet, which is the initial amount of dirt in the pile.

To find P'(0), we plug in t = 0 into the differential equation:

dP/dt = 1/5 (P - 7000)

dP/dt = 1/5 (35,000 - 7000)

dP/dt = 6,000

Therefore, P'(0) = 6,000.

Now, we can use the point-slope form of the equation of a line to find the tangent line:

y - y1 = m(x - x1)

P - 35,000 = 6,000(t - 0)

P = 6,000t + 35,000

To estimate the amount of dirt in the pile after 3 hours, we plug in t = 3:

P(3) = 6,000(3) + 35,000 = 53,000

Therefore, the estimated amount of dirt in the pile after 3 hours is 53,000 cubic feet.

Part B:

To determine whether our estimate in Part A was an underestimate or an overestimate at t = 3, we need to find [tex]d^2P/dt^2[/tex] and evaluate it at t = 3.

Taking the second derivative of the given differential equation with respect to t, we get:

[tex]d^2P/dt^2 = 1/5\ dP/dt\\\\d^2P/dt^2 = 1/5 (P - 7000)[/tex]

To evaluate this at t = 3, we need to find P(3). Using the equation we found in Part A:

P(3) = 6,000(3) + 35,000 = 53,000

So, we have:

[tex]d^2P/dt^2 = 1/5 (53,000 - 7000) = 8,400[/tex]

Since [tex]d^2P/dt^2[/tex] is positive at t = 3, this means that P is concave up at this point. Therefore, our estimate in Part A (53,000) was an underestimate.

Part C:

To find the general solution to the differential equation dP/dt = 1/5 (P - 7000), we can separate variables and integrate both sides:

dP/(P - 7000) = (1/5) dt

Integrating both sides:

ln|P - 7000| = (1/5) t + C

where C is the constant of integration.

Solving for P, we have:

|P - 7000| = [tex]e^{(t/5 + C)[/tex]

P - 7000 = ±[tex]e^{(t/5 + C)[/tex]

P = 7000 ± [tex]e^{(t/5 + C)[/tex]

where the ± sign indicates that there are two possible solutions depending on the sign of the exponential term.

To find the specific solution that satisfies the initial condition P(0) = 35,000, we can plug in these values:

35,000 = 7000 ± [tex]e^{(0/5 + C)[/tex]

Solving for C, we get:

C = ln(25,000)

Plugging this back into the general solution, we get:

P = 7000 + [tex]e^{(t/5 + ln(25,000))[/tex]

Since [tex]e^{(ln(25,000))} = 25,000[/tex], we can simplify this to:

P = 7000 + 25,000[tex]e^{(t/5)[/tex]

Therefore, the specific solution that satisfies the initial condition P(0) = 35,000 is:

P = 7000 + 25,000[tex]e^{(t/5)[/tex]

To learn more about differential equation visit:

https://brainly.com/question/1164377

#SPJ1

b. Let X be the concentration of ethanol in a chemical solution and Y be the acidity of the solution. Suppose the joint probability density function of these two variables is given by 365,1)=CC36-28-39 ) (C(30 - 2x - 3y) (x) = 3 0 OS*s 4, OS y S4 elsewhere. Evaluate i. the value of the constant C. [4 marks] the marginal probability density functions fx(x) of Xand f(y) of Y. [6 marks]

Answers

The marginal PDF of X is: fX(x) = (90 - 6x)/160, for 0 ≤ x ≤ 3, And the marginal PDF of Y is: fY(y) = (120 - 6y)/160, for 0 ≤ y ≤ 4

To find the value of the constant C, we integrate the joint probability density function over the entire range of X and Y, and set the result equal to 1, since the total probability over the entire range of the two variables must be equal to 1:

∫∫ f(x,y) dxdy = 1

∫∫ C(30 - 2x - 3y) dxdy = 1

We can evaluate this double integral by integrating over Y first and then X:

∫∫ C(30 - 2x - 3y) dxdy = C∫[0,4] ∫[0,3-2/3y] (30 - 2x - 3y) dxdy

= C∫[0,4] [30x -[tex]x^2[/tex] - 3xy] evaluated from 0 to 3-2/3y dy

= C∫[0,4] (90 - 36y + 4[tex]y^2[/tex])/3 dy

= C[(30y^2 - 36[tex]y^3/2[/tex] + 4[tex]y^3[/tex]/3)/3] evaluated from 0 to 4

= C(160/3)

Setting this equal to 1, we get:

C(160/3) = 1

C = 3/160

Therefore, the constant C is 3/160.

Now, we can find the marginal probability density functions of X and Y by integrating the joint probability density function over the range of the other variable. For the marginal PDF of X:

fX(x) = ∫ f(x,y) dy

fX(x) = ∫ 3/160 (30 - 2x - 3y) dy, for 0 ≤ x ≤ 3

fX(x) = (90 - 6x)/160, for 0 ≤ x ≤ 3

And for the marginal PDF of Y:

fY(y) = ∫ f(x,y) dx

fY(y) = ∫ 3/160 (30 - 2x - 3y) dx, for 0 ≤ y ≤ 4

fY(y) = (120 - 6y)/160, for 0 ≤ y ≤ 4

Therefore, the marginal PDF of X is:

fX(x) = (90 - 6x)/160, for 0 ≤ x ≤ 3

And the marginal PDF of Y is:

fY(y) = (120 - 6y)/160, for 0 ≤ y ≤ 4

Learn more about constant ,

https://brainly.com/question/14159361

#SPJ4

true or false: some inferential procedures have conditions that must be met, but others do not. true false

Answers

Some inferential procedures have conditions that must be met, but others do not is false.

Deducible procedures,  similar as  thesis testing and confidence intervals, are statistical  styles used to make conclusions about a population grounded on a sample of data. These procedures calculate on the  supposition that the sample is representative of the population and that the data satisfy certain  hypotheticals.  

Some  exemplifications of  deducible procedures and their corresponding  hypotheticals include   t- tests Assumes that the data are  typically distributed and have equal  dissonances between groups.  ANOVA Assumes that the data are  typically distributed and have equal  dissonances between groups.  Linear retrogression Assumes that the relationship between the dependent and independent variables is direct, the  crimes are  typically distributed, and the  friction of the  crimes is constant.

Learn more about inferential procedures at

https://brainly.com/question/30052262

#SPJ4

Problem 4. (1 point) Which of the following are first order linear differential equations? A. X dy dx – 4y = xóer B. dP + 2tP = P + 4t – 2 dt 2 C. dy dx + cos(x)y = 5 de = y2 – 3y E. 2 + sin(x) = cos(x) F. sin(x) x – 3y = 0 dx

Answers

The following parts can be answered by the concept of differential equation. Options A, B, C, and F are first-order linear differential equations.

Based on the given terms, here is the classification of each equation as first-order linear differential equations or not:

A. X dy/dx - 4y = x²: This is a first-order linear differential equation, as it has the form (X dy/dx) - 4y = f(x).

B. dP/dt + 2tP = P + 4t - 2: This is a first-order linear differential equation, as it has the form (dP/dt) + g(t)P = h(t).

C. dy/dx + cos(x)y = 5: This is a first-order linear differential equation, as it has the form (dy/dx) + p(x)y = q(x).

D. de = y² - 3y: This is not a first-order linear differential equation, as it lacks the dy/dx term and does not have the standard form.

E. 2 + sin(x) = cos(x): This is not a differential equation, as there are no derivatives present.

F. sin(x) dy/dx - 3y = 0: This is a first-order linear differential equation, as it has the form (sin(x) dy/dx) - 3y = 0.

So, options A, B, C, and F are first-order linear differential equations.

To learn more about differential equation here:

brainly.com/question/31583235#

#SPJ11

What are the critical points for f(x) = 4x2 Does f(x) = 3x2 – 2 have any inflection points?

Answers

Since the second derivative of f(x) is a constant positive number, there are no inflection points for [tex]f(x) = 3x^2 - 2[/tex].

The point of inflection or inflection point is a point in which the concavity of the function changes. It means that the function changes from concave down to concave up or vice versa. In other words, the point in which the rate of change of slope from increasing to decreasing manner or vice versa is known as an inflection point. Those points are certainly not local maxima or minima. They are stationary points.

To find the critical points of [tex]f(x) = 4x^2,[/tex] we need to find the values of x where the derivative of f(x) equals zero.

f'(x) = 8x

Setting f'(x) = 0, we get:

8x = 0

x = 0

Therefore, the critical point of[tex]f(x) = 4x^2[/tex] is at x = 0.

To determine if[tex]f(x) = 3x^2 - 2[/tex]has any inflection points, we need to find the second derivative of f(x) and check its sign.

f''(x) = 6

Since the second derivative of f(x) is a constant positive number, there are no inflection points for [tex]f(x) = 3x^2 - 2[/tex].

learn more about The point of inflection

https://brainly.com/question/30760634

#SPJ11

To determine the difference , if any, between two brands of radial tires, 12 tires of each brand are tested. Assume that the lifetimes of both brands of tires come from the same normal distribution N(m, 33002). The distribution of the difference of the sample mean $$\overline{X}$$ - $$\overline{Y}.$$

Answers

The  calculated difference between the sample means tracks a normal distribution with mean m₁ - m₂  and standard deviation √(5500.33).

Then the lifetimes of both brands of tires come from the same typical dissemination, the distinction in comparison to their test implies that it is ordinary dissemination.

Precisely, on the off chance that we let X and Y.

This projects  the test which implies the primary and moment brands, separately, and let s indicate the common standard deviation (given as the square root of 33002), at that point the conveyance of the distinction X-Y is additionally typical.

Now the  mean m₁ - m₂ and the standard deviation is given by the square root of the whole of the fluctuations, which in this case is the square root of 2 times the fluctuation of each test cruel (since the test sizes and changes are broken even with):
√(2) × √(33002/12) = √(5500.33)

Therefore, the difference between the sample means follows a normal distribution with mean m₁ - m₂

To learn more about  standard deviation
https://brainly.com/question/23907081
#SPJ4

Let f(x) = ln(2) A. (8 points) Use a linearization to estimate ln(0.99) B. (4 points) Is your estimate from part (A) an overestimate or underestimate? Provide a justification. Ignore the answer field below. Write up your full solution neatly on your paper, showing all work. You will scan your solution and upload it in Question 22

Answers

The estimate for ln(0.99) is ln(2) - 0.01.

To estimate ln(0.99) using linearization, we first find the linear approximation of f(x) near x=1. We have:

f(1) = ln(2)

f'(x) = 1/x (by differentiating ln(x))

So, the equation of the tangent line at x=1 is:

y - ln(2) = 1/1 (x - 1)

y - ln(2) = x - 1

y = x - 1 + ln(2)

Now, we can use this linear approximation to estimate ln(0.99) as follows:

ln(0.99) ≈ 0.99 - 1 + ln(2) = ln(2) - 0.01


This estimate is an underestimate because ln(x) is a decreasing function for x in (0,1), which means that the tangent line at x=1 lies below the graph of ln(x) for x in (0,1). Therefore, the linear approximation underestimates the value of ln(0.99).

To know more about linear approximation click on below link:

https://brainly.com/question/1621850#

#SPJ11

At the beginning of the winter season, Kaleb’s firewood rack held 4,000 lbs of firewood. The weight of firewood decreases by 7.5% each week. Write a function to represent the weight of firewood remaining x weeks after the start of the winter season.

Answers

Therefore , f(x) = 4000  (0.925)ˣ is the function

Firewood loses 7.5% of its weight each week. In other words, 92.5% of the original weight of the firewood is still present after one week.

What is function?

The function I gave is an illustration of a function that denotes the quantity of firewood that is still available x weeks after the start of the winter season.

A mathematical item called a function accepts an input and creates an output. The number of weeks since the start of the winter season is the input in this scenario, and the output is the weight of firewood still available.

The function can be used to express the weight of firewood left over x weeks after the start of winter:

f(x) = 4000(1 - 0.075)ˣ

Firewood loses 7.5% of its weight each week. In other words, 92.5% of the original weight of the firewood is still present after one week

where x represents how many weeks have passed since the start of the winter season.

To know more about function visit:

brainly.com/question/12431044

#SPJ1

30Practice Exercises » T 23-42. Locating critical points Find the critical points of the following functions. Assume a is a nonzero constant. 30. f(x) = x - 5 tan-1 X

Answers

The critical points of the  f(x) = x - 5tan^(-1)(x) are x = -2 and x = 2.

To find the critical points of the function f(x) = x - 5tan^(-1)(x), you need to calculate the first derivative and then determine where it is equal to zero or undefined. Here are the steps:

Find the first derivative of f(x):
f'(x) = 1 - 5/(1 + x^2) (due to the derivative of tan^(-1)(x) = 1/(1 + x^2))

Set the derivative equal to zero and solve for x:
1 - 5/(1 + x^2) = 0

Solve the equation for x:
5/(1 + x^2) = 1
5 = 1 + x^2
x^2 = 4
x = ±2
Learn more about finding critical points of a function: https://brainly.com/question/29144288

#SPJ11

Please help me with this question,it's really simple.

What is the probability of landing on heads on the coin, and a number less than 7 on the spinner?

Answer choices:
A.)3/8
B.)1/4
C.)1/16
D.)2/3

The picture will help you out​

Answers

Answer:The correct answer is A) 3/8Step-by-step explanation:

The probability of landing on heads on the coin is 1/2. The probability of landing on a number less than 7 on the spinner is 6/8 or 3/4. Since these two events are independent, the probability of both events happening is the product of their individual probabilities:

[tex](1/2) \times (3/4) = 3/8[/tex]

Note:- I'm sorry to bother you but can you please mark me BRAINLEIST if this ans is helpfull

Can someone pls helppp asap
Around your answer to the nearest hundredth find the surface area and volume.

Answers

The total surface area of the prism is 48.52 mm² and  the volume of the triangular prism is 17.70 mm³.

What is a triangular prism?

A triangular prism is a three-dimensional geometric shape that consists of two parallel triangular bases and three rectangular faces that connect the corresponding sides of the bases. It has a total of six faces, nine edges, and six vertices. The height of the prism is the perpendicular distance between the two bases, and the lateral edges are the three edges that connect the corresponding vertices of the bases. The volume of a triangular prism can be found by multiplying the area of one of the triangular bases by the height of the prism, and the surface area can be found by adding up the areas of each six faces. Triangular prisms are commonly used in architecture, engineering, and geometry.

To find the surface area of the triangular prism, we first need to find the area of the triangular base, which is an equilateral triangle with side length 2.7 mm.

Area of triangular base = (√3 / 4) x (side length)²

= (√3 / 4) x (2.7 mm)²

= 3.16 mm^2 (rounded to the nearest hundredth)

Since the base is an equilateral triangle, the perimeter is 3 times the side length:

Perimeter of triangular base = 3 x 2.7 mm

= 8.1 mm

Lateral area of prism = Perimeter of the triangle x Height

= 8.1 mm x 5.6 mm

= 45.36 mm²

The total surface area of the prism will be the sum of the area of the base and the lateral area:

Surface area = Area of triangular base + Lateral area of prism

= 3.16 mm² + 45.36 mm²

= 48.52 mm² (rounded to the nearest hundredth)

To find the volume of given triangular prism, we can use the formula:

Volume = Area of triangular base x Height of prism

= 3.16 mm² x 2.3 mm

= 17.696 mm³ = 17.70 mm³ (rounded to the nearest hundredth)

To know more about triangular prism visit:

brainly.com/question/30966073

#SPJ1

2. If a marble is selected at random from Adrian's Bag of Marbles,

Which expression can be used to determine the probability the

Marble selected will NOT be red?

Answers

If a marble is selected at random from Adrian's Bag of Marbles, then the probability that marble selected from Adrian's bag will not be red is 0.7.

The "Probability" of an "event-A" occurring is defined as the ratio of the number of favorable outcomes for event A to the total number of possible outcomes in a given sample space. It is denoted as P(A).

To find the probability that marble selected will not be red,

we need to find "total-number" of marbles in Adrian's bag and the number of marbles that are not red.

We know that,

⇒ Number of red marbles = 3,

⇒ Number of blue marbles = 7,

So, Total marbles in bag = Number of red marbles + Number of blue marbles,

⇒ 3 + 7 = 10,

The Number of marbles that are not red = Number of blue marbles = 7,

So, probability that marble selected will not be red is :

⇒ Probability (not red) = (Number of marbles that are not red)/(Total number of marbles),

⇒ 7/10,

⇒ 0.7

Therefore, the required probability is 0.7.

Learn more about Probability here

https://brainly.com/question/24028840

#SPJ4

The given question is incomplete, the complete question is

Adrian's Bag of marbles contain 3 Red and 7 Blue Marbles, If a marble is selected at random from Adrian's Bag of Marbles, then What is the probability the Marble selected will NOT be red?

If f(x) is a continuous function such that f(x)≥0,∀x∈[2,10] and ∫ 48​ f(x)dx=0, then the value of f(6), is

Answers

A function is considered continuous at a point if its limit exists at that point and is equal to the function's value at that point.

a function is continuous at a point if it has no gaps, jumps, or holes in its graph at that point. Since the integral of f(x) from 2 to 10 is zero, and f(x) is continuous and non-negative on this interval, it follows that f(x) must be identically zero on [2, 10].

Therefore, f(6) = 0

learn about continuous function,

https://brainly.com/question/18102431

#SPJ11

Other Questions
9) How many moles of water are made from complete reaction of 2.2 moles of oxygen gas with hydrogen gas?Given the reaction: 2H2 + O2 2H2OA) 4.4B) 1.1C) 2.2D) 3.3E) not enough information which sculpture was created as an illustration of the principles set out in the canon of polykleitos? According to most insurance coverage, if a prescription is written for a brand name product and "may substitute" is marked: True or False the charge Capture section will allow you to quickly file charges on your patient that will go directly to billing. The US Supreme Court, in Washington DC, was modeled after the Parthenon. Why did architects model these buildings after the Parthenon?a. As a symbol of prosperityb. As a symbol of peacec. As a symbol of victoryd. As a symbol of democracy Analysis on the currentsituation and Countermeasures ofictproducts import in Zimbabwe full essay its for thesis When planning a program to educate adolescents about acquired immunodeficiency syndrome (AIDS), which action might lead to better acceptance of the program? The EEOC enforces both the Civil Rights Acts of 1964 and 1991, and the various anti-discrimination executive orders applying to federal contractors.TrueFalse Which act attempted to eliminate discrimination caused by blockbusting, steering, and redlining? The height of a filing cabinet is 1.5 times the width. The depth is twice the width.The volume of the cabinet is 12,288 in. What are the cabinet's dimensions? which of the following options correctly contrast the valence bond (vb) model and the molecular orbital (mo) model of bonding? select all that apply. multiple select question. vb theory describes bonding as the localized overlap of atomic orbitals. vb theory rationalizes the geometries predicted using vsepr. mo theory cannot account for observed molecular geometries. mo theory postulates the formation of orbitals that are shared by all atoms in the covalent species. mo theory describes bonding in terms of hybridization of atomic orbitals. choose the groups of performance measures typically used in the balanced scorecard approach. multiple select question. safety records learning and growth financial quality scores customer a toddler's parent asks the nurse for suggestions on dealing with temper tantrums. which is the most appropriate recommendation? a. punish the child. b. leave the child alone until the tantrum is over. c. remain close to the child but without eye contact. d. explain to the child that this is wrong. A 1.5-kg mass has an acceleration of (4.0i - 3.0j) m/s2. Only two forces act on the mass. If one of the forces is (2.0i - 1.4j) N, what is the magnitude of the other force? 1) 4.1 N 2) 6.1 N 3) 5.1 N 4) 7.1 N 5) 2.4 N A solid block weighs 1.80 N in air. When fully submerged in water, it displaces a volume of 2.0 x 10-^5m. Density of water is 1000 kg/m. Determinea) the average density of the block b) the normal force the floor of the vessel exerts on the submerged body The width of a recatangle is m cm its length is 5 times the width. Find the area Complications of oxygen therapy in kid (2) TRUE/FALSE. The mediator in a mediation has the power to force the parties to come to a settlement In order to study how many hours that U of S students spend on studying per week, we drew a simple random sample of size n = 475 out of a total of 5000 U of S students. We then found that the mean of the hours (denoted bysvg.image?\bar{x}) that the 475 students spent on studying is 25.3 hours. In this example, we observed 475 samples from the population distribution. How many samples (or realizations) did we observe from the sampling distribution of the sample mean of the hours that 475 students spend on studying? find the value(s) of x which the tangent line to y=x^4 [ln(2x)]^2is horizontal. leave your answer as exact values.