The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8.7 kN. Determine the required tension T in cable AC such that the net effect of the two cables is a downward force at point A. Determine the magnitude R of this downward force.

Answers

Answer 1

Answer:

[tex] T_A_C = 6.296 kN [/tex]

[tex] R = 10.06 kN [/tex]

Explanation:

Given:

[tex] T_A_B = 8.7 kN[/tex]

Required:

Find the tension TAC and magnitude R of this downward force.

First calculate [tex] \alpha, \beta, \gamma [/tex]

[tex] \alpha = tan^-^1 =\frac{40}{50} = 38. 36 [/tex]

[tex] \beta = tan^-^1 =\frac{50}{30} = 59.04 [/tex]

[tex] \gamma = 180 - 38.36 - 59.04 = 82.6 [/tex]

To Find tension in AC and magnitude R, use sine rule.

[tex] \frac{sin a}{T_A_C} = \frac{sin b}{T_A_B} = \frac{sin c}{R} [/tex]

Substitute values:

[tex]\frac{sin 38.36}{T_A_C} = \frac{sin 59.04}{8.7} = \frac{82.6}{R}[/tex]

Solve for T_A_C:

[tex] T_A_C = 8.7 * \frac{sin 38.36}{sin 59.04} = [/tex]

[tex] T_A_C = 8.7 * 0.724 = 6.296 kN [/tex]

Solve for R.

[tex] R = 8.7 * \frac{sin 82.6}{sin 59.04} = [/tex]

[tex] R = 8.7 * 1.156 [/tex]

R = 10.06 kN

Tension AC = 6.296kN

Magnitude,R = 10.06 kN

The Guy Wires AB And AC Are Attached To The Top Of The Transmission Tower. The Tension In Cable AB Is

Related Questions

4. In its natural state, a soil weighs 2800 lb/cy, while in the loose and compacted states, it weighs 2500 lb/cy and 3300 lb/cy, respectively. a. Find the load and shrinkage factors for this soil. b. How many trucks loads with a capacity of 5 lcy/truck would be required to haul 750,000 ccy of this soil to a project

Answers

Answer:

a. load factor = 0.893

shrinkage factor = 0.848

b. Number of Trucks loads = 113,585 Trucks loads

Explanation:

Here, we start by identifying the factors as given in the question.

γn = 2800 lb/cy

γloose = 2500 lb/cy

and γcompacted = 3300 lb/cy

a. Mathematically,

Load factor = γloose/γn = 2500/2800 = 0.893

Shrinkage factor = γn/γcompacted = 2800/3300 = 0.848

b. To find the number of trucks loads with a capacity of 5 lcy/truck, we use the mathematical formula as follows;

ρlcy = 5

Load factor × Shrinkage factor = ρloose/γn × γn/γcompacted = ρlcy/ρccy

0.893 × 0.848 = 5/ρccy

ρccy =5/(0.893 × 0.848) = 6.603

The number of truck loads = 750,000/6.603 = 113,584.7 which is approximately 113,585 trucks loads

The drum has a mass of 50 kg and a radius of gyration about the pin at O of 0.23 o k m = . If the 15kg block is moving downward at 3 / m s , and a force of P N =100 is applied to the brake arm, determine how far the block descends from the instant the brake is applied until it stops. Neglect the thickness of the handle. The coefficient of kinetic friction at the brake pad is 0.5 k = .

Answers

Note: The diagram referred to in this question is attached as a file below.

Answer:

The block descended a distance of 9.75m from the instant the brake is applied until it stops.

Explanation:

For clarity and easiness of expression, the calculations and the Free Body Diagram are contained in the attached file. Check the attached file below.

The block descended a distance of 9.75 m

Suppose you used the pipette to make 10 additions to a flask, and suppose the pipette had a 10% random error in the amount delivered with each delivery. Use equation 1 on page 25 to calculate the percent error in the total volume delivered to the flask using the number of clicks you were permitted to make. Report that total percentage below.
Here is the equation: random error of average= error in one measurement/n^1/2

Answers

Answer:

The total percentage is 3.16237%

Explanation:

Solution

Now,

We have to know what a random error is.

A random error is an error in measured caused by factors or elements which varies from one measurement to another.

The random error is shown as follows:

The average random error  is = the error found in one measurement/n^1/2

Where

n =Number ( how many times the experiment was done)

Now that we added 10 times we have that,

n → 10

Thus,

The error in one measurement = 10%

So,

The average random error = 10 %/(10)^1/2

= (10)^1/2 %

√10%

The total percentage is = 3.16237%

An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)

Answers

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

The temperature of a flowing gas is to be measured with a thermocouple junction and wire stretched between two legs of a sting, a wind tunnel test fixture. The junction is formed by butt-welding two wires of different material. For wires of diameter D = 125 m and a convection coefficient of h = 700 W/m^2 K, determine the minimum separation distance between the two legs of the sting, L=L1+L2, to ensure that the sting temperature does not influence the junction temperature and, in turn, invalidate the gas temperature measurement. Consider two different types of thermocouple junctions consisting of (i) copper and constantan wires and (ii) chromel and aluminel wires. Evaluate the thermal conductivity of copper and constantan at T300 K. Use kCh =19 W/mK and kA = l29 W/mK for the thermal conductivities of the chromel and alumel wires, respectively.

Answers

Answer:

minimum separation distance between the two legs of the sting L = L 1 + L 2  therefore    L = 9.48 + 4.68  = 14.16 mL = 1.14 m

Explanation:

D ( diameter ) = 125 m

convection coefficient of  h = 700 W/m^2

Calculate THE CROSS SECTIONAL AREA

Ac = [tex]\frac{\pi }{4} * D^2[/tex]  = [tex]\frac{\pi }{4} * ( 125 )^2[/tex] = 0.79 * 15625 = 12343.75 m^2

perimeter

p = [tex]\pi * D[/tex]  = 3.14 * 125 = 392.5 m

at 300k temperature the thermal conductivity of copper and constantan from the thermodynamic property table are :

Kcu = 401 w/m.k

Kconstantan = 23 W/m.k

To calculate the length of copper wire of the thermocouple junction

L 1 = 4.6 ([tex]\frac{Kcv Ac}{h P}[/tex]) ^ 1/2 = 4.6 [tex](\frac{401 *12343.75 }{700 *392.5})^\frac{1}{2}[/tex]

L 1 = 4.6 ( 4949843.75 / 274750 )^1/2

L 1 = 9.48 m

calculate length of constantan wire

L 2 = 4.6 [tex](\frac{kcons*Ac}{hp} )^\frac{1}{2}[/tex]

     = 4.6 ( (23 * 12343.75) / ( 700 * 392.5) ) ^1/2

L 2 = 4.6 ( 283906.25 / 274750 ) ^ 1/2

L 2 = 4.68 m

I)  therefore the minimum separation distance between the two legs of the sting L = L 1 + L 2

L = 9.48 + 4.68  = 14.16 m

ii)  Evaluating the thermal conductivity of copper and constantan

Kc ( thermal conductivity of chromel) = 19 w/m.k

Ka ( thermal conductivity of alumel ) = 29 W/m.k

distance between the legs L = L 1 + L 2

THEREFORE

L = 4.6 ( (Kcn * Ac ) / ( hp ) )^1/2  +  4.6 ( (Kac * Ac)/(hp) )^1/2

L = 4.6 [tex](\frac{Ac}{hp} )^\frac{1}{2} [ (Kcn)^\frac{1}{2} + (Kal)^\frac{1}{2} ][/tex]

L = 4.6 ( 12343.75 /( 700 * 392.5) )^1/2   * [ 19^1/2  + 29^1/2 ]

L = 4.6 ( 12343.75 / 274750 ) ^1/2  * 5.39

L = 1.14 m

Purely resistive loads of 24 kW, 18 kW, and 12 kW are connected between the neutral
and the red, yellow and blue phases respectively of a 3-0, four-wire system. The line
voltage is 415 V. Calculate:
i. the current in each line conductor (i.e., IR ,Iy and IB); and
ii. the current in the neutral conductor.

Answers

Answer:

(i) IR = 100.167 A Iy = 75.125∠-120 IB = 50.083 ∠+120 (ii) IN =43.374∠ -30°

Explanation:

Solution

Given that:

Three loads  24 kW, 18 kW, and 12 kW are connected between the neutral.

Voltage = 415V

Now,

(1)The current in each line conductor

Thus,

The Voltage Vpn = vL√3

Gives us, 415/√3 = 239.6 V

Then,

IR = 24 K/ Vpn ∠0°

24K/239.6 ∠0°= 100.167 A

For Iy

Iy = 18k/239. 6

= 75.125A

Thus,

Iy = 75.125∠-120 this is as a result of the 3- 0 system

Now,

IB = 12K /239.6

= 50.083 A

Thus,

IB is =50.083 ∠+120

(ii) We find the current in the neutral conductor

which is,

IN =Iy +IB +IR

= 75.125∠-120 + 50.083∠+120 +100.167

This will give us the following summation below:

-37.563 - j65.06 - 25.0415 +j 43.373 + 100.167

Thus,

IN = 37.563- j 21.687

Therefore,

IN =43.374∠ -30°

Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. Both have a crystal structure characterized by sheet-structures at the atomic level, yet they don't behave like micas. What accounts for their unusual physical properties

Answers

Answer:

The reason for their unusual properties of the greasy feel and low hardness is that the chemical bonds between the sheets is so weak that very low stresses can allow slip between the sheets.

Explanation:

Talc is a monoclinic mineral with a sheet structure similar to the micas and also has perfect cleavage that follows planes between the weakly bonded sheets.

Now, these sheets are held together only by van der Waals bonds and this allows them to slip past each other easily. Thus, this unique characteristic is responsible for talc's extreme softness, its greasy, soapy feel, and its value as a high-temperature lubricant.

While for graphite, it's carbon atoms are linked in a hexagonal network which forms sheets that are one atom thick. It's sheets are poorly connected and easily cleave or slide over one another when subjected to a small amount of force. Thus, gives graphite its very low hardness, its perfect cleavage, and its slippery feel.

So, we can conclude that the reason for their unusual properties is that the chemical bonds between the sheets is so weak that very low stresses can allow slip between the sheets; hence, the greasy feel and low hardness.

A 10-mm-diameter Brinell hardness indenter produced an indentation 1.55 mm in diameter in a steel alloy when a load of 500 kg was used. Calculate the Brinell hardness (in HB) of this material. Enter your answer in accordance to the question statement HB

Answers

Answer:

HB = 3.22

Explanation:

The formula to calculate the Brinell Hardness is given as follows:

[tex]HB = \frac{2P}{\pi D\sqrt{D^{2}- d^{2} } }[/tex]

where,

HB = Brinell Hardness = ?

P = Applied Load in kg = 500 kg

D = Diameter of Indenter in mm = 10 mm

d = Diameter of the indentation in mm = 1.55 mm

Therefore, using these values, we get:

[tex]HB = \frac{(2)(500)}{\pi (10)\sqrt{10^{2}- 1.55^{2} } }[/tex]

HB = 3.22

Refrigerant-134a enters a 28-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5.5 m/s. The refrigerant gains heat as it flows and leaves the pipe at 180 kPa and 40°C. The specific volumes of R-134a at the inlet and exit are 0.1142 m3/kg and 0.1374 m3/kg. Determine (a) the volume flow rate of the refrigerant at the inlet, (b) the mass flow rate of the refrigerant, and (c) the velocity and volume flow rate at the exit.

Answers

Answer:

(a) The volume flow rate of the refrigerant at the inlet is 0.3078 m3/s

(b) The mass flow rate of the refrigerant is 2.695 kg/s

(c) The velocity and volume flow rate at the exit is 6.017 m/s

Explanation:

According to the given data we have the following:

diameter of the pipe=d=28 cm=0.28 m

inlet pressure P1=200 kPa

inlet temperature T1=20°C

inlet velocity V1=5.5 m/s

Exit pressure P2=180 kPa

Exit Temperature T2=40°C

a. To calculate the volume flow rate of the refrigerant at the inlet we would have to use the following formula:

V1=AV1

=π/4(0.28∧2)5

V1=0.3078 m3/s

b. To calculate the mass flow rate of the refrigerant we would have to use the following formula:

m=p1 V1

m=V1/v1

=0.3078/0.11418

=2.695 kg/s

c. To calculate the velocity and volume flow rate at the exit we would have to use the following formula:

m=m1=m2

V1/v1=V2/v2

V2=(v2/v1)v1

=(0.13741/0.11418)5

=6.017 m/s

An eddy current separator is to separate aluminum product from an input streamshredded MSW. The feed rate to the separator is 2,500 kg/hr. The feed is known to contain174 kg of aluminum and 2,326 kg of reject. After operating for 1 hour, a total of 256 kg ofmaterials is collected in the product stream. On close inspection, it is found that 140 kg ofproduct is aluminum. Estimate the % recovery of aluminum product and the % purity of thealuminum produc

Answers

Answer:

the % recovery of aluminum product is 80.5%

the % purity of the aluminum product is 54.7%

Explanation:

feed rate to separator = 2500 kg/hr

in one hour, there will be 2500 kg/hr x 1 hr = 2500 kg of material is fed into the  machine

of this 2500 kg, the feed is known to contain 174 kg of aluminium and 2326 kg of rejects.

After the separation, 256 kg  is collected in the product stream.

of this 256 kg, 140 kg is aluminium.

% recovery of aluminium will be = mass of aluminium in material collected in the product stream ÷ mass of aluminium contained in the feed material

% recovery of aluminium = 140kg/174kg x 100% = 80.5%

% purity of the aluminium product = mass of aluminium in final product ÷ total mass of product collected in product stream

% purity of the aluminium product = 140kg/256kg

x 100% = 54.7%

The yield strength for an alloy that has an average grain diameter, d1, is listed above as Yield Stress 1 . At a grain diameter of d2, the yield strength increases Yield Stress 2. At what grain diameter, in mm, will the yield strength be 217 MPa

Answers

Complete Question:

Grain diameter 1 (mm) = 4.4E-02

Yield stress 1 (MPa) = 131

Grain diameter 2 (mm) = 7.7E-03

Yield Stress 2 (MPa) = 268

The yield strength for an alloy that has an average grain diameter, d1, is listed above as Yield Stress 1 . At a grain diameter of d2, the yield strength increases Yield Stress 2. At what grain diameter, in mm, will the yield strength be 217 MPa

Answer:

d = 1.3 * 10⁻² m

Explanation:

According to the Hall Petch equation:

[tex]\sigma_y = \sigma_0 + k/\sqrt{d} \\[/tex]

At [tex]d_{1} = 4.4 * 10^{-2} mm[/tex], [tex]\sigma_{y1} = 131 MPa = 131 N/ mm^2[/tex]

[tex]131 = \sigma_0 + k/\sqrt{4.4 * 10^{-2}} \\k = 27.45 - 0.2096 \sigma_0[/tex]

At [tex]d_{2} = 7.7 * 10^{-3} mm[/tex], [tex]\sigma_{y2} = 131 MPa = 268 N/ mm^2[/tex]

[tex]268 = \sigma_0 + (27.45 - 0.2096 \sigma_0)/\sqrt{7.7 * 10^{-3}} \\23.5036 = 27.47 - 0.1219 \sigma_0\\ \sigma_0 = 32.45 N/mm^2[/tex]

k = 27.45 - 0.2096(32.45)

k = 20.64

At [tex]\sigma_y = 217 MPa[/tex], reapplying Hall Petch law:

[tex]\sigma_y = \sigma_0 + k/\sqrt{d} \\[/tex]

[tex]217 =32.45 + 20.64/\sqrt{d} \\217 - 32.45 = 20.64/\sqrt{d}\\184.55 = 20.64/ \sqrt{d} \\\sqrt{d} = 20.64/184.55\\\sqrt{d} = 0.11184\\d = 0.013 mm[/tex]

d = 1.3 * 10⁻² m

Choose two consumer services careers and research online to determine what kinds of professional organizations exist for these professions. Write a paragraph describing the purpose of the organization, the requirements for joining, and the benefits of membership.

Answers

Bank loan facilitator, and hospital emergency care specialist are the two consumer or customer services careers.

Bank loan facilitator is a consumer service facilitator who ask and provide people loan in emergency, for the purpose of education, treatment, family events, and for other reasons. For bank loan facilitator the professional organizations should be banking and finance sector. The purpose of these organizations is to help people in financial matter seeking benefit by getting interest from customers. The requirements for joining of the employee must include strong convincing power for the employee, time management, strong and tactful communication skills. Benefits of membership of the customers can help them to seek loans on need basis on lower interest. Hospital emergency care specialist provides help to the staff and the customers in medical emergency. These professionals are necessary for the hospital, clinics, and rehabilitation centers. Purpose of the organization is to provide medical care to the patients. The requirements for joining of the employee includes ability to give information to patients and staff during emergency conditions, facilitating ambulance to rescue patients from their homes, and from other areas, providing medicine, medical equipment, and other facilities to the patients and other medical staff necessary for treatment. Benefits of membership in clinical or hospital settings can help the patient in frequent visits for treatment, concession in laboratory tests, and medication.

Learn more about customer:

https://brainly.com/question/13735743

The internal loadings at a critical section along the steel drive shaft of a ship are calculated to be a torque of 2300 lb⋅ft, a bending moment of 1500 lb⋅ft, and an axial thrust of 2500 lb. If the yield points for tension and shear are σY= 100 ksi and τY = 50 ksi, respectively, determine the required diameter of the shaft using the maximum-shear-stress theory

Answers

Answer:

Explanation:

Given that:

Torque T = 2300 lb - ft

Bending moment M = 1500 lb - ft

axial thrust P = 2500 lb

yield points for tension  σY= 100 ksi

yield points for shear   τY = 50 ksi

Using maximum-shear-stress theory

[tex]\sigma_A = \dfrac{P}{A}+\dfrac{Mc}{I}[/tex]

where;

[tex]A = \pi c^2[/tex]

[tex]I = \dfrac{\pi}{4}c^4[/tex]

[tex]\sigma_A = \dfrac{P}{\pi c^2}+\dfrac{Mc}{ \dfrac{\pi}{4}c^4}[/tex]

[tex]\sigma_A = \dfrac{2500}{\pi c^2}+\dfrac{1500*12c}{ \dfrac{\pi}{4}c^4}[/tex]

[tex]\sigma_A = \dfrac{2500}{\pi c^2}+\dfrac{72000c}{\pi c^3}}[/tex]

[tex]\tau_A = \dfrac{T_c}{\tau}[/tex]

where;

[tex]\tau = \dfrac{\pi c^4}{2}[/tex]

[tex]\tau_A = \dfrac{T_c}{\dfrac{\pi c^4}{2}}[/tex]

[tex]\tau_A = \dfrac{2300*12 c}{\dfrac{\pi c^4}{2}}[/tex]

[tex]\tau_A = \dfrac{55200 }{\pi c^3}}[/tex]

[tex]\sigma_{1,2} = \dfrac{\sigma_x+\sigma_y}{2} \pm \sqrt{\dfrac{(\sigma_x - \sigma_y)^2}{2}+ \tau_y^2}[/tex]

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi c ^3} \pm \sqrt{\dfrac{(2500 +72000)^2}{2 \pi c^3}+ \dfrac{55200}{\pi c^3}} \ \ \ \ \ ------(1)[/tex]

Let say :

[tex]|\sigma_1 - \sigma_2| = \sigma_y[/tex]

Then :

[tex]2\sqrt{( \dfrac{2500c + 72000}{2 \pi c^3})^2+ ( \dfrac{55200}{\pi c^3})^2 } = 100(10^3)[/tex]

[tex](2500 c + 72000)^2 +(110400)^2 = 10000*10^6 \pi^2 c^6[/tex]

[tex]6.25c^2 + 360c+ 17372.16-10,000\ \pi^2 c^6 =0[/tex]

According to trial and error;

c = 0.75057 in

Replacing  c into equation (1)

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} \pm \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}}[/tex]

[tex]\sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} + \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}} \ \ \ OR \\ \\ \\ \sigma_{1,2} = \dfrac{2500+72000}{2 \pi (0.75057) ^3} - \sqrt{\dfrac{(2500 +72000)^2}{2 \pi (0.75057)^3}+ \dfrac{55200}{\pi (0.75057)^3}}[/tex]

[tex]\sigma _1 = 22193 \ Psi[/tex]

[tex]\sigma_2 = -77807 \ Psi[/tex]

The required diameter d  = 2c

d = 1.50 in   or   0.125 ft

Effluents from metal-finishing plants have the potential of discharging undesirable quantities of metals, such as cadmium, nickel, lead, manganese, and chromium, in forms that are detrimental to water and air quality. A local metal-finishing plant has identified a wastewater stream that contains 5.15 wt% chromium (Cr) and devised the following approach to lowering risk and recovering the valuable metal. The wastewater stream is fed to a treatment unit that removes 95% of the chromium in the feed and recycles it to the plant. The residual liquid stream leaving the treatment unit is sent to a waste lagoon. The treatment unit has a maximum capacity of 4500 kg wastewater/h. If wastewater leaves the finishing plant at a rate higher than the capacity of the treatment unit, the excess (anything above 4500 kg/h) bypasses the unit and combines with the residual liquid leaving the unit, and the combined stream goes to the waste lagoon.
(a) Without assuming a basis of calculation, draw and label a flowchart of the process. (b) Waste water leaves the finishing plant at a rate m_ 1 ? 6000 kg/h. Calculate the flow rate of liquid to
the waste lagoon, m_ 6?kg/h?, and the mass fraction of Cr in this liquid, x6(kg Cr/kg). (c) Calculate the flow rate of the liquid to the waste lagoon and the mass fraction of Cr in this liquid for m_1 varying from 1000 kg/h to 10,000 kg/h in 1000 kg/h increments. Generate a plot of x6 versus m_ 1 .
(Suggestion: Use a spreadsheet for these calculations.) (d) The company has hired you as a consultant to help them determine whether or not to add capacity to the treatment unit to increase the recovery of chromium. What would you need to know to make this determination? (e) What concerns might need to be addressed regarding the waste lagoon?

Answers

Answer:

Explanation:

The solution of all the four parts is provided in the attached figures

Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The water and its container are heated to 70oC. Assuming no evaporation, what then will be the depth of the water column if the coefficient of thermal expansion for the glass is 3.8*10-6 mm/mm peroC ?

Answers

Answer:

[tex]\mathbf{h_2 =1021.9 \ mm}[/tex]

Explanation:

Given that :

The initial volume of water [tex]V_1[/tex] = 1000.00 mL = 1000000 mm³

The initial temperature of the water  [tex]T_1[/tex] = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water [tex]T_2[/tex] = 70° C

The coefficient of thermal expansion for the glass is  ∝ = [tex]3.8*10^{-6 } mm/mm \ per ^oC[/tex]

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature [tex]T_1 = 10 ^ 0C[/tex]  the density of the water is [tex]\rho = 999.7 \ kg/m^3[/tex]

At temperature [tex]T_2 = 70^0 C[/tex]  the density of the water is [tex]\rho = 977.8 \ kg/m^3[/tex]

The mass of the water is  [tex]\rho V = \rho _1 V_1 = \rho _2 V_2[/tex]

Thus; we can say [tex]\rho _1 V_1 = \rho _2 V_2[/tex];

⇒ [tex]999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2[/tex]

[tex]V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }[/tex]

[tex]V_2 = 1022.40 \ mL[/tex]

[tex]v_2 = 1022400 \ mm^3[/tex]

Thus, the volume of the water after heating to a required temperature of  [tex]70^0C[/tex] is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

[tex]V_1 = A_1 *h_1[/tex]

The area of the water before heating is:

[tex]A_1 = \dfrac{V_1}{h_1}[/tex]

[tex]A_1 = \dfrac{1000000}{1000}[/tex]

[tex]A_1 = 1000 \ mm^2[/tex]

The area of the heated water is :

[tex]A_2 = A_1 (1 + \Delta t \alpha )^2[/tex]

[tex]A_2 = A_1 (1 + (T_2-T_1) \alpha )^2[/tex]

[tex]A_2 = 1000 (1 + (70-10) 3.8*10^{-6} )^2[/tex]

[tex]A_2 = 1000.5 \ mm^2[/tex]

Finally, the depth of the heated hot water is:

[tex]h_2 = \dfrac{V_2}{A_2}[/tex]

[tex]h_2 = \dfrac{1022400}{1000.5}[/tex]

[tex]\mathbf{h_2 =1021.9 \ mm}[/tex]

Hence the depth of the heated hot  water is [tex]\mathbf{h_2 =1021.9 \ mm}[/tex]


A particle oscillates between the points x=40 mm and x=160 mm with
an acceleration a =
k(100 - x), where a and x are expressed in mm/s2 and
respectively, and k is a constant. The velocity of the particle is 18 mm/s when x = 100 mm
and is zero at both x = 40 mm and x = 160 mm. Determine (a) the value of k,
(b) the velocity when x = 120 mm.​

Answers

Answer:

(a) k = 0.09 s⁻¹

(b) The velocity= ± 16.97 mm/s

Explanation:

(a) Given that the acceleration = a = k(100 - x)

Therefore;

[tex]a = \dfrac{dv}{dt} = \dfrac{dv}{dx} \times \dfrac{dx}{dt} = \dfrac{dv}{dx} \times v = k(100 - x)[/tex]

When x = 40 mm, v = 0 mm/s hence;

[tex]\int\limits^v_0 {v } \, dv = \int\limits^x_{40} {k(100 - x)} \, dx[/tex]

[tex]\dfrac{1}{2} v^2 = k \cdot \left [100\cdot x-\frac{1}{2}\cdot x^{2} \right ]_{x}^{40}[/tex]

[tex]\dfrac{1}{2} v^2 = -\dfrac{ k\cdot \left (x^{2}-200\cdot x+6400 \right ) }{2}[/tex]

At x = 100 mm, v = 18 mm/s hence we have;

[tex]\dfrac{1}{2} 18^2 = -\dfrac{ k\cdot \left (100^{2}-200\times 100+6400 \right ) }{2} = 1800\cdot k[/tex]

[tex]\dfrac{1}{2} 18^2 =162 = 1800\cdot k[/tex]

k = 162/1800 = 9/100 = 0.09 s⁻¹

(b) When x = 120 mm, we have

[tex]\dfrac{1}{2} v^2 = -\dfrac{ 0.09\times \left (120^{2}-200\times 120+6400 \right ) }{2} = 144[/tex]

Therefore;

v² = 2 × 144 = 288

The velocity, v = √288 = ±12·√2 = ± 16.97 mm/s.

list everything wrong with 2020

Answers

Everything wrong with 2020 is WW3 that dump trump decided to start , Australia fires , Kobe passed away than Pop smoke :( corona virus got really big , quarantine started , riots & protesting started because of that dumb who’re racist cop ! Hope this helps

Answer:

George  Floyd (BLACK  LIFES  MATTER)

C O V I D - 19

Quarantine  

no sports

wearing a mask

and a whole lot of other stuff

Explanation:

Find the largest number. The process of finding the maximum value (i.e., the largest of a group of values) is used frequently in computer applications. For example, an app that determines the winner of a sales contest would input the number of units sold by each salesperson. The sales person who sells the most units wins the contest. Write pseudocode, then a C# app that inputs a series of 10 integers, then determines and displays the largest integer. Your app should use at least the following three variables:
Counter: Acounter to count to 10 (i.e., to keep track of how many nimbers have been input and to determine when all 10 numbers have been processed).
Number: The integer most recently input by the user.
Largest: The largest number found so far.

Answers

Answer:

See Explanation

Explanation:

Required

- Pseudocode to determine the largest of 10 numbers

- C# program to determine the largest of 10 numbers

The pseudocode and program makes use of a 1 dimensional array to accept input for the 10 numbers;

The largest of the 10 numbers is then saved in variable Largest and printed afterwards.

Pseudocode (Number lines are used for indentation to illustrate the program flow)

1. Start:

2. Declare Number as 1 dimensional array of 10 integers

3. Initialize: counter = 0

4. Do:

4.1 Display “Enter Number ”+(counter + 1)

4.2 Accept input for Number[counter]

4.3 While counter < 10

5. Initialize: Largest = Number[0]

6. Loop: i = 0 to 10

6.1 if Largest < Number[i] Then

6.2 Largest = Number[i]

6.3 End Loop:

7. Display “The largest input is “+Largest

8. Stop

C# Program (Console)

Comments are used for explanatory purpose

using System;

namespace ConsoleApplication1

{

   class Program

   {

       static void Main(string[] args)

       {

           int[] Number = new int[10];  // Declare array of 10 elements

           //Accept Input

           int counter = 0;

           while(counter<10)

           {

               Console.WriteLine("Enter Number " + (counter + 1)+": ");

               string var = Console.ReadLine();

               Number[counter] = Convert.ToInt32(var);

               counter++;                  

           }

           //Initialize largest to first element of the array

           int Largest = Number[0];

           //Determine Largest

           for(int i=0;i<10;i++)

           {

               if(Largest < Number[i])

               {

                   Largest = Number[i];

               }

           }

           //Print Largest

           Console.WriteLine("The largest input is "+ Largest);

           Console.ReadLine();

       }

   }

}

A cylinder of metal that is originally 450 mm tall and 50 mm in diameter is to be open-die upset forged to a final height of 100 mm. The strength coefficient is 230 MPa and the work hardening exponent is 0.15 while the coefficient of friction of the metal against the tool is 0.1. If the maximum force that the forging hammer can deliver is 3 MN, can the forging be completed

Answers

Answer:

Yes, the forging can be completed

Explanation:

Given h = 100 mm, ε = ㏑(450/100) = 1.504

[tex]Y_f = 230 \times 1.504^{0.15} = 244.52[/tex]

V = π·D²·L/4 = π × 50²×450/4 = 883,572.93 mm³

At h = 100 mm, A = V/h = 883,572.93 /100 = 8835.73 mm²

D = √(4·A/π) = 106.07 mm

[tex]K_f[/tex] = 1 + 0.4 × 0.1 × 106.07/100 = 1.042

F = 1.042 × 244.52 × 8835.73 = 2252199.386 N =2.25 MN

Hence the required force = 2.25 MN is less than the available force = 3 MN therefore, the forging can be completed.

A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected in series in order that the same current shall be supplied from 240 V, 50 Hz mains. Ignore the resistance of the inductor and calculate: i. the inductance of the inductor; ii. the impedance of the circuit; iii. the phase difference between the current and the applied voltage.

Answers

Answer:

(i) The inductance of the inductor is = 43.43 mH (ii) the impedance of the circuit is = 16∠58.61° Ω (iii) the phase difference for current and the voltage applied is Q = 58.61°

Explanation:

Solution

Given that:

I= 5 A

V = 125V

Resistance R= Not known yet

Thus

To find the resistance we have the following formula which is shown below:

R = V/I

=125/15

R =8.333Ω

Now,

Voltage = 240

Frequency = 50Hz

Current (I) remain at = 15A

Z= not known (impedance)

so,

To find the impedance we have the formula which is shown below:

Z = V/I =240/15

Z= 16Ω⇒ Z = R + jXL

Z = 8.333 + jXL = 16

Thus

√8.333² + XL² = 16²

8.333² + XL² = 16²

XL² = 186.561

XL = 13.658Ω

Now

We find the inductance of the Inductor and the impedance of the circuit.

(i) In solving for the inductance of the inductor, a formula is applied here, which is shown below:

L =  XL/w

=13.658/ 2π * 50

=13.658/314.15 = 0.043 = 43.43 mH

Note: w= 2πf

(ii) For the impedance of the circuit we have the following:

z = 8.333 + j 13.658

z = 16∠58.61° Ω

(iii) The next step is to find the phase difference between the applied voltage and current.

Q =  this is the voltage across the inductor in a series of resonant circuit.

Q can also be called the applied voltage

Thus,

Q is described as an Impedance angle

Therefore, Q = 58.81°

Liquid benzene and liquid n-hexane are blended to form a stream flowing at a rate of 1700 lbm/h. An on-line densitometer (an instrument used to determine density) indicates that the stream has a density of 0.810 g/mL. Using specific tractors from Table B.1, estimate the mass and volumetric feed rates of the two hydrocarbons to the mixing vessel (in U.S. customary units). State at least two assumptions required to obtain the estimate from the recommended date.

Answers

Let me think of that

Consider a series RC circuit at the left where C = 6 µ F, R = 2 MΩ, and ε = 20 V. You close the switch at t = 0. Find (a) the time constant for the circuit, (b) the half-life of the circuit, (c) the current at t = 0, (d) the voltage across the capacitor at t = 0, and (e) the voltage across the resistor after a very long time.

Answers

Answer:

(a) 12 seconds (b) t = 8.31 seconds (c) 10µ A (d) V = 20 V (e) V =0

Explanation:

Solution

Given that:

C = 6 µ which is = 6 * 10^ ⁻6

R = 2 MΩ, which is = 2 * 10^ 6

ε = 20 V

(a) When it is at the time constant we have the following:

λ = CR

= 6 * 10^ ⁻6 * 2 * 10^ 6

λ =12 seconds

(b) We solve for the half life of the circuit which is given below:

d₀ = d₀ [ 1- e ^ ⁺t/CR

d = decay mode]

d₀/2 =  d₀  1- e ^ ⁺t/12

2^⁻1 = e ^ ⁺t/12

Thus

t/12 ln 2

t = 12 * ln 2

t = 12 * 0.693

t = 8.31 seconds

(c) We find the current at t = 0

So,

I = d₀/dt

I = d₀/dt e ^ ⁺t/CR

= CE/CR e ^ ⁺t/CR

E/R e ^ ⁺t/CR

Thus,

at t = 0

I  E/R = 20/  2 * 10^ 6

= 10µ A

(d) We find the voltage across the capacitor at t = 0 which is shown below:

V = IR

= 10 * 10^ ⁻6 * 2 * 10^ 6

V = 20 V

(e)  We solve for he voltage across the resistor.

At t = 0

I = 0

V =0

What's the "most common" concern with using variable frequency drives (VFDs)? 1) carrier frequency 2) harmonic distortion 3) hertz modulation

Answers

Also I want the answer please

The common" concern with using variable frequency drives (VFDs) is C. hertz modulation.

What is variable frequency drive?

It should be noted that a variable frequency drive simply means a type of motor drive that us used in mechanical drive system.

In this case, common" concern with using variable frequency drives (VFDs) is hertz modulation

Learn more about frequency on:

brainly.com/question/6985885

#SPJ9

Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P

Answers

Answer:

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

Explanation:

The complete statement of this question is "Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P = 450 kN"

Each bolt is subjected to shear forces. In this case, safety factor is the ratio of the ultimate shear strength to maximum allowable shear stress. That is to say:

[tex]n = \frac{S_{uts}}{\tau_{max}}[/tex]

Where:

[tex]n[/tex] - Safety factor, dimensionless.

[tex]S_{uts}[/tex] - Ultimate shear strength, measured in pascals.

[tex]\tau_{max}[/tex] - Maximum allowable shear stress, measured in pascals.

The maximum allowable shear stress is consequently cleared and computed: ([tex]n = 4.2[/tex], [tex]S_{uts} = 320\times 10^{6}\,Pa[/tex])

[tex]\tau_{max} = \frac{S_{uts}}{n}[/tex]

[tex]\tau_{max} = \frac{320\times 10^{6}\,Pa}{4.2}[/tex]

[tex]\tau_{max} = 76.190\times 10^{6}\,Pa[/tex]

Since each bolt has a circular cross section area and assuming the shear stress is not distributed uniformly, shear stress is calculated by:

[tex]\tau_{max} = \frac{4}{3} \cdot \frac{V}{A}[/tex]

Where:

[tex]\tau_{max}[/tex] - Maximum allowable shear stress, measured in pascals.

[tex]V[/tex] - Shear force, measured in kilonewtons.

[tex]A[/tex] - Cross section area, measured in square meters.

As connection consist on five bolts, shear force is equal to a fifth of the applied load. That is:

[tex]V = \frac{P}{5}[/tex]

[tex]V = \frac{450\,kN}{5}[/tex]

[tex]V = 90\,kN[/tex]

The minimum allowable cross section area is cleared in the shearing stress equation:

[tex]A = \frac{4}{3}\cdot \frac{V}{\tau_{max}}[/tex]

If [tex]V = 90\,kN[/tex] and [tex]\tau_{max} = 76.190\times 10^{3}\,kPa[/tex], the minimum allowable cross section area is:

[tex]A = \frac{4}{3} \cdot \frac{90\,kN}{76.190\times 10^{3}\,kPa}[/tex]

[tex]A = 1.640\times 10^{-3}\,m^{2}[/tex]

The minimum allowable cross section area can be determined in terms of minimum allowable bolt diameter by means of this expression:

[tex]A = \frac{\pi}{4}\cdot D^{2}[/tex]

The diameter is now cleared and computed:

[tex]D = \sqrt{\frac{4}{\pi}\cdot A}[/tex]

[tex]D =\sqrt{\frac{4}{\pi}\cdot (1.640\times 10^{-3}\,m^{2})[/tex]

[tex]D = 0.0457\,m[/tex]

[tex]D = 45.7\,mm[/tex]

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

We have that the minimum allowable bolt diameter is mathematically given as

d = 26.65mm

From the question we are told

Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of Assuming P to be P = 425 kN.

Diameter

Generally the equation for the stress   is mathematically given as

[tex]\mu= 320/4.2 \\\\\mu= 76.190 N/mm^2[/tex]

Therefore

Force = Stress * area

Force = P/2

F= 425,000 N / 2 = 212,500 N

Hence area of each bolt is given as

212,500 = 76.190*( 5* area of each bolt)

area of each bolt = 557.815

Since

area of each bolt=\pi*d^2/4

\pi*d^2/4 = 557.815

d = 26.65mm

For more information on diameter visit

https://brainly.com/question/8552546

Caulking is recommended around the edges of partitions between apartments to... Group of answer choices reduce the need for trim. reduce sound transmission. reduce heat loss. increase the fire rating of the partition

Answers

Answer:

Reduce sound transmission.

Explanation:

A caulking is a flexible material used to seal joints, cracks or gaps formed between building materials and pipes against leakage.

Caulking is recommended around the edges of partitions between apartments to reduce sound transmission.

Hence, in the event that an individual notices that air or sound is gaining entrance into their apartment, a caulking can be used to mitigate this noise or unwanted sound.

The caulking when applied to the gap or edges of partitions between apartments would create a tight seal and block the flow or entry of air, thereby reducing sound transmission.

: Explain why testing can only detect the presence of errors, not their absence?

Answers

Answer:

The goal of the software is to observe the software behavior to meet its requirement expectation. In software engineering, validating software might be harder since client's expectation may be vague or unclear.

Explanation:

The force of T = 20 N is applied to the cord of negligible mass. Determine the angular velocity of the 20-kg wheel when it has rotated 4 revolutions starting from rest. The wheel has a radius of gyration of kO = 0.3 m.

Answers

Image of wheel is missing, so i attached it.

Answer:

ω = 14.95 rad/s

Explanation:

We are given;

Mass of wheel; m = 20kg

T = 20 N

k_o = 0.3 m

Since the wheel starts from rest, T1 = 0.

The mass moment of inertia of the wheel about point O is;

I_o = m(k_o)²

I_o = 20 * (0.3)²

I_o = 1.8 kg.m²

So, T2 = ½•I_o•ω²

T2 = ½ × 1.8 × ω²

T2 = 0.9ω²

Looking at the image of the wheel, it's clear that only T does the work.

Thus, distance is;

s_t = θr

Since 4 revolutions,

s_t = 4(2π) × 0.4

s_t = 3.2π

So, Energy expended = Force x Distance

Wt = T x s_t = 20 × 3.2π = 64π J

Using principle of work-energy, we have;

T1 + W = T2

Plugging in the relevant values, we have;

0 + 64π = 0.9ω²

0.9ω² = 64π

ω² = 64π/0.9

ω = √64π/0.9

ω = 14.95 rad/s

Scheduling can best be defined as the process used to determine:​

Answers

Answer:

Overall project duration

Explanation:

Scheduling can best be defined as the process used to determine a overall project duration.

A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the material is 240 MPa. A factor of safety of 2.5 is desired. The maximum permissible internal pressure is most nearly: 90 kPa 230 kPa 430 kPa D. 570 kPa csauteol psotolem here Pcr 8. A structural steel tube with a 203 mm x 203 mm square cross section has an average wall thickness of 6.35 mm. The tube resists a torque of 8 N m. The average shear flow is most nearly
A. 100 N/m
B. 200 N/m
C. 400 N/m
D. 800 N/m

Answers

Answer:

1) 2304 kPa

2) B. 200 N/m

Explanation:

The internal pressure of the of the tank  can be found from the following relations;

Resisting wall force F = p×(1/4·π·D²)

σ×A = p×(1/4·π·D²)

Where:

σ = Allowable stress of the tank

A = Area of the wall of the tank = π·D·t

t = Thickness of the tank = 15 mm. = 0.015 m

D = Diameter of the tank = 25 m

p = Maximum permissible internal pressure pressure

∴ σ×π·D·t = p×(1/4·π·D²)

p = 4×σ×t/D = 4 × 240 ×0.015/2.5 = 5.76 MPa

With a desired safety factor of 2.5, the permissible internal pressure = 5.76/2.5 = 2.304 MPa

2) The formula for average shear flow is given as follows;

[tex]q = \dfrac{T}{2 \times A_m}[/tex]

Where:

q = Average shear flow

T = Torque = 8 N·m

[tex]A_m[/tex] = Average area enclosed within tube

t = Thickness of tube = 6.35 mm = 0.00635 m

Side length of the square cross sectioned tube, s = 203 mm = 0.203 m

Average area enclosed within tube, [tex]A_m[/tex] = (s - t)² = (0.203 - 0.00635)² = 0.039 m²

[tex]\therefore q = \dfrac{8}{2 \times 0.039} = 206.9 \, N/m[/tex]

Hence the average shear flow is most nearly 200 N/m.

Following are the solution to the given question:

Calculating the allowable stress:

[tex]\to \sigma_{allow} = \frac{\sigma_y}{FS} \\\\[/tex]

              [tex]= \frac{240}{2.5} \\\\= 96\\\\[/tex]

Calculating the Thickness:

[tex]\to t =15\ mm = \frac{15\ }{1000}= 0.015\ m\\\\[/tex]

The stress in a spherical tank is defined as

[tex]\to \sigma = \frac{pD}{4t}\\\\\to 96 = \frac{p(25)}{4(0.015)}\\\\\to p = 0.2304\;\;MPa\\\\\to p = 230.4\;\;kPa\\\\\to p \approx 230\;\;kPa\\\\[/tex]

[tex]\bold{\to A= 203^2= 41209\ mm^2} \\\\[/tex]

Calculating the shear flow:

[tex]\to q=\frac{T}{2A}[/tex]

      [tex]=\frac{8}{2 \times 41209 \times 10^{-6}}\\\\=\frac{8}{0.082418}\\\\=97.066\\\\[/tex]

[tex]\to q=97 \approx 100 \ \frac{N}{m}\\[/tex]

Therefore, the final answer is "".

Learn more:

brainly.com/question/15744940

The basic behind equal driving is to

Answers

Follow traffic signs , Keep distance between cars , Be patient in traffic.

Other Questions
Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure or the temperature is excessive. Design a circuit for this application Output values below an amount Write a program that first gets a list of integers from input. The input begins with an integer indicating the number of integers that follow. Then, get the last value from the input, and output all integers less than or equal to that value. Ex: If the input is 5 50 60 140 200 75 100, the output is: For coding simplicity, follow every output value by a space, including the last one. Such functionality is common on sites like Amazon, where a user can filter results. LAB ACTIVITY 8.3.1: LAB: Output values below an amount 0 / 10 Submission Instructions These are the files to get you started. main.cpp Download these files Compile command g++ main.cpp -Wall -o a.out We will use this command to compile your code Identify the function of the italicized noun clause. Identify the function of the italicized noun clause. Cousin Jake's goal, that he run the mile in less than four minutes, will require intense discipline and training to be achieveable. a)subject b)direct object c)predicate noun d)object of a preposition e)appositive Tell me something creative about yourself A large rectangle is made up of 3 smaller identical rectangles, the perimeter of one small rectangle is 21cm. What is the perimeter of the large rectangle. Somebody Help Me With This Question! A machine is programmed to make a horizontal cut alongthe x-axis, trimming the sides of the satellite dish. What isthe resulting width of the satellite dish, in feet? a bus travels at a speed of 80km per hour . what is the distance it travels by 15 mins. PLEASE HELP In two or more complete sentences, compare the number of x-intercepts in the graph of f(x) = x2 to the number of x-intercepts in the graph of g(x) = (x-2)^2 -3. Be sure to include the transformations that occurred between the parent function f(x) and its image g(x). Which adverb modifies another adverb? The distance around the edge of a circular pond is 88 m. The radius, inmetres. 19 which branch of the government makes laws? briefly explain one important difference between the economies of british colonies in the South and New England by 1750. Can I get help with this? Help me please the questions are in the picture!!! THX MARK U AS BRAINIEST Find the distance between the given points. Enter square roots using "sqrt" or round to the nearest 10th. (2, -6) and (5, -8) Carole's age is five times Joe's age. The sum of their ages is 18. How old are Carole and Joe? Which of the following is Tj length of GF given that figure DEFG is parallelogram?Plz help Solve the equation 12 + 2x = 16 On January 1, 2019, Nash Corporation granted 9,600 options to key executives. Each option allows the executive to purchase one share of Nashs $5 par value common stock at a price of $21 per share. The options were exercisable within a 2-year period beginning January 1, 2021, if the grantee is still employed by the company at the time of the exercise. On the grant date, Nashs stock was trading at $24 per share, and a fair value option-pricing model determines total compensation to be $438,000.On May 1, 2021, 7,440 options were exercised when the market price of Culvers stock was $30 per share. The remaining options lapsed in 2023 because executives decided not to exercise their options. Prepare the necessary journal entries related to the stock option plan for the years 2019 through 2023.