The function h(t) = -4.92f^2 + 17.69f + 575 is used to model the height of an object being tossed from a tall building, where h(t) is the height in meters and t is the time in seconds. What are the domain and range?

Answers

Answer 1

Answer:

rounded to 3 decimal places ...

domain: [0, 12.757]range: [0, 590.901]

Step-by-step explanation:

The function can be put into vertex form:

  h(t) = -4.92(t -(1769/984))^2 +575 +4.92(1769/984)^2

  h(t) ≈ -4.92(t -1.79776)^2 +590.90122

The value of h(t) is zero for ...

  t = √(590.90122/4.92) +1.79776 ≈ 12.75686

For practical purposes, the domain of the function is those values of t between the time the object is tossed and the time it hits the ground. That is, the domain is ...

  0 ≤ t ≤ 12.75686

The range is the set of useful vertical heights, so extends from 0 to the maximum height, given by the vertex.

The range is 0 ≤ h(t) ≤ 590.90122.

_____

Alternate interpretation of the question

The function h(t) is defined for all values of t, so that could be considered the domain.

The function h(t) only gives values less than its vertex value, so the range could be considered to extend from negative infinity to that maximum.

The Function H(t) = -4.92f^2 + 17.69f + 575 Is Used To Model The Height Of An Object Being Tossed From

Related Questions

A tree casts an 8-foot shadow on the ground. The length from the tip of the shadow to the top of the tree is 17 feet. What is the height of the tree?

Answers

Answer:

Height of tree = 15 ft

Step-by-step explanation:

Given:

Length of shadow (Base) = 8 ft

Length from the tip to top of the tree (Hypotenues) = 17 ft

Find:

Height of tree = ?

Computation:

Using Pythagoras theorem:

[tex]Height\ of\ tree = \sqrt{Hypotenues^2 - base^2} \\\\Height\ of\ tree = \sqrt{17^2 - 8^2} \\\\Height\ of\ tree = \sqrt{289-64}\\\\Height\ of\ tree = \sqrt{225}\\\\ Height\ of\ tree =15[/tex]

Height of tree = 15 ft

Answer:

The answer is 15 feet from the ground to the top of the tree.

Step-by-step explanation:

Multiply or divide as indicated x^10/x^4

Answers

Answer:

X^6

Step-by-step explanation:

What is the difference? Negative 6 minus (11)

Answers

Answer:

-17

Step-by-step explanation:

-6-11=-17

Answer:

the answer is -17

Step-by-step explanation:

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

[tex]\sqrt{-6} \sqrt{-384}=\sqrt{(-6)(-384)}=\sqrt{2304}=48\\ a=48\\b=0[/tex]

or

[tex]a=-48\\b=0[/tex]

both solutions are correct because root square has two solutions, one positive and one negative.

Answer:

a= -48

b=0

Step-by-step explanation:

[tex]\sqrt[]{-6} = i\sqrt{6}[/tex]

[tex]\sqrt{-384} =i\sqrt{384}[/tex]

[tex](i\sqrt{6} )(i\sqrt{384} )[/tex]

[tex]i^{2} \sqrt{2304}[/tex]

(-1)(48) = -48

a + bi

a= -48

b= 0

Given the following diagram, are and opposite rays? yes no

Answers

Answer:

Where is the diagram?

Step-by-step explanation:

Answer:

OC and OE are apposite rays so the Answer is yes

Really in need of help :( please !

Answers

Answer:

A

Step-by-step explanation:

(2,1) - only one in the table. Remember (x,y)

Option A Is the answer

In 2014, 2.756 billion dollars of e-cigarettes were sold worldwide. Fill in the table with the 2014 sales amount written in millions of dollars.

Answers

Answer:

  $2756 million

Step-by-step explanation:

  2.756×10⁹ = 2756×10⁶

Sales in 2014 were $2756 million.

_____

Comment on the question

In the US, a billion is 1000 million. In some other parts of the world, a billion is a million million. This sort of question can be ambiguous.

Solve x2 - 4x - 7 = 0 by completing the square. What are the solutions?

Answers

Answer:

[tex]x=2+\sqrt{11},\:x=2-\sqrt{11}[/tex]

Step-by-step explanation:

[tex]x^2-4x-7=0\\\mathrm{Solve\:with\:the\:quadratic\:formula}\\Quadratic\:Equation\:Formula\\\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\\mathrm{For\:}\quad a=1,\:b=-4,\:c=-7:\quad x_{1,\:2}=\frac{-\left(-4\right)\pm \sqrt{\left(-4\right)^2-4\cdot \:1\left(-7\right)}}{2\cdot \:1}\\x=\frac{-\left(-4\right)+\sqrt{\left(-4\right)^2-4\cdot \:1\left(-7\right)}}{2\cdot \:1}:\quad 2+\sqrt{11}[/tex]

[tex]x=\frac{-\left(-4\right)-\sqrt{\left(-4\right)^2-4\cdot \:1\left(-7\right)}}{2\cdot \:1}:\quad 2-\sqrt{11}\\\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}\\x=2+\sqrt{11},\:x=2-\sqrt{11}[/tex]

A newspaper posted this question on its​ web "How often do you seek medical information​ online?" Of 1072 Internet users who chose to​ respond, 38% of them responded with​ "frequently." What term is used to describe this type of survey in which the people surveyed consist of those who decided to​ respond? What is wrong with this type of sampling​ method? What term is used to describe this type of​ survey? Select all that apply.

What term is used to describe this type of survey in which the people surveyed consist of those who decided to​ respond?

a. The respondents are a census.
b. The respondents are a population.
c. The respondents are a voluntary response sample.
d. The respondents are a self-selected sample.

What is wrong with this type of sampling​ method?

a. The survey question is "loaded," or intentionally worded to elicit a desired response.
b. It is too expensive.
c. Many people may choose not to respond to the survey.
d. Responses may not reflect the opinions of the general population.
e. It is too time consuming

Answers

Answer:

1. Option c

2. Option d

Step-by-step explanation:

This type of survey is includes a sample made up of voluntary responses. People only choose to or do not choose to respond.

This type of sampling method is most of the time unbelievable because generally only people with strong opinions about this particular questions will respond and it is usually towards the same direction as the question and this might not reflect the opinion of the whole population making the survey biased.

Part A: The respondents are a voluntary response sample (Option C)

Part B: Responses may not reflect the opinions of the general population (Option D)

The total number of internet users = 1072

Percentage of the total number of people that chose to respond = 38%

Note that this survey does not compel all the population to respond to the survey. Responses are gotten from voluntary respondents.

Also note that a voluntary response sample is a sample that consists of participants who chose to participate in a sample group voluntarily.

In this type of survey, the people who decided to provide voluntary responses to the survey are called voluntary response samples

The percentage of those that chose to respond to this survey (38%) is less than half of the total population. This obviously shows that the responses may not reflect the opinions of the general population

Learn more on sampling methods here: https://brainly.com/question/16587013

What letter completes the puzzle? The answer is probably easy for you guys but I don't understand how the letters go along with the puzzle. Thank you!

Answers

Answer:

the answer is E the number at the top tells you which position it falls under in the alphabet

A glucose solution is administered intravenously into the bloodstream at a constant rate r. As the glucose is added, it is converted into other substances and removed from the bloodstream at a rate that is proportional to the concentration at that time. Thus a model for the concentration C = C(t) of the glucose solution in the bloodstream is dC/dt = r - kC where k is a positive constant. Assuming that C0 < r/k, find lim t→[infinity] C(t) and interpret your answer

Answers

Answer:

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}[/tex]

[tex]C(t) =\dfrac{ r}{k}- e^{ -kt}[/tex]   we can conclude that the  function is an increasing function.

Step-by-step explanation:

Given that:

[tex]\dfrac{dC}{dt}= r-kC[/tex]

[tex]\dfrac{dC}{r-kC}= dt[/tex]

By taking integration on both sides ;

[tex]\int\limits\dfrac{dC}{r-kC}= \int\limits \ dt[/tex]

[tex]- \dfrac{1}{k}In (r-kC)= t +D[/tex]

[tex]In(r-kC) = -kt - kD \\ \\ r- kC = e^{-kt - kD} \\ \\ r- kC = e^{-kt} e^{ - kD} \\ \\r- kC = Ae^{-kt} \\ \\ kC = r - Ae^{-kt} \\ \\ C = \dfrac{r}{k} - \dfrac{A}{k}e ^{-kt} \\ \\[/tex]

[tex]C(t) =\frac{ r}{k} - \frac{A}{k}e^{ -kt}[/tex]

where;

A is an integration constant

In order to determine A, we have C(0) = C0

[tex]C(0) =\frac{ r}{k} - \frac{A}{k}e^{0}[/tex]

[tex]C_0 =\frac{r}{k}- \frac{A}{k}[/tex]

[tex]C_{0} =\frac{ r-A}{k}[/tex]

[tex]kC_{0} =r-A[/tex]

[tex]A =r-kC_{0}[/tex]

Thus:

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}[/tex]

b ) Assuming that C0 < r/k, find lim t→[infinity] C(t) and interpret your answer

[tex]C_{0} < \lim_{t \to \infty }C(t)[/tex]

[tex]C_0 < \dfrac{r}{k}[/tex]

[tex]kC_0 <r[/tex]

The equation for C(t) can therefore be re-written as :

[tex]C(t) =\dfrac{ r}{k} - \left (\dfrac{r-kC_{0}}{k} \right )e^{ -kt}[/tex]

[tex]C(t) =\dfrac{ r}{k} - \left (+ve \right )e^{ -kt} \\ \\C(t) =\dfrac{ r}{k}- e^{ -kt}[/tex]

Thus; we can conclude that the above function is an increasing function.

The result of which expression will best estimate the actual product of (-4/5)(3/5)(-6/7)(5/6)​

Answers

Answer:

[tex]\frac{12}{35}[/tex]

Step-by-step explanation:

[tex]\frac{-4}{5} * \frac{3}{5} * (\frac{-6}{7} ) * \frac{5}{6}[/tex]

[tex]\frac{(-4) * 3}{5 * 1} * \frac{(-1)}{7} \\\\\frac{12}{35}[/tex]

A rectangle has an area of 96 cm2 The length of the rectangle is 4 cm longer than the width. Work out the length and width of the rectangle.

Answers

area of a rectangle: 2(L+W)
length: 4+W

Area: 2(4+W) + 2W = 96
8+2W+2W = 96
8+4W = 96
4W = 88
W= 22cm

Calculate for length: 2L + 2(22) = 96
2L + 44 = 96
2L = 52
L = 26cm

• The length is 26cm and width is 22 cm.

Please help . I’ll mark you as brainliest if correct! Only the one marked with an X is wrong . I don’t get it

Answers

Answer:

(x+7)² = 9

Step-by-step explanation:

x² + 14x + 40 = 0

(x² + 14x) + 40 = 0  

(x² +14x +49) + 40 - 49 = 0

(x+7)² - 9 = 0

(x+7)² = 9

Hope this helps!

Answer:

(x+7)² = 9

Step-by-step explanation:

Match each linear equation with the name of its form.
y=-x+8
slope-intercept form
2x - 5y = 9
standard form
y + 6 = -3(x - 1)
point-slope form

Answers

Answer:

y + 6 = -3(x - 1) - Point Slope

y=-x+8 - Slope Intercept

2x - 5y = 9 - Standard

Step-by-step explanation:

Point Slope Form is: [tex]y-y_1=m(x-x_1)[/tex]

y + 6 = -3(x - 1) would be in point slope form, where the point is (1,-6) and the slope is '-3'.

Slope-intercept form is: [tex]y=mx+b[/tex]

y=-x+8 is in slope intercept form, where '-1' is the slope and '8' is the y-intercept.

This only leaves 2x - 5y = 9, which is in standard form.

All the correct linear equation with the name of its form are,

1) y = -x + 8   =   Slope-intercept form

2) 2x - 5y = 9  =  Standard form

3) y + 6 = -3(x - 1)  =  Point-slope form

What is an expression?

Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

We have to given that;

All the expressions are,

1) y = -x + 8  

2) 2x - 5y = 9  

3) y + 6 = -3(x - 1)

Now, All the correct linear equation with the name of its form are,

1) y = -x + 8   =   Slope-intercept form

2) 2x - 5y = 9  =  Standard form

3) y + 6 = -3(x - 1)  =  Point-slope form

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ2

Indicate in standard form equation of the line passing through the given 

Answers

Answer:

x - 3y= -14

Step-by-step explanation:

Slope is rise over run

m = (6-5)/(4-1) = 1/3

we write in slope-intercept form:

y = 1/3x + b

solve for b by plugging in either point

i'm going to plug in H

5 = 1/3 + b

b = 14/3

we get our equation

y = 1/3x + 14/3

now re-write it in standard form

-1/3x + y = 14/3

make it pretty

x - 3y = -14

A diagonal of a cube measures 30 inches. The diagonal of a face measures StartRoot 600 EndRoot inches.


In inches, what is the length of an edge of the cube? Round the answer to the nearest tenth.

Answers

Answer:

17.3 Inches

Step-by-step explanation:

Given that the diagonal of a cube = 30 inches

For a cube of side length s, Length of its diagonal [tex]=s\sqrt{3}[/tex]

Therefore:

[tex]s\sqrt{3}=30\\$Divide both sides by \sqrt{3}\\s=30 \div \sqrt{3}\\s=17.3$ inches (to the nearest tenth.)[/tex]

Side Length of the cube is 17.3 Inches.

Answer:

17.3

Step-by-step explanation:

Edge 2020

Classify the following triangle .check all that apply

Answers

Answer:

acute and scalene

Step-by-step explanation:

Answer:no entiendo esta en ingles

Step-by-step explanation:

Solve the system if possible by using Cramer's rule. If Cramer's rule does not apply, solve the system by using another method. Write all numbers as integers or simplified fractions.
7x + 6y + 4z = 10
3x + 3y + 3z - 1
4x + 4y + 4z = 2
Part: 0/2
Part 1 of 2
Evaluate the determinants D, Dx Dy and Dz.
D=
Dx=
Dy=
Dz=

Answers

Answer:

D = 0 , Dx = 4 , Dy = -6 , Dz = 2

Step-by-step explanation:

As per cramer's rule,

D = |   7    6    4  |  = 0

      |   3    3    3  |

      |   4    4    4  |

Dx =  |  10    6    4  | = 4

        |   1    3    3    |

        |   2    4    4   |

Dy = |   7    10    4  | = -6

       |   3    1     3   |

       |   4    2    4   |

Dz =  |  7    6    10 | = 2

        |   3    3    1   |

        |   4    4    2  |

   

A typical classroom is a rectangle with dimensions of 20 feet wide by 25 feet long, and the area needed for each person in the room is approximately 28 square feet, what fraction of the total area in a classroom is needed for each person? What is the largest number of people that would fit in an average sized classroom while practicing good social distancing?

Answers

Answer:

A fraction of 0.056 of the classroom is needed for each student.

A typical classroom can acomodate up to 17 persons while practicing good social distancing.

Step-by-step explanation:

We have a classroom that is a recatngle with dimensions of 20 feet wide by 25 feet long.

The total area of the classroom is:

[tex]A=w\cdot l=20\cdot25=500[/tex]

As the area of the classromm is 500 square feet and we need 28 square feet for each student, the fraction that is needed for each student is:

[tex]f=\dfrac{A_{\text{student}}}{A_{\text{classroom}}}=\dfrac{28}{500}=0.056[/tex]

A fraction of 0.056 of the classroom is needed for each student.

The largest number of students that would fit in an average sized classroom while practicing good social distancing can be calculated dividing the area of the classroom by the area needed for each student. This is equal to the inverse of the fraction calculated previously:

[tex]n=\dfrac{1}{f}=\dfrac{1}{0.056}\approx17.86[/tex]

A typical classroom can acomodate up to 17 persons while practicing good social distancing.

the sum of the three numbers in 2003,two of the numbers are 814 and 519 what is the third number​

Answers

Answer:

670

Step-by-step explanation:

2003-814=1189

1189-519=670

Answer: The third number is 670.

Step-by-step explanation:

The sum means three numbers being added up is equal to 2003 so give two of those numbers you have to add them up and subtract it from 2003 to find the third number.

814 + 519 + x = 2003   where x is the third number

1333 + x = 2003

-1333          -1333  

  x = 670   So the third number is 670

Check:  

 814 + 670 + 519 = 2003

     2003 = 2003   so yes again 670 is the third number.

Is​ f(x) continuous at x equals 4​? Why or why​ not? A. ​No, f(x) is not continuous at x equals 4 because ModifyingBelow lim With x right arrow 4 f (x )does not exist. B. ​Yes, f(x) is continuous at x equals 4 because f (4 )exists. C. ​No, f(x) is not continuous at x equals 4 because f (4 )is undefined. D. ​Yes, f(x) is continuous at x equals 4 because ModifyingBelow lim With x right arrow 4 f (x )equals f (4 ).

Answers

Corrected Question

Is the function given by:

[tex]f(x)=\left\{\begin{array}{ccc}\frac{1}{4}x+1 &x\leq 4\\4x-11&x>4\end{array}\right[/tex] ​

continuous at x=4​? Why or why​ not? Choose the correct answer below.

Answer:

(D) ​Yes, f(x) is continuous at x = 4 because [tex]Lim_{x \to 4}f(x)=f(4)[/tex]

Step-by-step explanation:

Given the function:

[tex]f(x)=\left\{\begin{array}{ccc}\frac{1}{4}x+1 &x\leq 4\\4x-11&x>4\end{array}\right[/tex]

A function to be continuous  at some value c in its domain if the following condition holds:

f(c) exists and is defined.[tex]Lim_{x \to c}$ f(x)[/tex] exists. [tex]f(c)=Lim_{x \to c}$ f(x)[/tex]

At x=4

[tex]f(4)=\dfrac{1}{4}*4+1=2[/tex][tex]Lim_{x \to 4}f(x)=2[/tex]

Therefore: [tex]Lim_{x \to 4}f(x)=f(4)=2[/tex]

By the above, the function satisfies the condition for continuity.

The correct option is D.

The total energy need during pregnancy is normally distributed, with a mean of 2600 kcal/day and a standard deviation of 50 kcal/day. Include your Normal curve for all parts! a) [4 pts] If one pregnancy is randomly selected, find the probability that the total energy need is more than 2650 kcal/day. b) [4 pts] The middle 30% of total energy need during pregnancy are between what values? c) [4 pts] What is the probability that a random sample of 20 pregnant women has a mean energy need of more than 2625 kcal/day?

Answers

Answer:

a) 0.3085

b) 2574

c) 0.0125

Step-by-step explanation:

mean (μ) = 2600 kcal/day and a standard deviation (σ) = 50 kcal/day

a) The z score is given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

[tex]z=\frac{x-\mu}{\sigma}=\frac{2650-2600}{50}=1[/tex]

From the normal distribution table, P(x > 2650) = P(z > 1) = 1 - P(z < 1) = 1 - 0.8413 = 0.1587

b) A probability of 30% corresponds with a z score of -0.52

[tex]z=\frac{x-\mu}{\sigma}\\-0.52=\frac{x-2600}{50} \\x-2600=-26\\x=2600-26\\x=2574[/tex]

c) For a sampling distribution of sample mean, the standard deviation is [tex]\frac{\sigma}{\sqrt{n} }[/tex]

The z score is given by:

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} }}[/tex]

n = 20

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} }}=\frac{2625-2600}{\frac{50}{\sqrt{20} }}=2.24[/tex]

From the normal distribution table, P(x > 2625) = P(z > 2.24) = 1 - P(z < 2.24) = 1 - 0.9875 = 0.0125

What single decimal multiplier would you use to increase by 7% followed by a 4% decrease?

Answers

Answer: To increase an amount by 7%, you would want to use 1.07 as the multiplier. To decrease it, you would use 0.93

Step-by-step explanation:

The probability of drawing a pearl bead out of a bag of mixed beads is 2/3. What is the probability of drawing a bead which is not a pearl?

Answers

Answer:

[tex]\frac{1}{3}[/tex] probability of drawing a bead which is not a pearl

Step-by-step explanation:

For each bead that you draw, there are only two possible outcomes. Either it is a pearl bead, or it is not. The sum of these probabilities = 100% = 1.

So

2/3 probability of drawing a pearl bead.

p probability of drawing a non pearl bead.

What is the probability of drawing a bead which is not a pearl?

[tex]p + \frac{2}{3} = 1[/tex]

[tex]p = 1 - \frac{2}{3}[/tex]

[tex]p = \frac{3*1 - 2}{3}[/tex]

[tex]p = \frac{1}{3}[/tex]

[tex]\frac{1}{3}[/tex] probability of drawing a bead which is not a pearl

The method of Problem 20 can be extended to second order equations with variable coefficients. If y1 is a known nonvanishing solution of y′′ + p(t)y′ + q(t)y = 0, show that a second solution y2 satisfies (y2 /y1 )′ = W (y1 , y2 )/y21 , where W (y1 , y2 ) is the Wronskian of y1 and y2 . Then use Abel’s formula [Eq. (23) of Section 3.2] to determine y2 .

Answers

Answer:24y

Step-by-step explanation:

x/x-2+x-1/x+1=-1

I'm having trouble figuring this out, an explanation on how to solve would suffice.

Answers

Answer:

x = sqrt(5)/2 - 1/2 or x = -1/2 - sqrt(5)/2

Step-by-step explanation:

Solve for x over the real numbers:

x - 2 + x/x + 1 - 1/x = -1

x - 2 + x/x + 1 - 1/x = x - 1/x:

x - 1/x = -1

Bring x - 1/x together using the common denominator x:

(x^2 - 1)/x = -1

Multiply both sides by x:

x^2 - 1 = -x

Add x to both sides:

x^2 + x - 1 = 0

Add 1 to both sides:

x^2 + x = 1

Add 1/4 to both sides:

x^2 + x + 1/4 = 5/4

Write the left hand side as a square:

(x + 1/2)^2 = 5/4

Take the square root of both sides:

x + 1/2 = sqrt(5)/2 or x + 1/2 = -sqrt(5)/2

Subtract 1/2 from both sides:

x = sqrt(5)/2 - 1/2 or x + 1/2 = -sqrt(5)/2

Subtract 1/2 from both sides:

Answer: x = sqrt(5)/2 - 1/2 or x = -1/2 - sqrt(5)/2

A design engineer wants to construct a sample mean chart for controlling the service life of a halogen headlamp his company produces. He knows from numerous previous samples that when this service life is in control it is normally distributed with a mean of 500 hours and a standard deviation of 20 hours. On three recent production batches, he tested service life on random samples of four headlamps, with these results: Sample Service Life (hours) 1 495 500 505 500 2 525 515 505 515 3 470 480 460 470 What is the mean of the sampling distribution of sample means when the service life is in control

Answers

Answer:

[tex]$ \text {Sample mean} = \bar{x} = \mu = 500 \: hours $[/tex]

Step-by-step explanation:

What is Normal Distribution?

We are given a Normal Distribution, which is a continuous probability distribution and is symmetrical around the mean. The shape of this distribution is like a bell curve and most of the data is clustered around the mean. The area under this bell shaped curve represents the probability.  

For the given scenario, it is known from numerous previous samples that when this service life is in control it is normally distributed with a mean of 500 hours and a standard deviation of 20 hours.

On three recent production batches, he tested service life on random samples of four headlamps.

We are asked to find the mean of the sampling distribution of sample means when the service life is in control.

Since we know that the population is normally distributed and a random sample is taken from the population then the mean of the sampling distribution of sample means would be equal to the population mean that is 500 hours.

[tex]$ \text {Sample mean} = \bar{x} = \mu = 500 \: hours $[/tex]

Whereas the standard deviation of the sampling distribution of sample means would be

[tex]\text {standard deviation} = s = \frac{\sigma}{\sqrt{n} } \\\\[/tex]

Where n is the sample size and σ is the population standard deviation.

[tex]\text {standard deviation} = s = \frac{20}{\sqrt{4} } \\\\ \text {standard deviation} = s = \frac{20}{2 } \\\\ \text {standard deviation} = s = 10 \: hours \\\\[/tex]


A sample of 500 nursing applications included 60
from men. Find the 90% confielence interval
for the
true proportion of men who applied to the nursing
program.​

Answers

Answer:

90% confidence interval for the true proportion of men who applied to the nursing   program.​

(0.09674 ,0.14326)

Step-by-step explanation:

Explanation:-

Given sample size 'n' = 500

sample proportion

                [tex]p = \frac{x}{n} = \frac{60}{500} = 0.12[/tex]

Level of significance ∝= 0.90 or 0.10

90% confidence interval for the true proportion of men who applied to the nursing   program.​

[tex](p - Z_{\frac{0.10}{2} } \sqrt{\frac{p(1-p)}{n} } , p + Z_{\frac{0.10}{2} } \sqrt{\frac{p(1-p)}{n} })[/tex]

[tex](p - Z_{0.05 } \sqrt{\frac{p(1-p)}{n} } , p + Z_{0.05 } \sqrt{\frac{p(1-p)}{n} })[/tex]

[tex](0.12 - 1.645 \sqrt{\frac{0.12(1-0.12)}{500} } , 0.12 + 1.645 \sqrt{\frac{0.12(1-0.12)}{500} })[/tex]

On calculation , we get

( 0.12 - 0.02326 , 0.12 + 0.02326)

(0.09674 ,0.14326)

Final answer:-

90% confidence interval for the true proportion of men who applied to the nursing   program.​

(0.09674 ,0.14326)

Find the equation for the plane through the points Upper P 0 (5 comma 4 comma 5 )​, Upper Q 0 (negative 5 comma negative 1 comma negative 4 )​, and Upper R 0 (negative 2 comma 1 comma negative 2 ). The equation of the plane is nothing.

Answers

Answer:

The equation of the plane is

8(x - 5) - 7(y - 4) - 5(z - 5) = 0

8x - 7y - 5z + 13 = 0

Step-by-step explanation:

Given 3 points, P(x₁, y₁, z₁), Q(x₂, y₂, z₂), and R(x₃, y₃, z₃).

We can calculate the equation of the plane through those points as

a(x - x₀) + b(y - y₀) + c(z - z₀) = 0, where (x₀, y₀, z₀) are the coordinates of any one of the points P, Q, or R, and <a,b,c> is a vector perpendicular to the plane.

The vector perpendicular to the plane is obtained by writing vector PQ and PR and taking the cross or vector product.

For this question,

P = (5, 4, 5)

Q = (-5, -1, -4)

R = (-2, 1, -2)

PQ = (-5, -1, -4) - (5, 4, 5) = (-10, -5, -9)

= (-10î - 5ĵ - 9ķ)

PR = (-2, 1, -2) - (5, 4, 5) = (-7, -3, -7)

= (-7î - 3ĵ - 7ķ)

PQ × PR is then

| î ĵ ķ |

|-10 -5 -9|

|-7 -3 -7|

= î [(-5×-7) - (-9×-3)] - ĵ [(-10×-7) - (-9×-7)] + ķ [(-10×-3) - (-7×-5)]

= î (35 - 27) - ĵ (70 - 63) + ķ (30 - 35)

= 8î - 7ĵ - 5ķ

Hence, (a, b, c) = (8, -7, -5)

And using point P as (x₀, y₀, z₀) = (5, 4, 5)

The equation of the plane is

a(x - x₀) + b(y - y₀) + c(z - z₀) = 0

8(x - 5) - 7(y - 4) - 5(z - 5) = 0

8x - 40 - 7y + 28 - 5z + 25 = 0

8x - 7y - 5z = 40 - 28 - 25 = -13

8x - 7y - 5z + 13 = 0

Hope this Helps!!!

Other Questions
can someone help with this? Which of the following figures has a pentagon as its base? A cube B pentagonal prism C triangular prism D rectangular prism A machine has four components, A, B, C, and D, set up in such a manner that all four parts must work for the machine to work properly. Assume the probability of one part working does not depend on the functionality of any of the other parts. Also assume that the probabilities of the individual parts working are P(A) = P(B) = 0.93, P(C) = 0.95, and P(D) = 0.92. Find the probability that the machine works properly.A) 0.8128B) 0.2441C) 0.8217D) 0.7559 The following are reasons why many organizations are trying to reduce and right-size their information foot-print by using data governance techniques like data cleansing and de-duplication:A. None of the above B. reduce risk of systems failures due to overloading C. improve data quality and reduce redundancies, reduce increased and staggering storage management costs, D. Both A and B Which choice is equivalent to the fraction below Which of the following is a rational function? 30 points !!!please help is this right??? A man in San Rafael County was discovered committing workers' compensation fraud. He had been observed working while at the same time receiving disability benefits. Surveillance showed the man working at an automobile auction. The investigator interviewed the owner of the auction and found that the claimant was being paid $200 per week in cash for washing vehicles and performing other shop tasks. Surveillance video showed the man carrying 25-pound bags of pet food, loading boxes, and rummaging through a trash dumpster. Obviously, he was not hurt very badly. 1. Was surveillance the proper method to use in this case? Why? 2. What are some restrictions to be careful about in conducting surveillance? In ABC, mA = 46, mB = 105, and c = 19.8. Find a to the nearest tenth. Which expression is equivalent to 2 (5) Superscript 4?2 times 5 times 42 times 5 times 5 times 5 times 52 times 4 times 4 times 4 times 4 times 410 times 10 times 10 times 10 Sarah's Soothing Diapers, Inc. and Orville's Odorless Diapers, Inc. are duopolists, who have agreed to collude. Orville has decided that he will comply with the collusive agreement as long as Sarah cooperated in the previous period. But if Sarah cheated in the previous period, Orville will punish Sarah by cheating in the current period. Orville's strategy is referred to as a When there is unequal sharing between two atoms of the electrons in a bond, whichtype of bond is it? Now that you have completed your oral presentation assignment and submitted it, reflect on the strengths and challenges in creating and delivering your presentation. Also, outline how you will build on this experience as you move forward in your academic and professional career. What is the difference between a heart attack and cardiac arrest?How do you determine if a bandage is too tight on the arm of an unresponsive victim?When shock occurs, how does the body prioritize the need for blood?, why?Each question needs to be 3+ sentences Look at the following mutation: AUG-GUC-CCU-AAA AUG-AGU-CCC-UAA-A. The base A was inserted following the start codon AUG. Describe how this mutation affects the encoded amino acid sequence. which of the following is not considered a form of mediaMapsnewspapersbilboardsinternet A triangle with side lengths is 5,5,8 is what type of triangle If the temperature outside is 297 what is this temperature in degrees celsius tell me about who........ (world Health organization) hear are the first for terms of another sequence 6 11 16 21 wright the expression for the nth term of this sequence