The density of the gas is 0.0340 g/L, moles of gas in the bulb is 0.00124 mol and apparent molar mass is 111.3 g/mol.
How to calculate density, moles and molar mass?To determine the density of the gas, use the ideal gas law:
PV = nRT
where P = pressure, V = volume, n = number of moles, R = gas constant, and T = temperature.
Since the volume and temperature are constant:
(P/n) = constant
Therefore, the density (ρ) of the gas is given by:
ρ = (m-m₀)/V = (Δm)/V
where m = mass of the bulb filled with the gas, m₀ = mass of the evacuated bulb, and Δm = m - m₀ is the mass of the gas.
Substituting the given values:
Δm = 22.651 g - 22.513 g = 0.138 g
V = 4.050 L
ρ = 0.138 g / 4.050 L = 0.0340 g/L
To find the number of moles of gas in the bulb, use the equation:
n = PV/RT
Substituting the given values:
n = (0.0250 atm)(4.050 L) / (0.0821 L·atm/mol·K)(289.2 K) = 0.00124 mol
Finally, to find the apparent molar mass of the gas, use the equation:
M = m/n
where M = molar mass of the gas and m = mass of the gas.
Substituting the given values:
M = 0.138 g / 0.00124 mol = 111.3 g/mol
Therefore, the density of the gas is 0.0340 g/L, there are 0.00124 mol of gas in the bulb, and the apparent molar mass of the gas is 111.3 g/mol.
Find out more on molar mass here: https://brainly.com/question/31600958
#SPJ1
A solution has [H+] = 1.39x10^-6 M. What is the pH?
Answer:
the pH of the solution is approximately 5.857.
Explanation:
The pH of a solution can be calculated using the formula:
pH = -log[H+]
where [H+] is the concentration of hydrogen ions in moles per liter (M).
In this case, [H+] = 1.39x10^-6 M, so:
pH = -log(1.39x10^-6)
= 5.857
Therefore, the pH of the solution is approximately 5.857.
You react 0.017 mol of solid metal with HCl in a coffee cup calorimeter (reaction shown below). The calorimeter has 100 mL of water in it, and the temperature of the water increases by 3.81°C. The calorimeter has a heat capacity of 40.4 J/°C. What is the enthalpy of the reaction in terms of kJ per mol of the metal (your answer should be NEGATIVE, remember to convert from J to kJ, specific heat capacity of water is 4.184 J/g-°C)?
M(s) + 2 HCl (aq) MCl2 (aq) + H2 (g)
M = metal
The enthalpy of the reaction is -94.1308 kJ/mol of the metal.
First, we need to calculate the amount of heat absorbed by the water in the calorimeter. We can use the formula:
q = m × C × ΔT
where q is the amount of heat absorbed by the water, m is the mass of the water, C is the specific heat capacity of water, and ΔT is the temperature change of the water.
q = 100 g × 4.184 J/g-°C × 3.81°C = 1601.304 J
Next, we need to calculate the amount of heat released by the reaction. We can use the formula:
q = n × ΔH
where q is the amount of heat released, n is the number of moles of the metal, and ΔH is the enthalpy change of the reaction.
We know that 0.017 moles of metal reacted, and we can assume that all the heat released by the reaction was absorbed by the water in the calorimeter.
Therefore:
q = n × ΔH
1601.304 J = 0.017 mol × ΔH
ΔH = 1601.304 J / 0.017 mol = 94130.8235 J/mol
Finally, we need to convert the answer from joules to kilojoules:
ΔH = 94130.8235 J/mol / 1000 J/kJ = -94.1308 kJ/mol
Learn more about enthalpy, here:
https://brainly.com/question/16720480
#SPJ1
What is the mass (in g) of a solid piece of iron which has a specific heat of 0.449 J/g°C if when it absorbed 948.0 J of heat the temperature rose from 24.0°C to
82.1°C? Give your answer in 3 sig figs.
Answer:
Explanation:
We can use the formula:
q = mcΔT
where q is the heat absorbed, m is the mass, c is the specific heat, and ΔT is the change in temperature.
Given:
specific heat of iron (c) = 0.449 J/g°C
initial temperature (T1) = 24.0°C
final temperature (T2) = 82.1°C
heat absorbed (q) = 948.0 J
Substituting the given values into the formula, we get:
q = mcΔT
948.0 J = m(0.449 J/g°C)(82.1°C - 24.0°C)
948.0 J = m(0.449 J/g°C)(58.1°C)
m = 948.0 J ÷ (0.449 J/g°C × 58.1°C)
m = 33.1 g
Therefore, the mass of the iron piece is 33.1 g (to three significant figures)
A chemistry teacher has 6 liters of a
sodium nitrate solution. She has 24
students in her class and she wants
to divide the solution evenly among
them. How many milliliters of sodium
nitrate solution will each student
receive?
Answer:
There are 1000 milliliters (ml) in one liter. Therefore, the teacher has a total of 6 x 1000 = 6000 ml of sodium nitrate solution.
Explanation:
To divide the solution evenly among the 24 students, we need to divide the total volume of the solution by the number of students:
6000 ml ÷ 24 students = 250 ml per student
Therefore, each student will receive 250 milliliters of sodium nitrate solution.
Answer:
Answer- 0.25ml
Explanation:
So there are 24 students and 6 liters of Solution.So to evenly distribute
Just divide 6 by 24(6÷24/)... So the answer will be 0.25
Summarize the main challenges and constraints that engineers must overcome in the design of a low-cost, portable water purification system.
The primary difficulties in creating a low-cost, portable water purification system include assuring efficient pollution removal, compact design, durability etc.
In order to create a low-cost, portable water purification system, engineers must overcome several main obstacles and challenges, including: ensuring the removal of contaminants effectively; designing a compact and lightweight system; guaranteeing durability and reliability in harsh environments; providing an affordable, sustainable power source; and addressing cultural and social factors that may affect user acceptance and adoption.
To know more about water purification system, visit,
https://brainly.com/question/11523514
#SPJ1
Jeremiah is conducting an investigation about the water cycle. He is given the following materials:
a lamp
a glass jar that contains water
plastic wrap
Describe how Jeremiah can arrange these materials to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake. Be sure to identify what each material represents in the model.
Input Field 1 of 1
Skip to input field
Jeremiah can arrange the materials in the following way to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake
What is the water cycle?The following can be a representation of the water cycle;
Fill the glass jar with water to resemble the lake.
Put the lamp next to the jar to symbolize the sun.
Wrap the jar in plastic sheet to imitate the atmosphere.
Turn on the bulb to represent the sun warming the water.
When the water in the jar warms up and evaporates into water vapor, moisture will condense on the plastic wrap.
The water vapor will ascend and collect on the plastic wrap to represent the water vapor rising into the atmosphere.
Water vapor cools as it rises and condenses back into liquid form, as shown by the water droplets gathering on the plastic wrap.
Learn more about the water cycle:https://brainly.com/question/31195929
#SPJ1
For the reaction:
S8(s) + 8 O2(g)⟶8 SO2(g) ΔH = –2368 kJ
How much heat is evolved when 25.0 moles of sulfur is burned in excess oxygen?
The amount of heat evolved when 25 moles of Sulfur is burned in excess oxygen is -74000 kJ.
The balanced reaction is given that is:
[tex]S_8(s) + 8 O_2(g) \rightarrow 8 SO_2(g)[/tex]
We can see that 1 mole of [tex]S_8[/tex] reacts with 8 moles of [tex]O_2[/tex] to produce 8 moles of [tex]So_2[/tex].
If 25.0 moles of [tex]S_8[/tex] reacts with excess Oxygen, then the amount of [tex]O_2[/tex] which is required in the reaction will be:
8 moles [tex]O_2[/tex] / 1 mole S8 × 25.0 moles S8 = 200 moles [tex]O_2[/tex]
We can use the enthalpy change and calculate the amount of heat evolved:
[tex]\Delta H[/tex] = -2368 kJ/ 8 moles [tex]SO_2[/tex]
The heat evolved = [tex]\Delta H[/tex] × moles of [tex]SO_2[/tex] produced
Moles of [tex]SO_2[/tex] produced = 8 moles [tex]SO_2[/tex] / 1 mole [tex]S_8[/tex] × 25.0 moles [tex]S_8[/tex]
= 200 moles [tex]SO_2[/tex].
Therefore, Heat evolved= -2368 kJ/ 8 moles [tex]SO_2[/tex] × 200 moles [tex]SO_2[/tex]
= -74000 kJ
The amount of heat evolved when 25 moles of Sulfur is burned in excess oxygen is -74000 kJ, the negative sign here indicates that the reaction is exothermic.
Learn more about the enthalpy change at:
https://brainly.com/question/28873088
#SPJ1
How is oil soap and water sustainable
Oil soap and water are sustainable because they are both natural and biodegradable.
What is oil soap?Oil soap is a cleaning product that is made from natural materials, such as vegetable oils and potassium hydroxide.
One of the main ways in which oil soap and water can be considered sustainable is that they are both natural and biodegradable.
In addition, using oil soap and water to clean wooden surfaces can help to prolong their lifespan, reducing the need for frequent replacements and minimizing waste.
Regular maintenance with oil soap can help to prevent dirt and grime buildup that can cause damage to wooden surfaces.
Learn more about oil soap here: https://brainly.com/question/16375181
#SPJ1
Joan wrote a science fiction story where the people only texted each other, and never talked. They still had vocal chords, but they could no
longer make sounds. Their vocal chords were
Answer:
Vestigial
Explanation:
The retention of genetically determined traits or structures that have partially or completely lost their ancestral purpose in a specific species is known as vestigiality. In most cases, evaluating the vestigality requires comparison with comparable traits in closely related species.
Chemical equation for the formation of carbonic acid from the reaction of water with carbon dioxide
Answer: H2O + CO2 --> H2CO3
Explanation:
Water and Carbon Dioxide react to form Carbonic Acid
H2O + CO2 --> H2CO3
A titration setup was used to determine the unknown molar concentration of a solution of NaOH. A1.2 M HCl solution was used as the
titration standard. The following data were collected.
Trial 1
Amount of HCI
Standard Used 10.0 mL
0.0 mL
Initial NaOH
Buret Reading
Final NaOH
Buret Reading 12.2 mL
Trial 2
10.0 mL
12.2 mL
23.2 mL
Trial 3 Trial 4
10.0 mL 10.0 mL
23.2 mL 35.2 mL
35.2 mL 47.7 mL
79) Calculate the volume of NaOH solution used to neutralize 10.0 ml. of the standard HCl solution in trial 3 in the given diagram.
[Show your work.]
1. To operate a batch reactor for converting A into R. This is a liquid phase reaction with the stoichiometry A → R. CA,(mol/l) 0.1 0.2 0.3 0.4 0.2 0.6 0.7 0.8 1.0 1.3 2.0 -rA,(mol/l min) 0.1 0.3 0.5 0.6 0.5 0.25 0.10 0.06 0.05 0.045 0.042 For the above data determine the order of reaction and rate constant.
The reaction is second order with a rate constant of 0.043 mol/l min.
How to explain the reactionFor CA = 0.1 mol/l, -rA = 0.1 mol/l min
For CA = 0.2 mol/l, -rA = 0.3 mol/l min
For CA = 0.3 mol/l, -rA = 0.5 mol/l min
For CA = 0.4 mol/l, -rA = 0.6 mol/l min
The slope of this line is equal to the order of the reaction (n), and the y-intercept is ln(k).
Slope = (0.6931 - (-2.3026)) / (0.3010 - (-0.9163)) = 1.929
ln(k) = -2.3026 + 1.929 * (-0.3010)
ln(k) = -3.1504
k = e^(-3.1504) = 0.043 mol/l min
The reaction is second order with a rate constant of 0.043 mol/l min.
Learn more about reaction on
https://brainly.com/question/11231920
#SPJ1
How do I find solution concentration
To find the solution concentration, you need to know the amount of solute and the volume of the solution.
The solution concentration is typically expressed in terms of molarity (moles of solute per liter of solution). To calculate the molarity of a solution, divide the moles of solute by the volume of the solution in liters.
Another way to express solution concentration is in terms of percent by mass or volume, which is calculated by dividing the mass or volume of the solute by the mass or volume of the solution and multiplying by 100.
To find the solution concentration, you'll need to calculate the ratio of solute (substance being dissolved) to solvent (substance doing the dissolving) in the mixture.
Concentration is commonly expressed in units like molarity (M), mass/volume percent, or parts per million (ppm).
To calculate molarity (M), divide the moles of solute by the volume of the solvent (in liters). The formula is:
Molarity (M) = moles of solute / volume of solvent (L)
For mass/volume percent, divide the mass of the solute by the total volume of the solution and multiply by 100. The formula is:
Mass/volume percent = (mass of solute / total volume of solution) x 100
For parts per million (ppm), divide the mass of the solute by the total mass of the solution and multiply by 1,000,000.
The formula is:
ppm = (mass of solute / total mass of solution) x 1,000,000
Choose the appropriate formula based on the units required for your specific problem.
For more question on solution concentration
https://brainly.com/question/26255204
#SPJ11
which type of mutation could have the most drastic effect
on a gene a chromosomal mutation? Back up your choice.
Answer:
we need to know the definitions of the two types of mutations:
A chromosomal mutation is a change in the structure or number of chromosomes, which are the structures that carry genes. Examples of chromosomal mutations are deletions, duplications, inversions, and translocations.A gene mutation is a change in the sequence of nucleotides, which are the building blocks of DNA and RNA. Examples of gene mutations are substitutions, insertions, and deletions.Looking at the definitions, we can see that a chromosomal mutation can affect many genes at once, while a gene mutation can affect only one or a few nucleotides. Therefore, a chromosomal mutation could have the most drastic effect on a gene, because it could alter or delete an entire gene or multiple genes, resulting in major changes in the phenotype or function of an organism. A gene mutation could also have significant effects on a gene, but it could also be silent or minor depending on the location and type of the mutation. Therefore, the answer is a chromosomal mutation. One possible way to back up this choice is to give an example of a chromosomal mutation that causes a genetic disorder, such as Down syndrome or Turner syndrome.
An argon ion laser emits visible radiation with photons of energy 4.071 x 10-19 J. What is the
wavelength of the radiation?
The wavelength of the radiation emitted by the argon ion laser is [tex]4.854 * 10^-7 m[/tex].
Wavelength is a property of any type of wave that refers to the distance between two adjacent points on the wave that is in phase, i.e., at the same point in their respective cycles. It is usually denoted by the Greek letter lambda (λ) and is measured in units of length, such as meters or nanometers.
The energy carried by the photon (E) is related to the wavelength ([tex]\lambda[/tex]) through the following equation:
[tex]E=hc/\lambda[/tex]; where 'h' is the Plank's Constant and 'c' is the speed of light which is [tex]3* 10^{-7} m/s[/tex].
We can say that
[tex]\lambda - hc/E[/tex]
Now after substituting the given values, we get:
[tex]\lambda = (6.626 * 10^{-34} J.s * 3.00 * 10^8 m/s) / (4.071 * 10^{-19} J)\\\lambda = 4.854 * 10^-7 m[/tex]
Therefore the wavelength of the radiation emitted by the argon ion laser is [tex]4.854 * 10^-7 m[/tex].
Learn more about the Plank's Constant at:
https://brainly.com/question/28060145
#SPJ4
Please help thanks!!!!!!!!!!!!!!!!!!
The correct ratio of components is: For every 3 moles of carbon dioxide produced, 5 moles of oxygen react.
This ratio can be derived directly from the balanced chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
The balanced equation shows that for every 3 moles of carbon dioxide produced, 5 moles of oxygen are required. This means that if we have a certain amount of propane, we need to use this ratio to determine the amount of oxygen needed for the reaction. Similarly, if we have a certain amount of oxygen, we can use this ratio to calculate the amount of carbon dioxide that will be produced.
It is important to note that the other ratios provided in the question are incorrect because they do not match the coefficients in the balanced chemical equation.
Therefore, the correct option is: for every 3 moles of carbon dioxide produced, 5 moles of oxygen react.
To learn more about balanced equation here
https://brainly.com/question/31242898
#SPJ1
After some salt was added to it, a 45.4 g solution in a coffee-cup calorimeter increased in temperature from 23.0 oC to 31.5 oC. The specific heat constant (c) for the solution is 1 cal/g oC. The q of the reaction is ______ cal
The amount of heat absorbed during the reaction is 385.9 cal.
How to calculate heat in calorimetry?Calorimetry is the science of measuring the heat absorbed or evolved during the course of a chemical reaction or change of state.
The amount of heat in a reaction can be calculated as follows;
Q = mc∆T
Where;
Q = quantity of heat absorbedm = mass of substancec = specific heat capacity∆T = change in temperatureQ = 45.4 × 1 × {31.5 - 23)
Q = 45.4 × 8.5
Q = 385.9 cal
Learn more about calorimetry at: https://brainly.com/question/25384702
#SPJ1
Describe the technique for washing a precipitate. Place the steps in the correct order.
A. add deionized water
B. mix solutions
C. decant
D. centrifuge
Find the concentration of all ions present in a 0.223 M solution of PbCl2.
Answer:
Since that means that we have 0.223 moles of PbCl2 in 1000mL of solution.
Also since mole ratio of the ions Pb2+:Cl- is 1:2
Thus, moles of Pb2+ = 0.223moles
concentration of Pb2+= 0.223M
Moles of Cl- = 2x0.223 moles
Concentration of Cl- = 0.446M
Explanation:
What is a solvent front?
Answer:
A solvent front is the point on a chromatography paper or plate where the solvent has reached the end of the stationary phase and has migrated as far as it can go. It is the farthest point reached by the solvent in the chromatography process.
1. What is the percent of NaCl in a mixture that contains 23.5 g of NaCl and 212 g of water? Enter
answers in 2 decimal places
Answer:
9.98%
Explanation:
To find the percent of NaCl in the mixture, we need to divide the mass of NaCl by the total mass of the mixture, and then multiply by 100 to express it as a percentage.
Step 1: Find the total mass of the mixture
total mass = mass of NaCl + mass of water
total mass = 23.5 g + 212 g
total mass = 235.5 g
Step 2: Calculate the percent of NaCl
% NaCl = (mass of NaCl / total mass) x 100
% NaCl = (23.5 g / 235.5 g) x 100
% NaCl = 0.0997876857 x 100
% NaCl = 9.978768677%
% NaCl = 9.98%
Therefore, the percent of NaCl in the mixture is 9.98%.
What mass (grams) of magnesium chloride would be formed by the compete reaction of 72.8 grams of magnesium?
Mg +FeCl2 --> Fe + MgCl2
Answer: 285.63g of MgCl2.
Explanation:
Very easy stiochemistry question. Use the dimensional analysis. For example 1 m x 100 cm / 1m and meters get canceled out and 1 m is 100 cm.
For the question, start with the given things. You know that it was started with 72.8 grams of magnesium. Convert it to molar mass (to use moles for comparison), and then find the mass of mg.
Efficient synthesis in 7 steps or less.
1) Bromination of propylene to form 2-bromopropane using NBS and a Lewis acid catalyst.
What is Bromination?Bromination is a chemical process in which bromine is added to a molecule. This can be done by either direct substitution or as a substitution reaction, allowing for the addition of one or more bromine atoms to the molecule. Bromination is a commonly used organic reaction, particularly in the laboratory, and can be used to alter the properties of a compound. It can also be used to produce a wide range of products, including aromatics and halogenated compounds. Bromination is particularly useful in pharmaceutical synthesis, as the products of this reaction often have desirable bioactivity.
2) Reduction of 2-bromopropane to 2-propanol using NaBH₄
3) Reaction of 2-propanol with phosphorus tribromide to form 2-bromopropanol
4) Alkylation of 2-bromopropanol with methyl iodide to form 2-bromopropyl methyl ether
5) Reduction of 2-bromopropyl methyl ether to 2-methoxypropane using NaBH₄
6) Reaction of 2-methoxypropane with phosphorus tribromide to form 2-bromo-2-methoxypropane
7) Reduction of 2-bromo-2-methoxypropane to Compound X using NaBH₄
To learn more about Bromination
https://brainly.com/question/24202507
#SPJ1
A freezer is maintained at -7°C by removing heat from it at a rate of 80 kJ/min. The power input to the freezer is 0.5 kW, and the surrounding air is at 25°C. Determine (C) the second-law efficiency of this freezer
The second-law efficiency of this freezer is 94.7%.
What is the the second-law efficiency of a refrigerator?The second-law efficiency of a refrigerator or freezer is described as as the ratio of the desired cooling effect which is the heat removed from the cold reservoir) to the energy input required to achieve this cooling effect.
The second-law efficiency of a refrigerator formula is
η = Qc / W
we have the equation as
Qh = mCΔT = Qc
Tc = -7°C = 266 K
Th = 25°C = 298 K and
W = Qh / (1 - Tc/Th) = Qc / (1 - Tc/Th) = 3.3 W
we have found Qc = 3.125
W = 3.3 W
we then substitute into the second-law efficiency formula:
η = Qc / Wmin
η= 3.125 W / 3.3 W
η= 0.947 or 94.7%
Learn more about second-law efficiency at:
https://brainly.com/question/15025185
#SPJ1
Both chairs are the same size and have the same number of molecules. The diagram above shows the chairs before they touch.
How does the temperature of the bottom chair compare with the temperature of the top chair before the chairs touch? What will happen after the chairs have been touching for a while?
Before the chairs touch, the temperature of the bottom chair is lower than the temperature of the top chair, this is because the molecules in the bottom chair are in contact with a cooler surface.
After the chairs have been touching for a while, the heat will begin to transfer from the top chair to the bottom chair through a process called conduction. This will continue until the temperature of the two chairs equalizes, at which point there will be no more net heat transfer between them.
The final temperature of both chairs will be somewhere between the initial temperatures of the two chairs, and will depend on factors such as the thermal conductivity of the material, the size of the chairs, and the duration of the contact.
To know more about the Molecules, here
https://brainly.com/question/2114821
#SPJ1
A piece of iron at 408 grams is heated in a flame and is then plunged into a beaker containing 1.00 kg of water. The original temperature of the water was 20.0°C, but it was 32.8°C after the iron bar is dropped in. What was the original temperature of the hot iron bar?
Note: The specific heat of iron is 0.45 J/g °C.
Do not round your answer in the middle of the problem. Round at the very end.
Round your answer to the correct number of sig figs. Your units should be degrees Celsius.
the original temperature of the h ot iron bar was 327.9°C.
We can use the specific heat of iron to do this:
Q1 = m1 * C1 * (Ti - 32.8°C)
Q1 = 408 g * 0.45 J/g °C * (Ti - 32.8°C)
Q1 = 183.6 J/g °C * (Ti - 32.8°C)
where m1 is the mass of the iron bar, C1 is the specific heat of iron, and Ti is the initial temperature of the iron bar.
Next, let's calculate the heat gained by the cold water when it is heated from 20.0°C to 32.8°C:
Q2 = m2 * C2 * (32.8°C - 20.0°C)
Q2 = 1000 g * 4.184 J/g °C * (32.8°C - 20.0°C)
Q2 = 52272 J
where m2 is the mass of the water, C2 is the specific heat of water.
Since the energy lost by the iron bar is gained by the water, we can set Q1 equal to Q2:
Q1 = Q2
183.6 J/g °C * (Ti - 32.8°C) = 52272 J
Now, let's solve for Ti:
183.6 J/g °C * Ti - 60236.8 J = 0
183.6 J/g °C * Ti = 60236.8 J
Ti = 327.9°C
Therefore, the original temperature of the h ot iron bar was 327.9°C.
learn more about temperature here
https://brainly.com/question/26866637
#SPJ1
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium.
CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. What fraction of the reactant remains at equilibrium?
b. What is the molarity of chlorine gas at equilibrium?
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium. CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. To find the fraction of the reactant (CCl4) remaining at equilibrium, we can start by determining the initial concentration of CCl4:
Initial concentration of CCl4 = moles/volume = 2.00 mol / 1.00 L = 2.00 M
Let x be the change in concentration of CCl4 at equilibrium. Then, the equilibrium concentrations are:
[CCl4] = 2.00 - x
[Cl2] = 2x
The equilibrium constant expression is given by:
Kc = [Cl2]^2 / [CCl4]
Plugging in the given Kc value (0.76) and the equilibrium concentrations:
0.76 = (2x)^2 / (2.00 - x)
Now, you can solve for x. The fraction of the reactant remaining at equilibrium is (2.00 - x) / 2.00.
b. To find the molarity of chlorine gas (Cl2) at equilibrium, you can use the value of x obtained in part (a). The molarity of Cl2 is equal to 2x.
For more questions on: temperature
https://brainly.com/question/27944554
#SPJ11
Which solution would you choose to supress the dissolution of MgCO3?
A. 0.200 M NaCl
B. 0.200 HCl
C. 0.200 M NaNO3
D. 0.200 M Na2CO3
The best solution to suppress the dissolution of MgCO3 is option D 0.200 M Na2CO3
To suppress the dissolution of MgCO3We need to add an ion or compound that will react with MgCO3 and form a precipitate, thus removing Mg2+ and CO32- ions from the solution.
Therefore, Option D, 0.200 M Na2CO3, contains CO32- ions that can react with Mg2+ ions to form MgCO3 precipitate. This would effectively suppress the dissolution of MgCO3 by removing Mg2+ and CO32- ions from the solution.
Therefore, option D is the best solution to suppress the dissolution of MgCO3.
Learn more about dissolution here : brainly.in/question/14694236
#SPJ1
Which of the following is an example of an environmental impact of
agriculture?
O high use of gold, copper, and silver
O high use of rock supplies
O high use of mineral resources
O high use of water
Ne
Answer:
B
self explanatory
Explanation:
Aqueous sulfuric acid (H₂SO₂) reacts with solid sodium hydroxide (NaOH) to produce aqueous sodium sulfate (Na₂SO) and liquid water (H₂O). What is the
theoretical yield of sodium sulfate formed from the reaction of 4.9 g of sulfuric acid and 5.0 g of sodium hydroxide?
Round your answer to 2 significant figures.
The theoretical yield of sodium sulfate, Na₂SO₄, formed from the reaction of 4.9 g of sulfuric acid, H₂SO₄ and 5.0 g of sodium hydroxide, NaOH is 7.1 g
How do i determine the theoretical yield?First, we shall determine the limiting reactant. This is shown below:
H₂SO₄ + 2NaOH -> Na₂SO₄ + 2H₂O
Molar mass of H₂SO₄ = 98 g/molMass of H₂SO₄ from the balanced equation = 1 × 98 = 98 g Molar mass of NaOH = 40 g/molMass of NaOH from the balanced equation = 2 × 40 = 80 gFrom the balanced equation above,
98 g of H₂SO₄ reacted with 80 g of NaOH
Therefore,
4.9 g of H₂SO₄ will react with = (4.9 × 80) / 98 = 4 g of NaOH
From the above calculation, we can see that only 4 g of NaOH out of 5 g is needed to react with 4.9 g H₂SO₄.
Thus, the limiting reactant is H₂SO₄
Finally, we shall determine theoretical yield of sodium sulfate, Na₂SO₄ formed. Details below:
H₂SO₄ + 2NaOH -> Na₂SO₄ + 2H₂O
Molar mass of H₂SO₄ = 98 g/molMass of H₂SO₄ from the balanced equation = 1 × 98 = 98 gMolar mass of Na₂SO₄ = 142 g/molMass of Na₂SO₄ from the balanced equation = 1 × 142 = 142 gFrom the balanced equation above,
98 g of H₂SO₄ reacted to produce 142 g of Na₂SO₄
Therefore,
4.9 g of H₂SO₄ will react to produce = (4.9 × 142) / 98 = 7.1 g of Na₂SO₄
Thus, the theoretical yield of sodium sulfate, Na₂SO₄ formed is 7.1 g
Learn more about theoretical yield:
https://brainly.com/question/30945491
#SPJ1